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Abstract

FC-VFEMP1-BIHARMONIC is an experimental object-oriented Python package dedicated to solve bi-
harmonic boundary value problems (BVP) by using P!-Lagrange finite element method in any space
dimension. This package is an add-on to the FC-VFEMP; package [?]. It uses the FO-SIMESH package [1]
and the siMesh class which allows to use simplices meshes generated from gmsh (in dimension 2 or 3) or
an hypercube triangulation (in any dimension).

The two FC-SIMESH add-ons FC-SIMESH-MATPLOTLIB [2] and FC-SIMESH-MAYAVI [3] allows a great
flexibility in graphical representations of the meshes and datas on the meshes by using respectively the
MATPLOTLIB and the MAYAVI packages.

The FC-VFEMP; package also contains the techniques of vectorization presented in [5] and extended
in [4] and allows good performances when using P!-Lagrange finite element method.
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Chapter

Generic Boundary Value Problems

The notations of [§] are employed in this section and extended to the vector case.

Scalar boundary value problem

Let  be a bounded open subset of R¢, d > 1. The boundary of € is denoted by I
We denote by Lapea, = £ : H*(2) — L?(2) the second order linear differential operator acting on
scalar fields defined, Yu € H2(2), by

Lape.a ()2 —div(AV u) + div (bu) + (V u,¢) + agu (1.1)

where A e (L®(2))™4, be (L*(Q))4, ce (L*(2))? and ag € L*(2) are given functions and (-, -) is the
usual scalar product in R?. We use the same notations as in the chapter 6 of [§] and we note that we can
omit either div (bu) or (Vu,¢) if b and ¢ are sufficiently regular functions. We keep both terms with b
and ¢ to deal with more boundary conditions. It should be also noted that it is important to preserve the
two terms b and ¢ in the generic formulation to enable a greater flexibility in the choice of the boundary
conditions.

Let TP, T'® be open subsets of T', possibly empty and f € L?(Q), g© e HY2(I'P), g% € L*(I'F),
a® e L*(T!) be given data.

A scalar boundary value problem is given by

gScalar BVP 1 : generic problem
Find v € H2() such that

E(u :f in Q,
u =g on I'P, (1.3)
(jn_ug + afu =g" on T'%. (1.4)

The conormal derivative of u is defined by

B 22 o — i) (1.5)
0n[;

The boundary conditions (|1.3) and (1.4)) are respectively Dirichlet and Robin boundary conditions.
Neumann boundary conditions are particular Robin boundary conditions with a® = 0.



Scalar BVP

To have an outline of the FC-VFEMP; package, a first and simple problem is quickly present. Expla-
nations will be given in next sections.
The problem to solve is the Laplace problem for a condenser.

—\@’- Usual BVP 1 : 2D condenser problem

-

Find v € H2(Q) such that
~Au = 0 in Qc R?, (1.6)
= 0 on F1, (17)
—12 on Fgg, (18)
u = 12 on Fgg, (19)

oi} e — n
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Figure 1.1: 2D condenser mesh and boundaries (left) and numerical solution (right)

The problem (|1.6)-(1.9) can be equivalently expressed as the scalar BVP ((1.2)-(1.4) :

gScalar BVP 2 : 2D condenser problem
Find u € H*(Q) such that

L(u

u

in Q,

f
gD on FD = Fl () Fgg () Fgg.

I

where £ := L 0,0,0, f =0, and

gD :=0on I'q, gD := —12 on Igg, gD := +12 on I'gg

In Listing [27] a complete code is given to solve this problem.

meshfile=gmsh . buildmesh2d (’condenser’
Th=siMesh (meshfile) # read mesh
Lop=Loperator (dim=2,d=2,A=[[1,0],[0,1]])
pde=PDE(Op=Lop)

bvp=BVP(Th, pde=pde)

bvp.setDirichlet( 1, 0.)

bvp.setDirichlet ( 98, —12.)

bvp.setDirichlet ( 99, +12.)

u=bvp.solve ();

# Graphic parts

plt.figure (1)

siplt .plotmesh (Th,legend=True)

set _axes equal ()

plt.figure (2)

siplt . plotmesh (Th, color="LightGray’,alpha=0.3)
siplt .plotmesh (Th,d=1,legend=True)

,10) # generate mesh
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Vector boundary value problem n

set _axes equal ()

plt . figure (3)

siplt .plot (Th,u)

plt.colorbar(label="u")

set _axes_equal ()

plt.figure (4)

siplt . plotiso(Th,u,contours=15)
plt.colorbar(label="u")

siplt . plotmesh (Th, color="LightGray’,alpha=0.3)
plt.axis(’off’);set axes equal()

Listing 1.1: Complete Python code to solve the 2D condenser problem with graphical representations

r10.29

[T 343

T -3.43

— —6.86

-1 —t -10.29

—4 -2 0 2 4

Figure 1.2: 2D condenser numerical solution

Vector boundary value problem

(2]
£
o
=
g
o
g E
Let m > 1 and H be the m-by-m matrix of second order linear differential operators defined by § %
o
> £
Moo (@) (@) (110 ig
= (.. ) — f=f1, fm) EHw) ' 573
0]
where ) g
m -
fa= D) Haplug), Yae[l,m], (1.11) -
p=1 LS
with, for all (o, 8) € [1,m]?, - g
def
Ha,p = ‘CAavﬁ’ba,B,ca,ﬁ’ag‘ﬁ (1.12) g
a
—

and AP € (L2 (Q))44, pF e (L2(Q))4, ¢*f e (L*(Q))? and al’ € L*(Q) are given functions. We
can also write in matrix form

£A1v1,b1v1,c1’1,aé’1 EAl,mybl,m’cl,mﬂlé«m (751
H(u) = : : ] (1.13)

LAmvl,bm*l,cm*l,agl’l ce ﬁAm,m7bm,m’cm,m)a70nvm Uy,

We remark that the H operator for m = 1 is equivalent to the £ operator.

For a € [1,m], we define T2 and I'2 as open subsets of T, possibly empty, such that T2 n T2 = .
Let f e (L2(Q)™, g2 e HY2(TD), g% € L2(TE), af € L*(TE) be given data.

A wvector boundary value problem is given by
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Vector BVP “_

ﬁ Vector BVP 1 : generic problem
Find u = (u1,...,u,) € (H*(Q))™ such that

H(u) =f in Q, (1.14)

u, =g on 'Y Vae [1,m], (1.15)

Ou + afu, =g= on T2 Va e [1,m], (1.16)
anya

where the a-th component of the conormal derivative of u is defined by

det a’ll:ﬂ _ S a,B o
- lanﬂa,ﬁ—ﬁ;(@ Vug,n) — (" ug,n)). (1.17)

The boundary conditions are the Robin boundary conditions and is the Dirichlet
boundary condition. The Neumann boundary conditions are particular Robin boundary conditions
with aff = 0.

In this problem, we may consider on a given boundary some conditions which can vary depending on

u
5717.Ll

the component. For example we may have a Robin boundary condition satisfying + aflu; = gF and

a Dirichlet one with uy = g2’.
To have an outline of the FC-VFEMP; package, a second and simple problem is quickly present.

-

-\@’- Usual vector BVP 1 : 2D simple vector problem

Find u = (u1,us2) € (H?(Q))? such that
—Au; +uy = 0 in QcR?, (1.18)
~Aug +u; = 0 in Qc R? (1.19)
(ui,ug) = (0,0) on Iy, (1.20)
(up,u2) = (=12.,412.) on Igs, (1.21)
(u1,us) (+12.,—12.) on Tgg, (1.22)

where  and its boundaries are given in Figure [[.]
The problem (1.18))-(1.22) can be equivalently expressed as the vector BVP ([1.2)-(1.4)) :

g Vector BVP 2 : 2D simple vector problem
Find u = (u1,uz) € (H2(Q))? such that

H(u) =f in Q,
U1 =ng on FD = Fl U Fgg U Fgg,
(%) 292[) on FD = Fl U ng U Fgg,

where ﬁ p A
= 1 U
1 = 1,0,0,0 O,O,O,1>7 ] <U1> _ ( ) < 1>
<£o,o,o,1 L1,0,0,0 o U 1 —A) \uz

and

g2 :=0onTy, gP:=—-12, gf := +12 on T'gg, g := +12, g¥ := —12 on Tyg

In Listing [21] a complete code is given to solve this problem. Numerical solutions are given in Fig-
ure

meshfile=gmsh. buildmesh2d (’condenser’,10); # generate mesh
Th=siMesh (meshfile) # read mesh
Hopl=Loperator (dim=2,A=[[1 ,None] ,[None,1]])
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Vector BVP “_

Hop2=Loperator (dim=2,a0=1)

Hop=Hoperator (dim=2m=2 H=[[Hopl,Hop2] ,[Hop2,Hopl|])
pde=PDE(Op=Hop)

bvp=BVP(Th, pde=pde)

bvp.setDirichlet( 1, 0,comps=[0,1])

bvp.setDirichlet ( 98, [—12,+12],comps=[0,1]);
bvp.setDirichlet ( 99, [+12,—12],comps=[0,1]);
U=bvp.solve(split=True)

# Graphic parts

plt.figure (1)

siplt . plot (Th,U[0])

plt.axis(’off’);set axes equal()

plt . colorbar(label="$u_1$’ ,orientation="horizontal )
plt.figure (2)

siplt . plot (Th,U[1])

plt.axis(’off’);set axes equal()

plt . colorbar(label="$%u_2$’ ,orientation="horizontal )

Listing 1.2: Complete Python code to solve the funny 2D vector problem with graphical representations

Figure 1.3: Funny vector BVP, u; numerical solution (left) and us numerical solution (right)
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Chapter 2

Biharmonic Boundary Value Problems

Let Q c RY™ and I' = 09. The biharmonic equation is the fourth-order partial PDE given by

Ay = f, inQ (2.1)
dim dim dim 64 dim dim
2,
where A%y = Z;Z&x%x 2344—22 Z 826x2
1 Jj=1 1=1j5=1i+1

The boundary conditions on I' can be

o Clamped Plate (CP) or pure Dirichlet type:

u= Z—Z =g (2.2)
o Simply Supported Plate (SSP) or Navier type :
u=Au=g (2.3)
e Pure Hinged Plate (PHP) or Steklov type :
u:Au—(l—U)Kg—ng (2.4)
e Cahn-Hilliard (CH) type
S*Z _ aaATu _y (2.5)

Link with H-operator

Classically the fourth-order PDE ([2.1) is converted to the two second-order PDE

—Au = v (2.6)
—Av = f

These two equations can be equivalently written as

7(2)= ) <) = ) o



Link with #-operator “.

where G and K are the H-operators defined by

0 E|000> (ﬁlooo £000—1>
- 000 ) and = (51000 Lo00. 2.9
g <£I,0,0,0 L£0,0,0,—1 " L0000 L1000 (2.9)

The Python code using the FC-VFEMP; package to create the operators G and K are respectively given

in Listings 2.1] and [2:2}

from fc_vfempl.operators import from fc_vfempl.operators import
Loperator ,Hoperator Loperator ,Hoperator
Lop=Loperator (dim=2, Lop=Loperator (dim=2,
A=[[1,None]| ,[None,1]]) A=[[1,None] ,[None,1]])
Gop=Hoperator (dim=2,m=2) Kop=Hoperator (dim=2 m=2)
Gop.H[0][1]=Gop.H[1][0]=Lop Kop.H[0][0]=Kop.H[1][1]=Lop

Gop.H[1][1]=Loperator (dim=2,a0=-—1) Kop.H[0][1]= Loperator (dim=2,a0=-—1)

Listing 2.1: G operator with the FC-VFEMP; Listing 2.2: K operator with the FC-VFEMP;
packagein 2D package in 2D

Let w = (u,v). With the operator K given in (2.8)), the components of the conormal derivative of w
defined in ([1.17) are given by

2

ow def 6w5 2 1
— = = Y (AYVwg,n) — (b"Pug,n)
6n;€1 Bgl 8n,<1’3 ﬁgl
= {Vwi,ny=<{Vumn)
ou
= — 2.10
n (2.10)
wn ©
and E
2 2 %E: o
ow def a’LUﬁ 9 =
—_— = = A ’ﬁng,n — b2’5u5,n a
on, BZ=:1 Ny 5 52‘1< ? < ) @
= {Vwy,n)=<Vun) S
81} D »
- & 2.11 s S
on (2.11) '§ §
S o
So with K operator one can impose the following boundary conditions :8 =
2 X
wy, =g on T'? vae[1,2], € =
-
ow £ s
e + afw, =g7 on T2 vae[l1,2] _fc’a i
o = =
B 5
ie. a
a
u :ng on F1D7 v :géj on F?»
ou ov
n + a{zu =g{z on F{?, n + ag‘v :gf on F§

Remark 2.1 One can neither impose clamped plate (2.2)) nor Pure Hinged Plate (2.4) boundary conditions
with /C operator. This is why thereafter we will only use the G operator.

In the same way, with the operator G given in (2.8), the components of the conormal derivative of w
defined in (1.17) are given by

2 2

aw def awﬁ lﬂ 16
— = = AP Vwg,n)— (b~ ug,n
e A g, ATV wem) = 8 usm)

= {Vwy,n)y=<(Vun)

v
- = (2.12)
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Link with #-operator n

and

2 2

oW 4 dwp 2,8 2,8
= = AP Vwg,n)— (b= ug,n
6ng2 62231 6ngw 1< A > < p >

= {Vw,ny=Numn)
ou

= — 2.13
n (2.13)

Let us denotes the two partitions avec the boundary I':
P ATE =% and T2 UTE =T, Vae[l1,2] (2.14)

From Vector BVP ((1.14)-(1.16)), using G operator one can impose the following boundary conditions

wy =g on T2 vae1,2],
87611; + aflw, =g on T% Vae[1,2]
ie.
u =gP on I'P, v =g2 on 'Y,
g—z + afu =gF on I'E, Z—Z + aftv =g¥ on IT'¥

To resume, we give a generic biharmonic BVP using the operator G in Vector BVP (3) which is
equivalent to the generic mixed formulation for the biharmonic BVP given in Vector BVP (4]

ﬁ Vector BVP 3 : generic biharmonic BVP with G operator
Find w = (wy,w2) € (H?(Q))? such that

G(w) = (g) s @ (2.15)
w; =g on TP, wy =g% on 'Y, (2.16)

ow ow
g, + affw; =gt on I'f, oo, + adwy =g on T (2.17)

Vector BVP 4 : generic mixed formulation for the biharmonic BVP
Find w = (u,v) € (H?(Q2))? such that

0 L1,0,0,0 ) <U> (f) _
7. = Q, 2.18
<£I,o70,o Lo00,-1) \v 0 H (2.18)

u =gP on 'Y, v =g on T2, (2.19)
ov ou
“n + aftu =gft on TF “n + afv =g¥ on T'{. (2.20)

It’s very easy to write (2.15) (or (2.18)) from the generic formulation of the biharmonic BVP with
G operator with the FC-VFEMP; package: the source code is given in Listing where Th is a given
siMesh object and f a given python function or scalar.

from fc_vfempl.operators import Loperator ,Hoperator
from fc_vfempl .BVP import BVP,PDE

Lop=Loperator (dim=2,A=[[1,None] ,[None,1]])
Gop=Hoperator (dim=2,m—2)

Gop .H[0][1]=Gop.H[1][0]=Lop

Gop.H[1][1]=Loperator (dim=2,a0=-1)

pde=PDE(Op=Gop, f=[f ,0])

bvp=BVP(Th, pde=pde)

Listing 2.3: Writing the G(w) = (g) with the FC-VFEMP, package
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Some boundary conditions

or more concisely FC-VFEMP1-BIHARMONIC package:

import fc_vfempl biharmonic.lib as blib
bvp=blib . BiharmonicBVP (Th, f=f)

Listing 2.4: Writing shortly the G(w) = (f,0)" with the FC-VFEMP;-
BIHARMONIC package

Remark 2.2 By default the boundary conditions of a BVP object are set to homogeneous Neumann
so we have

ow ow v Ou
_ =0 & -— =
on on

angl B ang2
which is the homogeneous Cahn-Hilliard boundary condition.

Now we will see in the next sections how to set the Clamped Plate (CP), Simply Supported
Plate (CP) and Cahn-Hilliard (CH) boundary conditions.

Some boundary conditions

Let I'iyp < T'. We want to set one of the following boundary conditions on I'jyp:

o Clamped Plate (CP) or pure Dirichlet type:

u =g, and —Z =g, on (2.21)

o Simply Supported Plate (SSP) or Navier type :

u=g, and Au= —g, on 'y (2.22)
e Cahn-Hilliard (CH) type
ou 0Au
5, =Y and &, = 9% on [ab (2.23)

Now we will see how to rewrite theses boundary conditions as those in Vector BVP [ equations

[2.19)-(@-20), and Vector BVP [3| equations (2.16)-(2.17).

Clamped Plate boundary condition

From (2.19) and (2.20), we deduce that (2.21)) imposes

ou
u=gg onl,C FlD and — =g, on I, C r§‘

on

So with G operator and with w = (u,v) we obtain

R
=g, on ' Ty

wy =g, on [y C F{D and
ng,

Let bvp be the BVP object build in Listing 2.4, We want to set this object with the (CP)
boundary condition. To set the dirichlet condition on first component w; = g, on I';yp, we can use the
setDirichlet method of the BVP object:

bvp. setDirichlet (lab, ga,comps=[0])

As python uses 0-based indexing, the first component is selected with comps=[0] .

To set the Neumann condition on second component afl—‘;’ = g, we can use the setRobin method of the
2

BVP object:
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Some boundary conditions

bvp.setRobin(lab,gb,comps=[1])

As python uses 0-based indexing, the second component is selected with comps=[1] .

A more convenient way is to use the dedicated function setClampedPlate function:

import fc_vfempl biharmonic.lib as blib
blib.setClampedPlate (bvp,lab ,[ga,gb])

Listing 2.5: Setting a (CP) boundary condition

Simply Supported Plate boundary condition

From (2.19) and (2.20), we deduce that (2.22) imposes

u=g, onTp, c TP and v=g, onTyy c TP

So with G operator and with w = (u,v) we obtain
— D _ D
w1 =gq OnIap 'Y and wy =gy on Iy < Iy

Let bvp be the BVP object build in Listing We want to set this object with the (SSP)

boundary condition. To set the dirichlet conditions, we can use the setDirichlet method of the BVP
object:

bvp. setDirichlet (lab, ga,comps=[0])
bvp. setDirichlet (lab,gb,comps=[1])

or

bvp. setDirichlet (lab [ ga,gb])

A more convenient way is to use the dedicated function setSimplySupportedPlate function:

import fc_vfempl biharmonic.lib as blib
blib.setSimplySupportedPlate (bvp,lab ,[ga,gb])

Listing 2.6: Setting a (SSP) boundary condition

Cahn-Hilliard boundary condition

From (2.19) and (2.20)), we deduce that (2.23) imposes

ov ou
P gy on ', Ff‘ and = ge on ',y < r§
where v = —Au.
So with G operator and with w = (u,v) we obtain
ow ow
—— =g, on I, C Ff‘ and —— =g, on I}, C I‘f
a"7‘91 angz

Let bvp be the BVP object build in Listing We want to set this object with the (CH)

boundary condition. To set the Neumann conditions, we can use the setRobin method of the BVP
object:

bvp.setRobin(lab,gb,comps=[0])
bvp.setRobin(lab,ga,comps=[1])

or more concisely
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Examples with exact solutions

bvp.setRobin(lab,[gb,ga])

A more convenient way is to use the dedicated function setCahnHilliard function:

import fc_vfempl biharmonic.lib as blib
blib.setCahnHilliard (bvp,lab ,[ga,gb])

Listing 2.7: Setting a (CH) boundary condition

Examples with exact solutions

To obtain biharmonic problems with exact solutions we give use the exact solution and using sympy
package we compute the functions v = —Auey, f = —Awv, ag;", 0;;*, g—; and Z—Z.
Then on simple geometry (square,disk, ...) the RHS terms in the boundary conditions (i.e. g, or gp)

can be analytically computed since the exterior normals are very simple .

o

-@-Usual BVP 2 : Biharmonic problem with clamped plate (CP) boundary
conditions
Find u such that
Ay = f, in Q c R?
ou

u =g, and

on — 9b on I

-
N

Q" Usual BVP 3 : Biharmonic problem with simply supported plate (SSP)

boundary conditions

Find u such that
A2y = f, in Q c R?
u=g, and Au=g¢g, onT

-

9" Usual BVP 4 : Biharmonic problem with Cahn-Hilliard (CH) boundary
conditions
Find u such that

A%y = f, in Q c R?

& =yg, and %A—nung onTI

vRBE  Clamped plate problems on the unit square

The mesh of the unit square [0, 1] x [0,1] can be obtained by using the HyperCube function of the
FC-SIMESH package and we obtain a regular mesh. An other way is to generate a mesh file by using gmsh
and a given .geo file. This can be done entirely by using FC-00GMSH and FC-SIMESH packages, and the
square4.geo file. The complete codes are given in Listing [3] and with graphical representation of the
obtained meshes. One can see that the label of the boundaries are the same on both meshes.
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— n

— N
[}

— n

— I
[E]

import os
from fc_oogmsh import gmsh
from fc_simesh.siMesh import siMesh
from fc_simesh.siMesh import HyperCube e 'fcixyffemplibjiharmonic Gy pert @@
Th=HyperCube (2,10) geeille="nqnrme

: T (geodir , geofile )=get_geo (2,2, geofile)

Listing 2.8: 2D HyperCube mesh geoFile=geodir+os.sept+geofile+’.geo’

meshfile=gmsh. buildmesh2d (geoFile ,10)
Th=siMesh ( meshfile)

Listing 2.9: 2D mesh of square with gmsh

In file biharmonic_CP_square_ex.pyEI) the run function can solve the clamped plate problem,
Usual BVP 2} on the unit square for a given ezact solution uey as a string (default is ’sin(x)*sin(y)’ ).
Now we will set the clamped plate boundary conditions on this problem. On each boundary we can
compute g, = Uex and g, = ag% ot {V tex,n) where n is the exterior normal to I':
_ Ouex

-1 OUex
gb = on _<Vuexa O)>__ o Onrl

QUex 1 _ OQuex
9b = 8n = <vuex7 <O > - (33: on 1_‘2

QUex 0 _ Ouex

gy = on - <V Uex s _1)> = ay on F3
auex i 0 . aUex

gp= "7~ = <V Uex, 1>> =5y on I'y

Part of the source code which sets the biharmonic problem with the 4 boundary conditions is given
in Listing

print ('xx*x_Setting_the _BVP’)

bvp=blib . BiharmonicBVP (Th, f=f)

blib .setClampedPlate (bvp,1 ,[uex,lambda x,y: —dudx(x,y)

blib.setClampedPlate (bvp,2 ,[uex,lambda x,y: dudx(x,y)

blib .setClampedPlate (bvp,3 ,[uex,lambda x,y: —dudy(x,y)

blib .setClampedPlate (bvp,4 ,[uex,lambda x,y: dudy(x,y)
(

In Listing we solve the clamped plate problem with exact solution ue, = sin(5x + 1) cos(3y? — 1)
and the output is presented. The graphical results are given in Figure

Ldirectory fc_vfempl_biharmonic/examples/

Compiled on 2017/06/14 at 17:11:09

(2]
£
2
=
o
1 S
o
o
=
®
>
>
}
©
=
c
=
(=}
0]
=
c
=}
£
™
®
=
0]
a

)
£
&
=
=3
(")

&=
=
=
)

=
-
=
5
(7))
=

K7

=
=)
£
=
[
)

i
=

=
@
=
=

8

O

=

G2

«

2.3.Examples with exact solutions




Examples with exact solutions

Listing 2.11: Running biharmonic clamped plate problem with sol=’sin(5xx+1)*cos(3*y*%2—1)’
from fc_vfempl biharmonic.examples.biharmonic_CP_square_ex import run
res=run (N=200,s0l="sin (5xx+1)xcos (3xy**2—1)")
Qutput
Solving biharmonic Boundary Value Problems (BVP’s) with
fc_vfempl_biharmonic package
Copyright (C) 2017 Cuvelier F.
(LAGA/CNRS/Paris 13 University)
2D biharmonic BVP on [0,1]1x[0,1]
Mesh generated with HyperCube function.
Laplacian(laplacian(u)) = f
with boundary conditions
* Clamped Plate (CP)
u=ga and du/dn=gb on [1,2,3,4]
Exact solution : sin(5*x+1)*cos(3*y**2-1)
**% Setting the mesh using HyperCube function [fc_simesh]
Mesh sizes : nq=40401, nme=80000, h=7.071e-03
*** Setting the BVP
*** Solving the BVP
**x Computing relative errors
u: errL2=3.7141e-05, errH1=1.1168e-04, errInf=8.3274e-05 e
v: errL2=8.1614e-03, errH1=5.1560e-01, errInf=1.4892e+00 (5]
***x Plotting solutions g.
(72}
=
c
=
u: relative error x10-% [+}]
u: numerical solution =
e ~_—————— 16 -
c
(=]
0.75 1.4 7))
0.50 1.2 2
=]
(=]
=
0.25 1.0 w o
£
0.00 0.8 % 1]
e =%
—0.25 0.6 o '8
w Q
-0.50 0.4 = E
s e
>0
-0.75 0.2 >
£
(32 ]
0.0 T
s N
=
- Q
v: numerical solution v: relative error a0}
i ‘\._‘--__"———’_____-—'_J' 40 (8]
14 c
g
20 12 &
= 2
10 m 'g
N =
0 i
0.8 8
F=)
8
=20 0.6 M
(3]
=
0.4 =
3
-40
0.2 3
_E-
(L]
X
w
. . . . .oy . . . . m
Figure 2.1: 2D biharmonic BVP with CP boundary conditions, « numerical solution (upper left) with N

error (upper right) and v = —Aw numerical solution (bottom left) with error (bottom right)

One can also compute the orders of convergence by using the order function. We use this function
in Listing[2.12{and Listing on respectively the meshes generated with the HyperCube function and
the meshes given by gmsh with square4.geo file. Superconvergence phenomenon with the HyperCube
mesh is illustred in Figure
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Listing 2.12: Computing orders for the biharmonic clamped plate problem with sol=’sin(5#x+1)*cos(3xy*x2—1)’

from fc_vfempl biharmonic.examples.biharmonic_CP_square_ex import order
order (LN=[50,100,150,200,250],sol="sin (5%x+1)xcos (3*y**2—1)")

Solving biharmonic Boundary Value Problems (BVP’s) with
fc_vfempl_biharmonic package
Copyright (C) 2017 Cuvelier F.
(LAGA/CNRS/Paris 13 University)
2D biharmonic BVP on [0,1]x[0,1]
Mesh generated with HyperCube function.

Laplacian(laplacian(u)) = f

with boundary conditions

* Clamped Plate (CP)

u=ga and du/dn=gb on [1,2,3,4]

Exact solution : sin(5*x+1)*cos(3*y**2-1)
[ 1/ 5] N=50

Mesh sizes : nq= 2601, nme= 5000, h=2.828e-02

ndof=5202 - Error : uH1=1.80e-03, ul2=5.92e-04, vH1=5.29e-01, vL2=3.27e-02
[ 2/ 8] N=100

Mesh sizes : nq= 10201, nme= 20000, h=1.414e-02

ndof=20402 - Error : uH1=4.48e-04, ulL2=1.48e-04, vH1=5.22e-01, vL2=1.63e-02
[ 3/ 5] N=150

Mesh sizes : nq= 22801, nme= 45000, h=9.428e-03

ndof=45602 - Error : uH1=1.98e-04, ulL2=6.60e-05, vH1=5.19e-01, vL2=1.09e-02
[ 4/ 8] N=200

Mesh sizes : nq= 40401, nme= 80000, h=7.071e-03

ndof=80802 - Error : uHl=1.12e-04, ulL2=3.71e-05, vH1=5.16e-01, vL2=8.16e-03
[ 5/ 5] N=250

Mesh sizes : nq= 63001, nme= 125000, h=5.657e-03

ndof=126002 - Error : uH1=7.15e-05, ulL2=2.38e-05, vH1=5.14e-01, vL2=6.53e-03

Listing 2.13: Computing orders for the biharmonic clamped plate problem with —sol="sin(5#x+1)xcos(3*y**2—1)’

from fc_vfempl_biharmonic.examples.biharmonic_CP_square_ex import order
order (regular=False ,sol="sin (5xx+1)*cos (3xy*%2—1)")

Output

Solving biharmonic Boundary Value Problems (BVP’s) with
fc_vfempl_biharmonic package
Copyright (C) 2017 Cuvelier F.
(LAGA/CNRS/Paris 13 University)
2D biharmonic BVP on [0,1]1x[0,1]
Mesh generated with gmsh and square4.geo file.
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Laplacian(laplacian(u)) = f

with boundary conditions

* Clamped Plate (CP)

u=ga and du/dn=gb on [1,2,3,4]

Exact solution : sin(5*x+1)+*cos(3*y**2-1)
[ 1/ 4] N=25

Mesh sizes : nq= 891, nme= 1680, h=5.510e-02

ndof=1782 - Error : uH1=8.54e-03, ulL2=1.35e-03, vH1=5.18e-01, vL2=7.43e-02
[ 2/ 4] N=50

Mesh sizes : nq= 3436, nme= 6670, h=2.947e-02

ndof=6872 - Error : uH1=3.86e-03, uL2=3.39e-04, vH1=5.13e-01, vL2=3.30e-02
[ 3/ 4] N=100

Mesh sizes : nq= 13469, nme= 26536, h=1.503e-02

ndof=26938 - Error : uH1=1.88e-03, uL2=8.90e-05, vH1=7.60e-01, vL2=2.51e-02
[ 4/ 4] N=150

Mesh sizes : nq= 30081, nme= 59560, h=9.872e-03

ndof=60162 - Error : uH1=1.28e-03, uL2=5.90e-05, vH1=1.03e+00, vL2=2.39e-02
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= |up— mplu)|ez w0 - |un = ()2

— lun— Malu)]s — lun— (] T ——
[Va = Ma(v)] 2 [V = T (V)]2
10714 — Iva = mnlw)[w — Vi — (V)]
- Olh .
( )2 10-1 4 =- O(h)
—e- Oh?) —e- 0lh?)

1072 4

10-3 4

1074 4

6x1073 10-2 2x1072 3x1072 10-2 2x1072 3x1072 4x1072 6x10°2

Figure 2.2: 2D biharmonic BVP with CP boundary conditions, order of convergence of u and v = —Au
for HyperCube mesh (left) and square4 mesh (right). Superconvergence phenomenon with the HyperCube
mesh.

el Clamped plate problems on the unit disk

This example is very similar to the previous one. So for better understanding it is better to read in
advance the section 231

The mesh of the unit disk can be obtained by using gmsh and a given .geo file. This can be done
entirely by using FC-00GMSH and FC-SIMESH packages, and the disk4bounds.geo file. The complete code
is given in Listing ?? with a graphical representation of the obtained mesh.
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import os

from fc_oogmsh import gmsh

from fc_simesh.siMesh import siMesh

from fc_vfempl biharmonic.sys import get_geo
geofile="disk4bounds’

(geodir , geofile )=get _geo (2,2, geofile)
geoFile=geodir+os.sep+geofile+’.geo’
meshfile=gmsh.buildmesh2d (geoFile ,10)
Th=siMesh (meshfile)

2.3.Examples with exact solutions

Listing 2.14: 2D mesh of unit disk with gmsh

In file biharmonic_CP_disk_ex.pyE[) the run function can solve a (generic) clamped plate problem,
Usual BVP on the unit disk for a given ezact solution ue, as a string (default is ’sin(x)xsin(y)’ ).

2directory fc_vfempl_biharmonic/examples/
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Now we will set the clamped plate boundary conditions on this problem. On each boundary we can

compute g, = Uex and g, = % &t (V Uex,ny where n = gyc) is the exterior normal to I":
QUex T OUex OUex
= —— = ( V Uex, = + onTI
= Ton < e (y>> o Ty "

Part of the source code which sets the biharmonic problem with the 4 (CP) boundary conditions is
given in Listing [2.15]
bvp=blib . BiharmonicBVP (Th, f=f)
ga=uex ;ghb=lambda x,y: x*dudx(x,y)+y*dudy(x,y)
for lab in [1,2,3,4]:
blib .setClampedPlate (bvp,lab ,[ga,gb])

Listing 2.15: Biharmonic BVP with Clamped Plate (CP) boundary conditions on the unit disk

In Listing we solve the clamped plate problem with exact solution ue, = sin(5x + 1) cos(3y? — 1)
and the output is presented. The graphical results are given in Figure 23]

Listing 2.16: Running biharmonic clamped plate problem with sol=’sin(5#x-+1)*cos(3xy#+2—1)’on the unit disk

from fc_vfempl biharmonic.examples.biharmonic_CP_disk_ex import run
res=run (N=150,s0l="sin (5xx+1)*cos (3xy**2—1)")

Solving biharmonic Boundary Value Problems (BVP’s) with
fc_vfempl_biharmonic package
Copyright (C) 2017 Cuvelier F.
(LAGA/CNRS/Paris 13 University)
2D biharmonic BVP on unit disk
Mesh generated with gmsh and disk4bounds.geo file.

Laplacian(laplacian(u)) = f

with boundary conditions
* Clamped Plate (CP)
u=ga and du/dn=gb on [1,2,3,4]

Exact solution : sin(5*x+1)*cos(3*y**2-1)

*** Setting the mesh using gmsh and disk4bounds.geo file.
Mesh sizes : nq=94571, nme=188196, h=1.060e-02

*%% Setting the BVP
**x Solving the BVP
*** Computing relative errors

u: errlL2=2.9625e-04, errH1=1.4514e-03, errInf=3.2367e-04

v: errL2=1.8127e-02, errH1=8.6914e-01, errInf=4.5916e-01
*** Plotting solutions

x
e
S
&=
=
=
)
=
-
=
o
(7))
=
KT
=
=)
S
=
o
)
L
=3
=
@
=
=
8
O
&
G2
«

(2]
£
2
=
o
1 S
o
o
=
®
>
>
}
©
=
c
=
(=}
0]
=
c
=}
£
™
®
=
0]
a

2.3.Examples with exact solutions

Compiled on 2017/06/14 at 17:11:09



Examples with exact solutions

Figure 2.3: 2D biharmonic BVP with CP boundary conditions on the unit disk, u numerical solution
(upper left) with error (upper right) and v = —Aw numerical solution (bottom left) with error (bottom
right)

u: relative error x10-%
u: numerical solution
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0.00 3
\ -0.25
2
~0.50
1
-0.75
" -1.00 0
) ) v: relative error x10-1
v: humerical solution
- 40
4 X
o
20 ©
=
c
3 E
0 £
=}
c
2
o
20 E
=
1 2
(=]
S
_a0 Q.
[H]
)
o]
=1
-
(3]
Q.
i
o
(o]
(321
N

One can also compute the orders of convergence by using the order function. We use this function
in Listing [2.17] and the order are represented in Figure

Listing 2.17: Computing orders for the biharmonic clamped plate problem with —sol="sin(5*x+1)+cos(3xy**2—1)’ on the unit disk

from fc_vfempl_biharmonic.examples.biharmonic_CP_disk_ex import order
order (sol="sin (5*x+1)*cos (3*xy*x2—1)")

Output
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Solving biharmonic Boundary Value Problems (BVP’s) with
fc_vfempl_biharmonic package
Copyright (C) 2017 Cuvelier F.
(LAGA/CNRS/Paris 13 University)
2D biharmonic BVP on unit disk
Mesh generated with gmsh and disk4bounds.geo file.

Laplacian(laplacian(u)) = f

with boundary conditions

* Clamped Plate (CP)

u=ga and du/dn=gb on [1,2,3,4]

Exact solution : sin(5*x+1)+*cos(3*y**2-1)
[ 1/ 4] N=25

Mesh sizes : nq= 2766, nme= 5370, h=5.760e-02

ndof=5532 - Error : uH1=9.62e-03, uL2=4.81e-03, vH1=4.26e-01, vL2=5.54e-02
[ 2/ 4] N=50

Mesh sizes : nq= 10668, nme= 21018, h=2.924e-02

ndof=21336 - Error : uH1=4.28e-03, ul2=1.38e-03, vH1=5.14e-01, vL2=3.19e-02
[ 3/ 4] N=100

Mesh sizes : nq= 42319, nme= 84004, h=1.539e-02

ndof=84638 - Error : uH1=2.20e-03, ul2=5.88e-04, vH1=7.62e-01, vL2=2.41e-02
[ 4/ 4] N=150

Mesh sizes : nq= 94571, nme= 188196, h=1.060e-02

ndof=189142 - Error : uH1=1.45e-03, ul2=2.96e-04, vH1=8.69e-01, vL2=1.81e-02
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Figure 2.4: 2D biharmonic BVP with CP boundary conditions on the unit disk, order of convergence of
u and v = —Au.

Simply supported plate problems on the unit square

The mesh of the unit square [0, 1] x [0,1] can be obtained by using the HyperCube function of the
FC-SIMESH package and we obtain a regular mesh. An other way is to generate a mesh file by using gmsh
and a given .geo file. This can be done entirely by using FC-00GMSH and FC-SIMESH packages, and the
square/.geo file. The complete codes are given in Listing [3] and [I0] with graphical representation of the
obtained meshes. One can see that the label of the boundaries are the same on both meshes.

In file biharmonic_SSP_square_ex.pyE[) the run function can solve a (generic) clamped plate prob-
lem, Usual BVP on the unit square for a given ezact solution uey as a string (default is ’sin (x)*sin(y)’
).

Now we will set the clamped plate boundary conditions on this problem. On each boundary we can

def . .
compute g, = Uex and g, = % = (V Uex,n) where n is the exterior normal to I':

QUex -1 ™
gb_&n_<vuex’ 0)>__6x on I'q

QUex 1 _ OUex
9b = on = <Vuexa <0 > = o on FZ

QUex 0 _ Ouex

gb = 871 = <V Uex _1)> = ay on PS
uex 0\ \ _ OJuex

gp = é’n - <V Uex 1>> = ay on F4

Part of the source code which sets the biharmonic problem with the 4 (SSP) boundary conditions is
given in Listing [2.18§|

bvp=blib . BiharmonicBVP (Th, f=f)
for lab in [1,2,3,4]:
blib.setSimplySupportedPlate (bvp,lab ,[u,v])

Listing 2.18: Biharmonic BVP with Simply supported plate (SSP) boundary conditions

In Listing [2.19] we solve the clamped plate problem with exact solution ue, = sin(5x + 1) cos(3y? — 1)
and the output is presented. The graphical results are given in Figure

3directory fc_vfempl_biharmonic/examples/
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Listing 2.19: Running biharmonic clamped plate problem with —sol=’sin(5xx+1)*cos(3*y*%2—1)’

from fc_vfempl biharmonic.examples.biharmonic_SSP_square_ex import run
res=run (N=300,s0l="sin (5xx+1)xcos (3xy**2—1)")

Solving biharmonic Boundary Value Problems (BVP’s) with
fc_vfempl_biharmonic package
Copyright (C) 2017 Cuvelier F.
(LAGA/CNRS/Paris 13 University)
2D biharmonic BVP on [0,1]x[0,1]
Mesh generated with HyperCube function.

Laplacian(laplacian(u)) = f

with boundary conditions
* Simply Supported Plate (SSP)
u=gc and Laplacian(u)=gd on [1,2,3,4]

Exact solution : sin(5*x+1)*cos(3*y**2-1)

**% Setting the mesh using HyperCube function [fc_simesh]
Mesh sizes : nq=90601, nme=180000, h=4.714e-03

*** Setting the BVP
*** Solving the BVP
**x Computing relative errors

u: errL2=2.4130e-05, errH1=6.9101e-05, errInf=4.9492e-05

v: errL2=4.9773e-05, errH1=6.4835e-05, errInf=6.7332e-05
***x Plotting solutions

u: relative error Xx10-5
u: numerical solution
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v: relative error x1075

v: numerical solution
40

ey

Figure 2.5: 2D biharmonic BVP with SSP boundary conditions, u numerical solution (upper left) with
error (upper right) and v = —Aw numerical solution (bottom left) with error (bottom right)
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2.3.Examples with exact solutions

One can also compute the orders of convergence by using the order function. We use this function
in Listing[2.20|and Listing |2.21 on respectively the meshes generated with the HyperCube function and
the meshes given by gmsh with square4.geo file. Superconvergence phenomenon with the HyperCube
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mesh is illustred in Figure |2

Listing 2.20:  Computing orders for the biharmonic proble with simply supported plate boundary conditions and with
sol="sin(5xx+1)*cos(3xy**2—1)

from fc_vfempl biharmonic.examples.biharmonic_SSP _square ex import order
order (sol="sin (5*x+1)*cos (3xy*x2—1)")

Qutput

Solving biharmonic Boundary Value Problems (BVP’s) with
fc_vfempl_biharmonic package
Copyright (C) 2017 Cuvelier F.
(LAGA/CNRS/Paris 13 University)
2D biharmonic BVP on [0,1]x[0,1]
Mesh generated with HyperCube function.

Laplacian(laplacian(u)) = £

with boundary conditions

* Simply Supported Plate (SSP)

u=gc and Laplacian(u)=gd on [1,2,3,4]

Exact solution : sin(5*x+1)*cos(3*y**2-1)
[ 1/ 4] N=25

Mesh sizes : nq= 676, nme= 1250, h=5.657e-02

ndof=1352 - Error : uH1=9.95e-03, ul2=3.41e-03, vH1=9.91e-03, vL2=7.07e-03
[ 2/ 4] N=50

Mesh sizes : nq= 2601, nme= 5000, h=2.828e-02

ndof=5202 - Error : uH1=2.51e-03, ul2=8.65e-04, vH1=2.38e-03, vL2=1.79e-03
[ 3/ 4] N=100

Mesh sizes : nq= 10201, nme= 20000, h=1.414e-02

ndof=20402 - Error : uH1=6.24e-04, ul2=2.17e-04, vH1=5.90e-04, vL2=4.48e-04
[ 4/ 4] N=150

Mesh sizes : nq= 22801, nme= 45000, h=9.428e-03

ndof=45602 - Error : uH1=2.76e-04, ulL2=9.65e-05, vH1=2.61e-04, vL2=1.99e-04

Listing 2.21: Computing orders for the biharmonic clamped plate problem with —sol="sin(5#x+1)xcos(3*y**2—1)’

from fc_vfempl_biharmonic.examples.biharmonic_SSP_square_ex import order
order (regular=False ,sol="sin (5%x+1)*cos (3xy*+2—1)")

Output

Solving biharmonic Boundary Value Problems (BVP’s) with
fc_vfempl_biharmonic package
Copyright (C) 2017 Cuvelier F.
(LAGA/CNRS/Paris 13 University)
2D biharmonic BVP on [0,1]1x[0,1]
Mesh generated with gmsh and square4.geo file.

Laplacian(laplacian(u)) = f
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with boundary conditions

* Simply Supported Plate (SSP)

u=gc and Laplacian(u)=gd on [1,2,3,4]

Exact solution : sin(5*x+1)*cos(3*y**2-1)
[ 1/ 4] N=25

Mesh sizes : nq= 891, nme= 1680, h=5.510e-02

ndof=1782 - Error : uH1=9.77e-03, ulL2=2.01e-03, vH1=1.25e-02, vL2=3.59e-03
[ 2/ 4] N=50

Mesh sizes : nq= 3436, nme= 6670, h=2.947e-02

ndof=6872 - Error : uH1=4.21e-03, ulL2=5.28e-04, vH1=5.90e-03, vL2=9.08e-04
[ 3/ 4] N=100

Mesh sizes : nq= 13469, nme= 26536, h=1.503e-02

ndof=26938 - Error : uH1=1.99e-03, ul2=1.30e-04, vH1=2.80e-03, vL2=2.27e-04
[ 4/ 4] N=150

Mesh sizes : nq= 30081, nme= 59560, h=9.872e-03

ndof=60162 - Error : uH1=1.30e-03, ulL2=5.86e-05, vH1=1.89e-03, vL2=1.03e-04
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2.3.Examples with exact solutions
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— un—mp(W)ex

— lun— ma(u)|cz
— lun— mp(u)]52
vk =1 (V)2

1072 = |un— mn(t)]n:
.l |vi — R (V)]ez
= |vn —mn(v)|n
- o(h)
—e- 0(h%

— |va=m ()]s
--m- Olh)
—e- 0(h?)

1073 4

1074 4

102 2x1072 3x1072 4x1072 6x1072 10-2 2x 1072 3x1072 4x1072 6x 1072

Figure 2.6: 2D biharmonic BVP with (SSP) boundary conditions, order of convergence of u and v = —Au
for HyperCube mesh (left) and square4 mesh (right). Superconvergence phenomenon with the HyperCube
mesh.

ey Simply supported plate problems on the unit disk

For better understanding it is better to read in advance the section [2.3.1]

The mesh of the unit disk can be obtained by using gmsh and a given .geo file. This can be done
entirely by using FC-O0GMSH and FC-SIMESH packages, and the disk4bounds.geo file. The complete code
is given in Listing ?? with a graphical representation of the obtained mesh.

In file biharmonic_SSP_disk_ex.py@ the run function can solve a (generic) simply supported
plate problem, Usual BVP on the unit disk for a given ezact solution uex as a string (default is

sin (x)*sin(y)’ ).

Now we will set the simply supported plate boundary conditions on this problem. On each boundary
we can compute g, = Uex and g, = —v.

Part of the source code which sets the biharmonic problem with the 4 boundary conditions is given
in Listing [2:22]

bvp=blib . BiharmonicBVP (Th, f=f)
for lab in [1,2,3,4]:
blib.setSimplySupportedPlate (bvp,lab ,[u,v])
Listing 2.22: Biharmonic BVP with Simply Supported Plate (SSP) boundary conditions on the unit disk

In Listing [2.23] we solve the simply supported plate problem with exact solution uex = sin(5z +
1) cos(3y? — 1) and the output is presented. The graphical results are given in Figure

4directory fc_vfempl_biharmonic/examples/
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Examples with exact solutions

Listing 2.23: Running biharmonic simply supported plate problem with sol=’sin(5%x+1)xcos(3*y=*2—1)’on the unit disk
from fc_vfempl biharmonic.examples.biharmonic_SSP_disk_ex import run
res=run (N=150,s0l="sin (5xx+1)xcos (3xy**2—1)")
Qutput
Solving biharmonic Boundary Value Problems (BVP’s) with
fc_vfempl_biharmonic package
Copyright (C) 2017 Cuvelier F.
(LAGA/CNRS/Paris 13 University)
2D biharmonic BVP on unit disk
Mesh generated with gmsh and disk4bounds.geo file.
Laplacian(laplacian(u)) = f
with boundary conditions
* Simply Supported Plate (SSP)
u=gc and Laplacian(u)=gd on [1,2,3,4]
Exact solution : sin(5*x+1)*cos(3*y**2-1)
**x Setting the mesh using gmsh and disk4bounds.geo file.
Mesh sizes : nq=94571, nme=188196, h=1.060e-02
*** Setting the BVP
*** Solving the BVP =
**x Computing relative errors 4z
u: errL2=2.3800e-04, errH1=1.3700e-03, errInf=2.7991e-04 ©
v: errL2=1.1341e-04, errH1=1.7660e-03, errInf=2.7009e-04 .‘:
***x Plotting solutions g
2]
=
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c
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u: relative error x10-% 7))
u: numerical solution E
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c
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I
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Figure 2.7: Biharmonic BVP with SSP boundary conditions on the unit disk, v numerical solution (upper 1
left) with error (upper right) and v = —Awu numerical solution (bottom left) with error (bottom right) :

One can also compute the orders of convergence by using the order function. We use this function
in Listing [2:24] and the order are represented in Figure
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Listing 2.24: Computing orders for the biharmonic clamped plate problem with —sol=’sin(5#x+1)*cos(3=y**2—1)’ on the unit disk

from fc_vfempl biharmonic.examples.biharmonic_SSP_disk_ex import order
order (sol="sin (5%x+1)*cos(3*xy*x2—1)")

Solving biharmonic Boundary Value Problems (BVP’s) with
fc_vfempl_biharmonic package
Copyright (C) 2017 Cuvelier F.
(LAGA/CNRS/Paris 13 University)
2D biharmonic BVP on unit disk
Mesh generated with gmsh and disk4bounds.geo file.

Laplacian(laplacian(u)) = f

with boundary conditions

* Simply Supported Plate (SSP)

u=gc and Laplacian(u)=gd on [1,2,3,4]

Exact solution : sin(5*x+1)*cos(3*y**2-1)
[ 1/ 6] N=25
Mesh sizes : nq= 2766, nme= 5370, h=5.760e-02
ndof=5532 - Error : uH1=1.16e-02, ul2=8.13e-03, vH1=1.18e-02, vL2=3.90e-03
2/ 6] N=75
Mesh sizes : nq= 23549, nme= 46624, h=2.127e-02
ndof=47098 - Error : uH1=2.93e-03, ulL2=9.83e-04, vH1=3.61e-03, vL2=4.63e-04
3/ 6] N=100
Mesh sizes : nq= 42319, nme= 84004, h=1.539e-02
ndof=84638 - Error : uH1=2.08e-03, ulL2=5.21e-04, vH1=2.62e-03, vL2=2.51e-04
4/ 6] N=150
Mesh sizes : nq= 94571, nme= 188196, h=1.060e-02
ndof=189142 - Error : uH1=1.37e-03, ul2=2.38e-04, vH1=1.77e-03, vL2=1.13e-04
5/ 6] N=200
Mesh sizes : nq=167069, nme= 332876, h=7.726e-03
ndof=334138 - Error : uH1=1.02e-03, ulL2=1.35e-04, vH1=1.32e-03, vL2=6.40e-05
6/ 6] N=250
Mesh sizes : nq=261161, nme= 520748, h=6.306e-03
ndof=522322 - Error : uH1=8.14e-04, ulL2=8.48e-05, vH1=1.05e-03, vL2=4.07e-05

—

—

—

—
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2.4.0 Simply supported plate problems on the unit disk

g
— Jun— ()12 =
2 =]
10 — |up— ()| e
v = mRiv)2 - o
— vn = V)]s =
- O(h) . J
_ 2 N >

—e- O(h9) e
/'/ E’
. [}
/’, 'E
1073 § =
o
| [a0]
=
c
(=]
£
™
=
1074 o m
~ N

P g
s
4

Figure 2.8: 2D biharmonic BVP with (SSP) boundary conditions on the unit disk, order of convergence
of u and v = —Au.
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SN Mixed boundary conditions on a disk with 5 holes

The domain  and its boundaries generated by gmsh are represented in Figure

e

- @
9.

Figure 2.9: Disk with 5 holes : gmsh mesh

We study the following biharmonic BVP with mixed boundary conditions :

-

-@'— Usual BVP 5 : Mixed boundary conditions on a disk with 5 holes

Find u such that
A%y =f inQ
CP =0 and & =0 r
(CP) v anc o =0 on (2.24)
(CH) B =0 and D = O, on FIO
(SSP) u =1 and Au= O, on FQO U F21 V) FQQ U F23

Part of the source code (file fc_vfempl_biharmonic/examples/biharmonic_Mixed_disk5holes_01.py)
is given in Listing [2.25

meshfile=gmsh. buildmesh2d (geoFile ,N, force=True, verbose=0)
Th=siMesh (meshfile)
bvp=blib . BiharmonicBVP (Th, f=0)
blib .setClampedPlate (bvp,1,[0,0])
blib.setCahnHilliard (bvp,10,[0,0])
for lab in [20,21,22,23]:
blib .setSimplySupportedPlate (bvp,lab ,[1,0])
U=bvp.solve(split=True)

Listing 2.25: Mixed boundary conditions on a disk with 5 holes

We represent in Figure the numerical error for © computation on the gmsh mesh with ny = 83324
and ny,e = 165044.
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u: numerical solution

10 v: numerical solution

0.0 —100

Figure 2.10: mixed boundary conditions on a disk with 5 holes, (CP) (0,0) on T'y, (CH) (0,0) on I'yy,
(SSP) (1,0) on I'yg U 'y U T2 UT23. u numerical solution (left) and v = —Aw numerical solution (right)

We represent in Figure the same problem except on I';y : we set a (CP) boundary condition
instead of a (CH) boundary condition:

(CP) w=0 and g—z =0, on .

Part of the source code (file biharmonic_Mixed_disk5holes_01.pyl) is given in Listing

meshfile=gmsh. buildmesh2d (geoFile ,N, force=True, verbose=0)
Th=siMesh (meshfile)
bvp=blib . BiharmonicBVP (Th, f=0)
blib .setClampedPlate (bvp,1,[0,0])
blib .setClampedPlate (bvp,10,[0,0])
for lab in [20,21,22,23]:
blib .setSimplySupportedPlate (bvp,lab ,[1,0])
U=bvp.solve (split=True)

Listing 2.26: Mixed boundary conditions on a disk with 5 holes

The source code is given in file biharmonic_Mixed_diskb5holes_01 .pyﬂ

u: numerical solution

10 v: numerical solution
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2.4 .Examples

Figure 2.11: mixed boundary conditions on a disk with 5 holes, (CP) (0,0) on I'; U T'1g, (SSP) (1,0) on
50 U T'a; U Ty U Dag. w numerical solution (left) and v = —Aw numerical solution (right)

5 directory fc_vfempl_biharmonic/examples/
6 directory fc_vfempl_biharmonic/examples/
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%N 2D Biharmonic BVP with (CP) and (CH) boundary conditions

This example comes from [6](p.3104). Let Q = [—1,1]x[0,1],T4 = {[-1,0] x {y = 0}}u{{z = 1} x [0,1]},
and I'g = I'\I'4. The domain Q and its boundaries generated by gmsh are represented in Figure
With this mesh, we have 'y =Ty ul'sand I'p =T, u Ty U Ts.

[E!

Figure 2.12: 2D biharmonic BVP domain : gmsh mesh
We study the biharmonic BVP with mixed boundary conditions, clamped plate (CP) on I'y and
Cahn-Hilliard (CH) on I'g.

—\@’- Usual BVP 6 : (CP)-(CH) 2D biharmonic problem
Find u such that

Ay = fin Q
(CP) wu = g4 and g—z =0,onl'y=T50Tl3s (2.25)
(CH) 29* =0and & =0, onI'g=TrulyuTl}s

where g4 = 0 on I';y and g4 = 1 on I's.

Part of the source code (file fc_vfempl_biharmonic/examples/biharmonic_CP_CH_rectangle01_crackO1.py)
is given in Listing
meshfile=gmsh. buildmesh2d (geoFile ,N, force=True, verbose=0)
Th=siMesh (meshfile)
bvp=blib . BiharmonicBVP (Th, f=0)
blib.setClampedPlate (bvp,1,[0,0])
blib .setClampedPlate (bvp,3,[1,0])
U=bvp.solve (split=True)
Listing 2.27: 2D biharmonic BVP with (CP)-(CH) boundary conditions with crack singularities

We represent in Figure the numerical error for u computation on the gmsh mesh with nqy = 59825
and npe = 118748.
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u: numerical solution 1o v: numerical solution

o
o

o
>

Figure 2.13: 2D biharmonic BVP with (CP)-(CH) boundary conditions, u numerical solution (left) and
v = —Awu numerical solution (right)
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Chapter 3

Pseudo-biharmonic Boundary Value Problems

Clamped grid problem

In [7] page 74, the operator g%’i + 2477; is used as a model of an elastic medium consisting in two sets

of intertwined (not glued) perpendicular fibers running in Cartesian directions (Figure The main

assumption here is that those sets of fibers are connected in such a way that the vertical positions coincide
but there is mo connection that forces a torsion in the fibers.

Figure 3.1: A fragment of an elastic grid.

The Clamped grid problem is



Clamped grid problem

*oF Usual BVP 7 : 2D clamped grid problem
Find u such that

f4+94 =finQ
u = Z—Z =0 onTl
We have 5 o o o
b (a-veS ) (a2
et oyt ( f&x&y) ( * f&x&y)

and problem (3.1) may be split into :

-\@/— Usual BVP 8 : 2D clamped grid problem splitting
Find » and v such that

—Ay — 222 =f, inQ

zhzay
—Au++25% =v, inQ (3.2)
U = % =0, onT

The two first equations can be equivalently written as

7(2)= ) <) = ) as

where G and KC are the H-operators defined by

g _ < 0 LE,O,O,O ) and IC — (‘CFvaO’O £O’0707_1> (34)

Lro00 L0001 L0000 LE000

E 1 g d F 1 _g
= an = .
2 o1 —F 1

We choose these expressions for E and F to preserve symetry.
Let w = (u,v). From (3.3), the components of the conormal derivative of w defined in (1.17) are given
by

with

2

ow def 6w5 2 1,8 1
= = AV ws, n) — b Pug,n
ong, ,(32::1 ong, , ,HZ::1< 3:m) = 5.1
_ (FVwin)— FVun) = 22 (3.5)
ang2
and
ow &wg 2
def — 2,8 2,8
= = AP Vwg,n) — (b ug,n
onic, BZ=:1 onKc, ;1< > < >
— (EVws,n)=(EVu,n)= aa“’ (3.6)

ng,

With G operator one can impose the following boundary conditions

wo =gP on T2 vae[1,1],
ai‘;}a + afw, =gF on TH Vae[l1,2]
and we obtain
U :ng on FlD, and v = 92D on F2Da
(EVv,n) + affu =gf on TR and (FVu,n)+ afv = g& on TF
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Applications on a rectangular domain

To impose clamped grid boundary condition u = 2% = 0 on T', we choose I'? = T' (thus I'f = ). As

explain in Remark 6.1 of [7], when u = 0 on T', the tangential derivatives of u, 2% “Vu-— Vu,nyn, is

' ot
zero on I', and then
Vu=Nun)n.

So we obtain
(FVu,n) = (Vu,n)Fn,n) = (Vu,n) (1 —2nny).
Since the normal n = (ny,n2) = (cos6,sinf) one finds that niny = 3sin(20) € [-3,4] and then
1—2nng > 1 %2> 0.
Thus, under the asumption v = 0 on I', we have on I'
ou oW gu

a—n:O — P =(FVumn)=0

and we can write

fg Vector BVP 5 : clamped grid problem (3.2) with G operator
Find w = (w1, ws) € (H2(Q))? such that

With C operator one can impose the following boundary conditions

w,, =g on T2 vae[1,1],
;:IIC)Q + afw,, =g" on TH vVae[l,2]
and we obtain
u =g7 on TP and v =gy on 'Y,
(FVu,n) + altu =gf onTE and (EVw,n)+ aklv =g on T

If we want to impose clamped grid boundary condition u = g—:‘l = 0 on I" the choice of K operator is not

possible : with u = 0 on T'P’ =T, we have I'f = &J and we cannot impose % =0onT.

Applications on a rectangular domain

Let Qg be the rectangular domain [—1,6] x [—1, 1] and f := exp(—100((z + 0.75)% + (y — 0.75)?)) be the
source term as a concentred load. They are represented in Figure

We also denote by €./, and fr/4 respectively the domain €2 and the function f rotated by /4 with
(0,0) as center. They are represented in Figure
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Applications on a rectangular domain

—_T

r3

-1 0 1 2 3 4 5 6 f x107t

Figure 3.2: Domain Qg = [—1,6] x [—1,1] (left) and function fq (right)

—_—
—_n

%1071

Figure 3.3: Domain Q. (left) and function fr /4 (right)

We study three problems. The first one will be the classical biharmonic clamped plate problem on
Qo. The second will be clamped grid problem with the aligned fibers on 3. The last one will be the
clamped grid problem with the diagonal fibers on {2 /4.

BN Classical biharmonic Clamped Plate problem

o Usual BVP 9 : Clamped plate problem on (2,
?
Find u such that

(3.7)

A2u :fo inQO
u=2x =9 on I' = 09

As seen in section 77 this problem can be written as a vector boundary value problem and is given in
Vector BVP ??. Part of the Python code used to solve this problem is given in Listing

print _separator ()
print ('_____ Mesh_sizes_:_ng=%d, .nme=%d , _
h=%.3e ’%(Th.nq,Th.get nme() ,Th.get _h()))

Hop.H[1][0]=Loperator (dim=2,A=[[1,None] ,[None,1]])
Hop.H[1][1]=Loperator (dim=2,a0=-1)
pde=PDE(Op=Hop, f=[f ,0])
bvp=BVP(Th, pde=pde)
for lab in Th.sThlab[Th. find (d=1)]:

bvp.setDirichlet (lab,0.0,comps=[0])

if verbose >0:

Compiled on 2017/06/14 at 17:11:09

(2]
E
2
=
o
Lol
o
v
=
©
>
>
1=
S
©
c
=
o
o0
o=
=
o
E
1=
S
=
<
=)
o
5
D
(7]
o
)

£
K
=
=)
S
=
[
)
i
o
=
@
=
=
8
O
2
=
5]
£
$
®
=
=
®
o
)]
(7]
8
O
L]
&
o)

3.2.Applications on a rectangular domain




Applications on a rectangular domain

if graphics and isModuleFound(’fc_simesh matplotlib’):
Listing 3.1: Clamped plate problem on [—1,6] x [—1,1]

The complete code is given in file BVP_ClampedPlate_hypermesh_2D01 .pyEl and can be run with the
following python commands:

from fc_vfempl biharmonic.examples.BVP_ClampedPlate hypermesh 2D01 import run
res=run (N=50)

W2 Clamped grid problem with the aligned fibers

-@'— Usual BVP 10 : Clamped grid problem with the aligned fibers on ()
Find u such that

& ot .
awzl + ay,g‘ = fO n QO

3.8
uzg—z =0 onI' = 0Q (38)

{

As seen in section this problem can be written as a vector boundary value problem and is given
in Vector BVP [5} Part of the Python code used to solve this problem is given in Listing [3.2]

f=lambda x,y: exp(—100%((x+0.75)*%2+(y—0.75) *x%2))

Th=HyperCube (2,[7+N,2%N] ,mapping=lambda q: np.array([—-1+7*q[0],2*xq[1]—1]))

a=2xx(1/2)/2

Hop=Hoperator (dim=2,m—2)

Hop .H[0][1]=Loperator (dim=2,A=[[1,a],[a,1]])

Hop.H[1][0]=Loperator (dim=2,A=[[1,—a],[—a,1]])

Hop.H[1][1]=Loperator (dim=2,a0=—1)

pde=PDE(Op=Hop, f=[f ,0])

bvp=BVP(Th, pde=pde)

for lab in Th.sThlab|[Th. find (d=1)]:
bvp.setDirichlet (lab ,0.0,comps=[0])

U=bvp.solve(split=True)

Listing 3.2: Clamped grid problem on [—1,6] x [—1,1]

The complete code is given in file BVP_ClampedAlignedGrid_hypermesh_2D01.py EI and can be run
with the following python commands:

from fc_vfempl biharmonic.examples.BVP _ ClampedAlignedGrid hypermesh 2D01 import
run
res=run (N=50)

Clamped grid problem with the diagonal fibers

-@‘ Usual BVP 11 : Clamped grid problem with the diagonal fibers on (/4
Find u such that

4 .
% + ng = f7r/4 m Q‘n'/4 (3 9)
u:g—:: =0 onT'=0Q,/4 '

The Python code used to solve this problem is very similar to the previous one given in Listing
we just have to rotate the function f and the domain. These operations are given in Listing |3.3

theta=pi/4 # For f and mesh rotation
R=[[cos(theta),—sin (theta)],[sin(theta), cos(theta)]]
P=np.dot (R,[ —0.75,0.75])
f=lambda x,y:exp(—100%((x — P[0]) *%2 + (y — P[1]) %x%2))
Th=HyperCube (2 ,[7*N,2%N] , mapping=lambda q:
np.dot (R,np.array([-1+7xq[0],2xq[1] —1])))
Listing 3.3: 2D clamped grid BVP on [—1,6] x [—1,1]

Ldirectory fc_vfempl_biharmonic/examples/
2directory fc_vfempl_biharmonic/examples/
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The complete code is given in file BUP_ClampedDiagonalGrid_hypermesh_2DO01.py E| and can be run

with the following python commands:

from fc_vfempl biharmonic.examples.BVP_ClampedDiagonalGrid hypermesh 2D01 import

run
res=run (N=50)

Graphical results

For graphical convenience the numerical solutions on the grid with the diagonal fibers are rotated by

—m/4.

8o D

u x107°

6 8
x107%

Figure 3.4: Displacement u of, respectively, an isotropic rectangular plate (upper left), grid with the
aligned fibers (upper right) and grid with the diagonal fibers (bottom).

3directory fc_vfempl_biharmonic/examples/
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Applications on a pentagonal domain

-4 -2 0 2 4 -4 -2 0 2 4
v=—Au x10-3 v=—Au x10-3

T T T T
-150 -125 -100 -075 -050 —0.25 0.00 0.25 0.50
v=—Au %1072

Figure 3.5: v = —Awu of, respectively, an isotropic rectangular plate (upper left), grid with the aligned
fibers (upper right) and grid with the diagonal fibers (bottom).

Applications on a pentagonal domain

Let Qg be the pentagon

Qo ={(z,y)e[-1,2] x [-1,1] : y = —x—1}

and f := exp(—100((z + 0.75)? + (y — 0.75)?)) be the source term as a concentred load. They are
represented in Figure ?7.

We also denote by Q.4 and fr/4 respectively the domain €2 and the function f rotated by /4 with
(0,0) as center. They are represented in Figure ?7.

0.00 +
—0.25 1
—0.50 1

-0.75

%1071

Figure 3.6: Domain €y (left) and function fy (right)
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Applications on a pentagonal domain

%1071

Figure 3.7: Domain Q. (left) and function f/, (right)

We study three problems. The first one will be the classical biharmonic clamped plate problem on
Q. The second will be clamped grid problem with the aligned fibers on 4. The last one will be the
clamped grid problem with the diagonal fibers on /4.

SPelN  Classical biharmonic Clamped Plate problem

-\@’- Usual BVP 12 : Clamped plate problem on
Find w such that

{A2’U, = f() in QO

“:% =0 onI' =09

As seen in section ?7 this problem can be written as a vector boundary value problem and is given in
Vector BVP ?7. Part of the Python code used to solve this problem is given in Listing [3.4]

f=lambda x,y: exp(—100%((x+0.75)*%2+(y—0.75) *x%2))

meshfile=gmsh. buildmesh2d (geoFile ,N, force=True, verbose=0)

Th=siMesh (meshfile)

Hop=Hoperator (dim=2,m—2)

Hop .H[0][1]=Loperator (dim=2,A=[[1,None] ,[None,1]])

Hop.H[1][0]=Loperator (dim=2,A=[[1,None| ,[None,1]])

Hop.H[1][1]=Loperator (dim=2,a0=-1)

pde=PDE(Op=Hop, f=[f ,0])

bvp=BVP(Th, pde=pde)

for lab in Th.sThlab|[Th. find (d=1)]:
bvp.setDirichlet (lab ,0.0,comps=[0])

U=bvp.solve(split=True)

Listing 3.4: Clamped plate problem on pentagonal domain
The complete code is given in file BVP_ClampedPlate_pentagonalO1_2DO01.py H and can be run with
the following python commands:

from fc_vfempl biharmonic.examples.BVP_ClampedPlate_pentagonal0l 2D01 import run
res=run (N=50)

4directory fc_vfempl_biharmonic/examples/
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epei?l  Clamped grid problem with the aligned fibers

o Usual BVP 13 : Clamped grid problem with the aligned fibers on ()
Find u such that

fols o 3
#"Fafyqi :fo n Qo

{u=g;t =0 onI =00

(3.11)

As seen in section this problem can be written as a vector boundary value problem and is given
in Vector BVP [5| Part of the Python code used to solve this problem is given in Listing [3.5]

f=lambda x,y: exp(—100%((x+0.75)**x2+(y—0.75) *%2))

meshfile=gmsh. buildmesh2d (geoFile ,N, force=True, verbose=0)

Th=siMesh (meshfile)

a=2x%x(1/2)/2

Hop=Hoperator (dim=2,m=2)

Hop .H[0][1]=Loperator (dim=2,A=[[1,a],[a,1]])

Hop.H[1][0]=Loperator (dim=2,A=[[1,—a],[—a,1]])

Hop .H[1][1]=Loperator (dim=2,a0=-1)

pde=PDE(Op=Hop, f=[f ,0])

bvp=BVP(Th, pde=pde)

for lab in Th.sThlab[Th. find (d=1)]:
bvp.setDirichlet (lab ,0.0,comps=[0])

U=bvp.solve(split=True)

Listing 3.5: Clamped grid problem on a pentagon
The complete code is given in file BVP_ClampedAlignedGrid_pentagonalO1_2D01.py El and can be
run with the following python commands:

from fc_vfempl biharmonic.examples. BVP_ClampedAlignedGrid_pentagonal0l 2D01
import run

res=run (N=50)

Clamped grid problem with the diagonal fibers

-@’- Usual BVP 14 : Clamped grid problem with the diagonal fibers on (2,4
Find u such that

Puidy _f,inQ (3.12)
u = u =0 onT' =09,

The Python code used to solve this problem is very similar to the previous one given in Listing
we just have to rotate the function f and the domain. These operations are given in Listing [3.6

theta=pi/4 # For mesh rotation

R=[[cos(theta),—sin (theta)],[sin(theta) 6 cos(theta)]]
P=np.dot ([—0.75,0.75] ,R)

f=lambda x,y:exp(—100x((x — P[0]) *%2 + (y — P[1]) x%2))
meshfile=gmsh. buildmesh2d (geoFile ,N, force=True, verbose=0)
Th=siMesh (meshfile , trans=lambda q: np.dot(q,R))

Listing 3.6: 2D clamped grid BVP ...

The complete code is given in file BVP_ClampedDiagonalGrid_pentagonalO1_2D01.py EI and can be
run with the following python commands:

from fc_vfempl biharmonic.examples.BVP_ClampedDiagonalGrid_pentagonal0l_ 2DO01
import run
res=run (N=50)

Sdirectory fc_vfempl_biharmonic/examples/
6directory fc_vfempl_biharmonic/examples/
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Applications on a pentagonal domain
Graphical results

For graphical convenience the numerical solutions on the grid with the diagonal fibers are rotated by
—m/4.

x107° %1075

k)

IS

w

Figure 3.8: Displacement u of, respectively, an isotropic pentagonal plate (upper left), grid with the
aligned fibers (upper right) and grid with the diagonal fibers (bottom).
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%1073

%1073

0.0

-15

Figure 3.9: v = —Au of, respectively, an isotropic pentagonal plate (upper left), grid with the aligned
fibers (upper right) and grid with the diagonal fibers (bottom).
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