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Abstract

FC-VFEMP1-EIGS is an experimental object-oriented Python package dedicated to solve scalar or vector
eigenvalue boundary value problems (eBVP) by using P!-Lagrange finite element method in any space
dimension. This package is an add-on to the FC-VFEMP; package [?]. It uses the FO-SIMESH package [1]
and the siMesh class which allows to use simplices meshes generated from gmsh (in dimension 2 or 3) or
an hypercube triangulation (in any dimension).

The two FC-SIMESH add-ons FC-SIMESH-MATPLOTLIB [2] and FC-SIMESH-MAYAVI [3] allows a great
flexibility in graphical representations of the meshes and datas on the meshes by using respectively the
MATPLOTLIB and the MAYAVI packages.

The FC-VFEMP; package also contains the techniques of vectorization presented in [5] and extended
in [4] and allows good performances when using P!-Lagrange finite element method.

In the first chapter, the FC-VFEMP; package is quickly presented with some examples. Thereafter, in
the second chapter a generalized eigenvalue problem coming from scalar BVP is decribed. Some examples
are proposed and numericaly solved by using the FC-VFEMP-EIGS package. Finally in the last chapter a
generalized eigenvalue problem coming from wvector BVP is given. Some biharmonic eigenvalue problems
are numericaly solved.
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Chapter

Generic Boundary Value Problems

The notations of [10] are employed in this section and extended to the vector case.

Scalar boundary value problem

Let  be a bounded open subset of R?, d > 1. The boundary of € is denoted by I
We denote by Lapea, = £ : H*(2) — L?(Q2) the second order linear differential operator acting on
scalar fields defined, Yu € H2(2), by

Lapea () —div(AV ) + div (bu) + (V u,c) + apu (1.1)

where A e (L®(2))™4, be (L*(Q))4, ce (L*(2))? and ag € L*(2) are given functions and (-, -) is the
usual scalar product in R%. We use the same notations as in the chapter 6 of [10] and we note that we can
omit either div (bu) or (Vu,¢) if b and ¢ are sufficiently regular functions. We keep both terms with b
and ¢ to deal with more boundary conditions. It should be also noted that it is important to preserve the
two terms b and ¢ in the generic formulation to enable a greater flexibility in the choice of the boundary
conditions.

Let TP, T'® be open subsets of T', possibly empty and f € L?(Q), g© e HY2(I'P), g% € L*(I'F),
a® e L*(T!) be given data.

A scalar boundary value problem is given by

gScalar BVP 1 : generic problem
Find v € H2(Q) such that

E(u :f in Q,
u =g on I'P, (1.3)
(jn_ug + afu =g" on T'®. (1.4)

The conormal derivative of u is defined by

O s (0 Y — (bu,m) (1.5)
0n[;

The boundary conditions (|1.3) and (1.4)) are respectively Dirichlet and Robin boundary conditions.
Neumann boundary conditions are particular Robin boundary conditions with a® = 0.



Scalar BVP

To have an outline of the FC-vFEMP; package, a first and simple problem is quickly present. Expla-
nations will be given in next sections.
The problem to solve is the Laplace problem for a condenser.

—\@’- Usual BVP 1 : 2D condenser problem

Find v € H2() such that
~Au = 0 in Qc R?, (1.6)
= 0 on F1, (17)
—12 on Fgg, (18)
u = 12 on Ty, (1.9)
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Figure 1.1: 2D condenser mesh and boundaries (left) and numerical solution (right)

1.1.0

The problem (|1.6)-(1.9) can be equivalently expressed as the scalar BVP (1.2)-(1.4) :

gScalar BVP 2 : 2D condenser problem
Find u € H*(Q) such that

L(u

u

in Q,

on FD = Fl () Fgg () Fgg.

f
gP

I

where £ := Ly0,0,0, f =0, and

1.1.Scalar BVP

(2]
E
=
=
o
S
o
v
=
©
>
>
1=
S
o
c
=
o
o0
3
=
3]
c
o
O
-

gD :=0on Iy, gD := —12 on Igg, gD := +12 on I'gg

In Listing [27] a complete code is given to solve this problem.

meshfile=gmsh. buildmesh2d (’condenser’,10) # generate mesh
Th=siMesh (meshfile) # read mesh

Lop=Loperator (dim=2,d=2,A=[[1,0],[0,1]])
pde=PDE(Op=Lop)

bvp=BVP(Th, pde=pde)

bvp.setDirichlet ( 1, 0.)

bvp.setDirichlet ( 98, —12.)

bvp.setDirichlet ( 99, +12.)

u=bvp.solve ();

# Graphic parts

plt.figure (1)

siplt . plotmesh (Th,legend=True)

set _axes equal ()

plt.figure (2)

siplt . plotmesh (Th, color="LightGray’,alpha=0.3)
siplt . plotmesh (Th,d=1,legend=True)
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Vector boundary value problem n

set _axes _equal ()

plt . figure (3)

siplt .plot (Th,u)

plt.colorbar(label="u")

set _axes_equal ()

plt.figure (4)

siplt . plotiso (Th,u, contours=15)
plt.colorbar(label="u")

siplt .plotmesh (Th, color="LightGray’,alpha=0.3)
plt .axis(’off’);set axes equal()

Listing 1.1: Complete Python code to solve the 2D condenser problem with graphical representations
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Figure 1.2: 2D condenser numerical solution

Vector boundary value problem

(2]
£
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=
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o
g E
Let m > 1 and H be the m-by-m matrix of second order linear differential operators defined by § %
]
>y "
Moo (@) (@) (110 i
= (U, ) > f= (1 fm) EHw) ' 573
a]
where ) E
m ‘T o
fa= D) Haplug), Yae[l,m], (1.11) g 5
p=1 U
with, for all (o, 8) € [1,m]?, - .g
def
Ha,p = ‘CAavﬁ’ba,B,ca,ﬁ’ag‘ﬁ (1.12) g
a
—

and AP € (L2 (Q))44, bF e (L2(Q))4, ¢*f e (L*(Q))? and al’ € L*(Q) are given functions. We
can also write in matrix form

£A1v1,b1v1,c1’1,aé’1 ‘CAl,m)bl,m7c1,m7aé«m (751
H(u) = : : ] (1.13)

LAmvl,bmvl,cmvl,agl’l “en ,CAm,m7bm,m7cm,m)a70nvm Um

We remark that the H operator for m = 1 is equivalent to the £ operator.

For a € [1,m], we define T2 and I'2 as open subsets of T, possibly empty, such that T2 n T2 = .
Let f e (L2(Q)™, g2 e HY2(TD), g% € L2(TE), af € L*(TE) be given data.

A wvector boundary value problem is given by
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Vector BVP “_

ﬁ Vector BVP 1 : generic problem
Find u = (u1,...,u,) € (H?>(Q))™ such that

H(u) =f in Q, (1.14)

u, =g~ on 'Y Vae [1,m], (1.15)

Ou + aPu, =gf on T2 Va e [1,m], (1.16)
anya

where the a-th component of the conormal derivative of u is defined by

det a’ll:ﬂ _ N a,B o
- lanﬂa,ﬁ—ﬁ;(@\ Vug,n) — 4" ug,n)). (1.17)

The boundary conditions are the Robin boundary conditions and is the Dirichlet
boundary condition. The Neumann boundary conditions are particular Robin boundary conditions
with aff = 0.

In this problem, we may consider on a given boundary some conditions which can vary depending on

u
5717.Ll

the component. For example we may have a Robin boundary condition satisfying +aflu; = gf and

a Dirichlet one with uy = g2’.
To have an outline of the FC-VFEMP; package, a second and simple problem is quickly present.

-

-\@’- Usual vector BVP 1 : 2D simple vector problem

Find u = (u1,us2) € (H?(Q))? such that
—Au; +uy = 0 in QcR? (1.18)
~Aug +u; = 0 in Qc R? (1.19)
(ui,ug) = (0,0) on Iy, (1.20)
(up,u2) = (=12.,412.) on Igs, (1.21)
(u1,us) (+12.,—12.) on Tgg, (1.22)

where  and its boundaries are given in Figure [[.1]
The problem (1.18))-(1.22) can be equivalently expressed as the vector BVP ([L.2)-(1.4)) :

g Vector BVP 2 : 2D simple vector problem
Find u = (u1,uz) € (H2(Q))? such that

H(u) =f in Q,
(51 =ng on FD = Fl U Fgg U Fgg,
(%) 292D on FD = Fl U ng U Fgg,

where ﬁ p A
— 1 U
i (G000 Looor) gy (m) (A L) (1)
<£©,o,o,1 L1,0,0,0 o U 1 —A) \uz

and

g2 :=00onTy, gP:=—-12, gf := +12 on T'gg, g := +12, g¥ := —12 on Tyg

In Listing [21] a complete code is given to solve this problem. Numerical solutions are given in Fig-
ure

meshfile=gmsh.buildmesh2d (’condenser’,10); # generate mesh
Th=siMesh (meshfile) # read mesh
Hopl=Loperator (dim=2,A=[[1 ,None] ,[None,1]])
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1.2.Vector BVP




Vector BVP “_

Hop2=Loperator (dim=2,a0=1)

Hop=Hoperator (dim=2m=2 H=[[Hopl,Hop2] ,[Hop2,Hopl|])
pde=PDE(Op=Hop)

bvp=BVP(Th, pde=pde)

bvp.setDirichlet( 1, 0,comps=[0,1])

bvp.setDirichlet ( 98, [—12,+12],comps=[0,1]);
bvp.setDirichlet ( 99, [+12,—12],comps=[0,1]);
U=bvp.solve(split=True)

# Graphic parts

plt.figure (1)

siplt . plot (Th,U[0])

plt.axis(’off’);set axes equal()

plt . colorbar(label="$u_1$’ ,orientation="horizontal ’)
plt.figure (2)

siplt . plot (Th,U[1])

plt .axis(’off’);set axes equal()

plt . colorbar(label="$u_2$’ ,orientation="horizontal )

Listing 1.2: Complete Python code to solve the funny 2D vector problem with graphical representations

Figure 1.3: Funny vector BVP, u; numerical solution (left) and us numerical solution (right)
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Chapter 2

Generalized Eigenvalue scalar BVP

We want to solve generalized eigenvalue problems coming from scalar BVP’s.
The generalized eigenvalue problem associated with scalar BVP (1.2))-(1.4) can be written as

:!Scalar EBVP 1 : generic problem
Find (A, u) € K x H?(2) such that

L(u) =AB(u) in , (2.1)
u =0 on TP, (2.2)
o +afu =0 on TR, (2.3)

6n[;

where B = E@dxd70d757a'o.

In the next section, we briefly describe the main function that will be used to solve eigenvalue boundary
value problems. Let bvp be a BVP object. Thereafter some eigenvalue problems are given and solved
by using the FCc-VFEMP;-EIGS package.

eBVPsolve function

The function fc_vfempl eigs.lib.eBVPsolve returns a few eigenvalues and eigenvectors obtained by
solving a generalized eigenvalue scalar BVP with P;-Lagrange finite elements.

eigValues ,eigVectors=fc_vfempl_eigs.lib.eBVPsolve (bvp)
eigValues ,eigVectors=fc_vfempl_eigs.lib.eBVPsolve (bvp,**kwargs)
eigValues ,eigVectors=fc_vfempl_eigs.lib.eBVPsolve (bvp,RHSop=Bop,**kwargs)

Description The inputs are :

e bvp a BVP object which described the scalar BVP (1.2)-(|1.4)) with all right-hand sides equal to
zeros, i.e. f:=0, g” :=0and g := 0.

e Bop a Loperator object corresponding to operator B. By default Bop is the operator Lo, ;0,041
for scalar BVP.



2D samples n

e sxxkwargs are the optional parameters of the |scipy.sparse. linalg . eigs| Python function.

The outputs are those given by the scipy.sparse. linalg . eigs Python function where the eigenvalues are
stored in the complex numpy array eigValues which is sorted with numpy.argsort. The eigenvectors
are stored in the complex numpy array eigVectors such that eigValues.shape[0]==eigVectors.shape[l] and
eigVectors [:, 1] is the eigenvector associated with the eigenvalue eigValues|i].

2D samples

VBN 2D Laplace eigenvalues problem with Dirichlet boundary condition

We want to solve the eigenvalue problem given by (2.4)-(2.5)).

-\@’- Usual EBVP 1 : 2D Laplace with Dirichlet boundary condition
Find (A, u) € K x H?(2) such that

—Au =\u in Q, (2.4)
u =0 on I, (2.5)

The problem (2.4))-(2.5) can be equivalently write as the Scalar EBVP

fgScalar EBVP 2 : 2D Laplace with Dirichlet boundary condition
Find (A, u) € K x H2(2) such that

L(u) =AB(w) in Q,

u =0 onTP =T,

where £ = L1000, B=L0,0,0,1-

Applications on the rectangle Q = [0, L] x [0, H].

The eigenvalues and the associated eigenfunctions are given by
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Ak = <L) + (H) . ug(z,y) = sin(fx) sin(ﬁy)7 V(k,1) e IN* x IN*. (2.6)
In Table the first eigenvalues are given for (k,1) € [1,5].
; g 1 2 3 4 5
1 B2~ 356402 [ 72~ 10.9662 [ 5272~ 23.3032 | 3 7% ~ 40.5750 | 22 7?2 ~ 62.7817
2 2~ 6.85389 | P w? ~ 14.2561 | ST w?~26.5931 [ P’ ~ 43.8649 | 2 7 ~ 66.0715
3 Sr?~ 123370 | 272~ 19.7392 | £ 7%~ 32.0762 | 57° ~49.3480 | 22 x? ~ 71.5546
4 ol ~20.0134 | T’ ~ 274156 | L2 & 39.7526 | 22 w7 ~ 57.0244 | T w7 ~ 79.2310
5 02 ~29.8830 | 3T a? ~ 37.2852 | 18l 72~ 49.6222 | %l 7% ~ 66.8940 | 220 77 ~ 89.1006

Table 2.1: Eingenvalues Ay for (k,1) € [1,5] with L =3, H =2

In file 1ap1acian_DDDD_rectangle_ex.pyﬂ the run function solve the Dirichlet eigenvalue problem
for the laplacian on Q = [0, L] x [0, H]. In Listing [3.3 part of the run function is given.

return
print ( 's%_Setting _the_mesh_using_HyperCube_function_[fc_simesh]’)
Th=HyperCube (2 ,N, mapping=lambda q:np.array ([Lxq[0] ,Hxq[1]]))
print ( "xxx_Setting_the_mesh_using_gmsh_and_%s.geo_file . %geofile)
meshfile=gmsh. buildmesh2d (geoFile ,N, force=True, verbose=0 ,options=’—smooth_4_
—setnumber H_%g_—setnumber _L_%g '%(H,L))

Ldirectory: fc_vfempl_eigs/examples

Compiled on 2017/06/19 at 16:17:28
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2D samples n

print ( 'xxx_Setting_the_eBVP’)
Lop=Loperator (dim=2,A=[[1,None] ,[None,1]])
pde=PDE(Op=Lop)
bvp=BVP(Th, pde=pde)
for lab in Th.sThlab[Th. find (d=1)]:
print ( ’xxx_Solving_the_eBVP’)
print ( ’xxx_Computing_exacts_solutions_to_the_eBVP’)

Listing 2.1: eigenvalue problem 2 = [0, L] x [0, H].

A4 =13.739

n Azt=49.308
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Figure 2.1: Dirichlet eigenvalue problem for the laplacian : exact eigenvectors of the smallest magnitude
eigenvalues

Aj*=49.308

Ai+=78.957 A3+ =98.596

AT =19.T741
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Figure 2.2: Dirichlet eigenvalue problem for the laplacian : numerical eigenvectors of the smallest mag-
nitude eigenvalues

The Figure 2.1 and Figure 2.2) are obtained by running the following python code:
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2D samples

from fc_vfempl eigs.examples.laplacian DDDD rectangle ex import run
res=run (L=1H=1,trans=False , gerror=False , colorbar=True)

Listing 2.2: Dirichlet eigenvalues problem for the laplacian on = [0,1] x [0, 1] without transformation

As we can see by comparing the exact eigenfunctions given in Figure 2.1 with the numerical eigenfunc-
tions given in Figure [2:2] their graphic representations differ. With an eigenvalue’s geometric multiplicity
n = 1, we have a set of n exact eigenfunctions {u1,...,u,} (eigenspace) to compare with the set of n nu-
merical eigenfunctions {vp 1,...,vnn}. So we transform the n numerical eigenfunctions by the following
linear combination

) o (Unis Ung)
i = Y, oy,
3 Ongsvng)
where (u,v) = {, u(q)v(q)dq and up; = 75 (u;) is the P!-Lagrange interpolate of u;. This transformation
is applied on each eigenspace by the function L2_complete_trans
if trans:

In Figure [2.3] we represent the transformed eigenfunctions and in Figure ?7 the relative errors. These
results are obtained by running the following python code:

from fc_vfempl eigs.examples.laplacian DDDD rectangle ex import run
res=run (L=1H=1)

Listing 2.3: Dirichlet eigenvalues problem for the laplacian on Q = [0,1] x [0, 1] with transformation

201" = 49,363

R e

Figure 2.3: Dirichlet eigenvalue problem for the laplacian : numerical eigenvectors of the smallest mag-
nitude eigenvalues after linear transformation

AT -1

A= 73981
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2D samples
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Figure 2.4: Dirichlet eigenvalue problem for the laplacian on unit square: relative errors

Now we test the run function on the rectangle [0, 3] x [0,2]. The python command used to compute
the twelve first eigenvalues is the following:

from fc_ vfempl eigs.examples.laplacian DDDD rectangle ex
import run

res=run (k=12,L=3 H=2,N=250)

The exact eigenfunctions, the computed eigenfunctions and the relative errors are respectively represented
in Figure Figure 2.6 and Figure

o sroaand
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Figure 2.5: Dirichlet eigenvalue problem for the laplacian on [0, 3] x [0,2] : exact eigenfunctions of the
smallest magnitude eigenvalues

2.2.2D samples

Compiled on 2017/06/19 at 16:17:28



2D samples

Figure 2.6: Dirichlet eigenvalue problem for the laplacian on [0, 3] x [0,2] : numerical eigenfunctions of
the smallest magnitude eigenvalues
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Figure 2.7: Dirichlet eigenvalue problem for the laplacian on [0, 3] x [0,2] : relative error of the eigen-
functions of the smallest magnitude eigenvalues

We represent in Figure 2.8 the order of convergence of the first ten eigenvalues.
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2D samples

Relative L*-error for eigenfunctions Relative Hl-error for eiganfunctions
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Figure 2.8: eigenvalues and eigenfunctions : order computation for Dirichlet eigens problem for the
laplacian on rectangle [0, 3] x [0, 2](regular meshes) . Relative errors of eigenfunctions in L?-norm (upper
left) and H'-norm (upper right). Relative errors of eigenvalues (bottom).

One can see that a superconvergence phenomena occurs due to regularity of the hypercube mesh.
Indeed, for the H'-norm an order 1 is expected. To hightlight it, gmsh is now used to generate all the
meshes of ) : results are given in Figure 2.9
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Relative L*-error for eigenfunctions

Relative Hl-error for eigenfunctions

102

Eplii}

x Y’

44

o2

EESEa

ax107?

axia7t o2

EESEa ax107? EESTn

Figure 2.9: eigenvalues and eigenfunctions :

Relative errar for eigenvalues

10-7 2x107F axi07?

4x107F

order computation for Dirichlet eigens problem for the

laplacian on rectangle [0, 3] x [0, 2](gmsh meshes) . Relative errors of eigenfunctions in L?-norm (upper
left) and H'-norm (upper right). Relative errors of eigenvalues (bottom).

Just for fun, we now compute the nine eigenvalues near 200 and the corresponding eigenfunctions. In
Figure 210 we represent the numerical solutions given by the following command:

hlet boundary condition

from fc_vfempl eigs.examples.laplacian DDDD rectangle ex
import run
res=run (k=9,sigma=200,L=3 H=2 N=350,

gerror=False , gsolex=False , trans=False)
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Figure 2.10: Dirichlet eigenvalue problem for the laplacian on [0,3] x [0,2] : the nine eigenvalues near
200 and the corresponding eigenfunctions

Application on the unit disk.
Let Q = R? be the unit disk meshed by gmsh and given in Figure
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Figure 2.11: Unit disk with four boundaries
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In Table the values of a,; are given for (n,!) € [0,4][1, 5].

Let au,; bet the I-th zero of the Bessel function of the first kind .J,,. The eigenvalues are given by

At =2, Y(n,1) e N x IN*

The eigenvalues are simple for n = 0 and twice degenerate for n > 0.

N A - T " -
1 || 2.4048256 | 3.8317060 | 5.1356223 | 6.3801619 | 7.5883424 | 8.7714838 | 9.9361095
2 || 5.5200781 | 7.0155867 | 8.4172441 | 9.7610231 | 11.064709 | 12.338604 | 13.589290
3 || 8.6537279 | 10.173468 | 11.619841 | 13.015201 | 14.372537 | 15.700174 | 17.003820
4 || 11.791534 | 13.323692 | 14.795952 | 16.223466 | 17.615966 | 18.980134 | 20.320789
5 14.930918 | 16.470630 | 17.959819 | 19.409415 | 20.826933 | 22.217800 | 23.586084
6 || 18.071064 | 19.615859 | 21.116997 | 22.582730 | 24.019020 | 25.430341 | 26.820152
Table 2.2: Zeros of the Bessel function of the first kind J,,

Al A2 A3 A4 As A6 A7 As
5.7831860 | 14.681971 | 14.681971 | 26.374616 | 26.374616 | 30.471262 | 40.706466 | 40.706466
Ao Ao A1 A2 A3 A4 A5 A6
49.218456 | 49.218456 | 57.582941 | 57.582941 | 70.849999 | 70.849999 | 74.887007 | 76.938928
A7 A1g Alg A20 A2t A22 A23 24
76.938928 | 95.277573 | 95.277573 | 98.726272 | 98.726272 | 103.49945 | 103.49945 | 122.42780

Table 2.3: twenty four first eigenvalues

We represent in Figure eigenvectors associated to the first twenty-four smallest magnitude eigen-
values.

We represent in Figure eigenvectors associated to the twenty-four eigenvalues near 1000.

Application on the L-shape domain. The Lshape domain € meshed by gmsh is given in Figure[2.14]

Part of the source code (file fc_vfempl_eigs/examples/Laplacian_Dir_Lshape_01.m) is given in
Listing [2.4]

print ( "xxx_Setting_the_mesh_using_gmsh_and _%s_file '%geofile)

meshfile=gmsh. buildmesh2d (geodir+os.sep+geofile+’.geo’ ,N, force=True, verbose=0)
print (’xxx_Setting_the_eBVP’)

Lop=Loperator (dim=2,A=[[1,None] ,[None,1]])

pde=PDE(Op=Lop)

bvp=BVP(Th, pde=pde)

for lab in Th.sThlab[Th. find (d=1)]:

print ( *xxx_Solving_the_eBVP’)

Listing 2.4: 2D Laplace eigenvalues problem with Dirichlet boundary condition on Lshape domain

Results can be found in [11], Figure 1 page 4 and [7]. From [g] section 6.52 page 122 or [12] Table 1
page 1088, we have the bounds to the first ten eigenvalues of the L-shaped Laplacian problem is given
Table @ We also give the computed values from a L-shaped mesh with nq = 89780, ny. = 178358 and
h ~ 0.0104599329309.
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Figure 2.12: Dirichlet eigenvalue problem on the unit disk :

eigenvalues
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unit disk : eigenvectors of the eigenvalues near 1000
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Figure 2.14: Lshape domain with four boundaries

n  bounds of A, from [12] computed here
1 9.639723843% 9.64209719683
2 15.197251928§ 15.1978811701
3 272 =19.739208802178  19.740276353

4 29.5214811142 29.523864337

5 31912635952 31.9205911428
6  41.474509822 41.4831105006
7 44.9484877%2 44.9540109819
8 572 =49.34802200544  49.3546645871
9 572 =49.34802200544  49.3547009123
10 56.7096098%93 56.7227438731

Table 2.4: Bounds to the first ten eigenvalues of the L-shaped Laplacian problem

We represent in Figure eigenvectors associated to the first twenty-four smallest magnitude eigen-
values.
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Figure 2.15: 2D Laplace in L-shaped domain with Dirichlet boundary conditions : eigenvectors of the
smallest magnitude eigenvalues

In Figure the eigenvectors associated with the four eigenvalues nearest 250 (multiplicity 1) and
493 (multiplicity 3) are represented. This is done by setting sigma option to 250 for the first case and to
493 for the second one.

VN 2D Laplace eigenvalues problem with mixed boundary conditions

We want to solve the eigenvalue problem given by (2.7)-(2.10)).
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Figure 2.16: 2D Laplace with Dirichlet boundary conditions : eigenvectors of the eigenvalues near Asg =
250.78548 (multiplicity 1) and Ajp4 = 493.48022 (multiplicity 3)

-\@’- Usual EBVP 2 : 2D Laplace with mixed boundary condition
Find (A, u) € K x H?(2) such that

—Au =\u in Q, (2.7)

Z—Z + au =0 on I'*, (2.8)
Z—Z =0 on T?, (2.9)

u =0 on I'¢, (2.10)

The problem (2.7)-(2.10) can be equivalently written as the Scalar EBVP

dS’calar EBVP 3 : 2D Laplace with mixed boundary condition
Find (A, u) € K x H2(2) such that
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L(u) =AB(u) in €,
UL Ry — on TB =Ty,
6n£
u =0 on I'P =T°,
where £ = Ly0,0,0 (and then a‘i—“ﬂ = Z—Z), B=Lopo,1, a = adp

Application on the disk with 5 holes domain. Let I'; be the unit disk, I';y be the disk with center
point (0,0) and radius 0.3. Let 'y, I'21, I'so and I'yg be the disks with radius 0.1 and respectively with
center point (0, —0.7), (0,0.7), (—0.7,0) and (0.7,0). The domain 2 = R? is defined as the inner of I'y
and the outer of all other disks (see Figure .

Compiled on 2017/06/19 at 16:17:28



2D samples

100 -
//"’ Pl et [
— T
0.75 O 2o
\\ —
0.50 /‘ N [ b2

- 000
] /

—0.50 1 \\ /

A ¢ 4

-1.00

=1.0 —0.5 0.0 0.5 10

Figure 2.17: Domain and boundaries

We want to solve the eigenvalue problem given by ([2.11)-(2.14)).

conditions
Find (A, u) € K x H2(2) such that

Scalar EBVP 4 : 2D Laplace eigenvalues problem with mixed boundary

—Au =\u in Q, (2.11)
ou
— + 10u =0 on F22 U F23. (212)
on
ou
% =0 on FQO ) FQI, (213)
u =0 on Fl U FlO- (214)

J

So we have, ' = T'; U T'yg, IR = (7, T4, and a® = 100r,, 1,

We give in Listing [2.5] the corresponding Matlab code.

Listing 2.5: 2D Laplacian eigenvalues problem with mixed boundary conditions on a domain with 5 holes

print ('__ooo Mesh_sizes_:_nqg=%6d, nme=%7d, _
h=%.3e ’%(Th.nq,Th.get nme() ,Th.get _h()))

pde=PDE(Op=Lop)

bvp=BVP(Th, pde=pde)

bvp.
bvp.
bvp.
.setRobin (21,0.)

bvp

bvp.
bvp.

setDirichlet (1,0.)
setDirichlet (10,0.)
setRobin (20,0.)

(
setRobin (22 ,0.,ar=10)
setRobin (23 ,0.,ar=10)

We represent in Figure the twenty four first eigenvectors.
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Figure 2.18: 2D Laplace with mixed boundary conditions : eigenvectors of the smallest magnitude
eigenvalues
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Other 2D eigenvalues problems with Dirichlet boundary condition

Convection-Diffusion on the L-shaped domain.

We want to solve the eigenvalue problem given by

~

L

-@-Usual EBVP 3 : 2D Convection-Diffusion eigenvalues problem with
Dirichlet boundary condition
Find (A, u) € K x H?(2) such that

—Au+ B.Vu=Au in Q,
u =0 on I

with constant convection parameter 8 € R2.

. J/ :
5
From [8] section 6.52 page 122 the eigenvalues of Usual EBVP [3{are X° = |8|/4 + \; where ); are the =
eigenvalues of the L-shaped Laplacian problem with Dirichlet boundary condition (the ten first are given &
in Table [2.4). We have for example ;
&
N ~|B|/4 + 9.63972, A =|B|/4 + 22 g
o
A8 ~|B|/4 + 31.912636, A8 — B —|B|/4 + 572 =
A8 ~|B/4 + 101.60529, A ~|B]/4 + 250.78548. %’
=
We give in Listing [2.6] the corresponding Python code. =
2
g
Listing 2.6: 2D L-shaped Convection-Diffusion problem with 8 = (3,0) : Python code o 2
o
print ('____o Mesh_sizes _:_nq=%6d, .nme=%7d, _ > :
h=%.3e *%(Th.nq,Th.get nme() ,Th.get _h())) CE =
pde=PDE(Op=Lop) T‘: :
bvp=BVP(Th, pde=pde) LS
for lab in Th.sThlab[Th. find (d=1)]: v c
bvp.setDirichlet (lab ,0.) 22
>
5 G
We give the computed values from a L-shaped mesh with ny = 89780, ny,e = 178358 and h ~ 0.0105. I_%DT;_
We represent in Figure the twenty four first eigenvectors with 8 = (3,0). —_—
82
55
n  bounds of M from [12] computed here g @
o=
1 |Bl/4 + 9.6307238434 ~ 11.88972384  11.891874 o S
2 |B|/4 + 151972519208 ~ 17.44725192  17.447521 )
3 |B|/4 + 272 = 21.989208802178716  21.989805 i
4 |Bl/4+29.5214811142 ~ 31.77148111  31.773153 -
5 |Bl/4 +31.91263503 ~ 34.1626359  34.169821 3
6 |B]/4 + 41.4745008%2 ~ 437245099  43.732105
7 |B/4 + 44.948487782 ~ 47.19848777  47.202920
8 |B|/4 + 5n2 = 51.598022005446794  51.603105

9 |B|/4+ 572 = 51.598022005446794  51.603864
10 |B]/4 + 56.709609890 ~ 58.9596098  58.971362
20 |B]/4 + 101.60529 ~ 103.85529 103.88829
50 |B|/4 + 250.78548 ~ 253.03548 253.21186

Table 2.5: Eigenvalues of the L-shaped Convection-Diffusion problem with 8 = (3,0).
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23.1

3D examples

Eigenvalues of the laplacian on the unit sphere with Dirichlet boundary condi-

tion

Application on the unit sphere.

Let Q c R? be the unit sphere meshed by gmsh and given in Figure

& =0.50
—0.75

1iog-1A9

0.25
0'500.?5

Figure 2.20: Unit sphere with eight boundaries

From [9], page 609, we get the eigenvalues of the laplacian on the sphere with Dirichlet boundary
conditions. Let ayi bet the k-th zero of the Bessel function of the first kind J,, /2. The eigenvalues are
given by
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Ak =02, YnelN, VkeN*

In Table the values of ) are given for (n,k) € [0,4][1,5]. The eigenvalues have the degeneracy
2n + 1.
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LUl Sy | S | i | Jzvpe | Jagappe | Jseip | Jerip |

1 ]| 3.1415927 | 4.4934095 | 5.7634592 | 6.9879320 | 8.1825615 | 9.3558121 | 10.512835

2 || 6.2831853 | 7.7252518 | 9.0950113 | 10.417119 | 11.704907 | 12.966530 | 14.207392
3 || 9.4247780 | 10.904122 | 12.322941 | 13.698023 | 15.039665 | 16.354710 | 17.647975 3
4 || 12.566371 | 14.066194 | 15.514603 | 16.923621 | 18.301256 | 19.653152 | 20.983463 g'
5 || 15.707963 | 17.220755 | 18.689036 | 20.121806 | 21.525418 | 22.904551 | 24.262768 g
6 || 18.849556 | 20.371303 | 21.853874 | 23.304247 | 24.727566 | 26.127750 | 27.507868 a
)
Table 2.6: Zeros of the Bessel function of the first kind J,, /2 :




3D examples

exact | numerical rel. error
A1 9.8696044 9.8795733 | 0.0010100591
Ao | 20.190729 20.241845 | 0.0025316829
Az | 20.190729 20.241972 | 0.0025379680
Az | 20.190729 20.242068 | 0.0025427072
As | 33.217462 33.366667 | 0.0044917671
Ae | 33.217462 33.367653 | 0.0045214645
A7 | 33.217462 33.367833 | 0.0045268671
Ag | 33.217462 33.368352 | 0.0045424835
Ao | 33.217462 33.369297 | 0.0045709448
Ao | 39.478418 39.683576 | 0.0051967347
A11 | 48.831194 49.167078 | 0.0068784726
Ao | 48.831194 49.168061 | 0.0068986160
A3 | 48.831194 49.169862 | 0.0069354936
A1a | 48.831194 49.170425 | 0.0069470166
A1 | 48.831194 49.171088 | 0.0069606076
Mg | 48.831194 49.173549 | 0.0070110001
A7 | 48.831194 49.173957 | 0.0070193439
A1g | 59.679516 60.162479 | 0.0080926014
A1g | 59.679516 60.169330 | 0.0082074079
Aoo | 59.679516 60.170223 | 0.0082223667
Ao1 | 66.954312 67.603193 | 0.0096913974
Aog | 66.954312 67.605029 | 0.0097188145
Aog | 66.954312 67.605519 | 0.0097261446
Aoy | 66.954312 67.608407 | 0.0097692707

Table 2.7: Comparison between the twenty four first exact eigenvalues and numerical computation on
mesh with nq = 81324 and np,, = 462596

We represent in Figure 2.21] eigenvectors associated to the first twenty-four smallest magnitude eigen-

values.
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T

AT = 9.8795733 A" = 20.241845 Azt =20.241972 At = 20.242068

A5t = 33.366667 Ag"™ = 33.367653 A7 = 33.367833 Ag'™ = 33.368352

T8 = 39.683576 1™ = 49.167078 12" = 49.168061

137 = 49.169862 T =49.170425 5™ = 49.171088 16 = 49.173549

7 =49.173957 ATg™ = 60.162479 ATe™ = 60.169330 Azo™ = 60.170223

A1 = 67.603193 Azs™ = 67.605029 Ags™ = 67.605519 Agi™ = 67.608407

Figure 2.21: Dirichlet eigenvalue problem on the unit sphere : eigenvectors of the smallest magnitude
eigenvalues
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Chapter 3

Generalized Eigenvalue vector BVP

The eigenvalue problems associated with vector BVP (|1.14)-(1.16)) can be written as

5 Vector EBVP 1 : generic problem
Find A e K and u = (u1,...,u,,) € (H?(£2))™ such that

H(u) =AB(u) in Q, (3.1)
Uy =0 on ' Ya e [1,m],
Ou + afu, =0 on T'% Va e [1,m], (3.3)
6n7.[a

where B is a given H-operator.

In most cases B is the identity operator (B is a diagonal H-operator with Bao = Lo4,4,04,04.15
Ya € [1,m]).

Biharmonic eigenvalue BVP for plate vibration

The biharmonic eigenvalue problem for plate vibration is to find u # 0 and A € R such that
Ay = \u, inQ (3.4)
where boundary conditions on I'" can be

o Clamped Plate (CP) or pure Dirichlet type:

u = Z—Z —0 (3.5)
o Simply Supported Plate (SSP) or Navier type :
u=Au=0 (3.6)
e Cahn-Hilliard (CH) type
ou  0Au



Biharmonic eigenvalue BVP for plate vibration

Classically the fourth-order PDE (3.4) is converted to the two second-order PDE

—Av = du (3.8)
—Au = v (3.9)

So with the the H-operator G defined in (A.9) these two PDE can be written as
U def 0 L1,0,0,0 ) <u) <)\u>
- 0o = 3.10
g (U> <Eu,o,07o Lo00,-1) \v 0 ( )

If we define the B operator as
BY (Eo,g,o,l 8) (3.11)

the two PDEs (3.8) can be equivalently written as

G (g) — AB (:j) (3.12)

The code to build the two operators G and B is given in Listing 3.1} One can also used the Fc-
VFEMP;-BIHARMONIC package for a more concise code given in Listing

from fc_vfempl.operators import Loperator ,Hoperator
Lop=Loperator (dim=2,A=[[1,None] ,[None,1]])
Gop=Hoperator (dim=2,m=2)

Gop .H[0][1]=Gop.H[1][0]=Lop

Gop.H[1][1]=Loperator (dim=2,a0=-1)

Bop=Hoperator (dim=2,m=2)

Bop .H[0][0]=Loperator (dim=2,a0=1)

Listing 3.1: Setting the G and B operator with the FC-VFEMP;
packagein 2D

from fc_vfempl.operators import Loperator ,Hoperator
import fc_vfempl biharmonic.lib as blib

bvp=blib . BiharmonicOperator (2)

Bop=Hoperator (dim=2,m=2)

Bop .H[0][0]=Loperator (dim=2,a0=1)

Listing 3.2: Setting the G and B operator with the FCc-vFEMP; and
the FC-VFEMP;-BIHARMONIC package s in 2D

Simply supported plate

eBVP 1 : biharmonic eigenvalue problem for plate vibration with simply
supported plate boundary conditions
Find A € K and u # 0 such that

~

A%y = M, in Q
u=0 and Au=0, on T

L

This problem can be rewritten with operators G and B defined respectively in (3.10) and (3.11). Let
v = —Au and w = (u,v), previous problem becomes

~

Vector EBVP 2 : biharmonic eigenvalue problem for plate vibration
with simply supported plate boundary conditions with #-operators
Find X € K and w = (w1, ws) € (H3(Q))?, w # 0, such that

G(w) =A\B(w) in Q,

wy =0 and wp =0 onT.
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Biharmonic eigenvalue BVP for plate vibration

Remark 3.1 On convex domains, the biharmonic eigenvalues are just the squares of the eigenvalues
for the Laplace operator with the homogeneous Dirichlet boundary condition with the corresponding
eigenfunctions.

Application on 2 = [0,L] x [0, H]

The eigenvalues and the eigenvectors of the Laplacian with Dirichlet boundary conditions are given in
(2.6). In Listing the part of the file biharmonic_SSP_rectangle_ex.pyEl which solve the biharmonic
eigenvalue problem for plate vibration with simply supported plate boundary conditions is given

bvp=blib . BiharmonicBVP (Th)
for lab in Th.sThlab[Th. find (d=1)]:
blib.setSimplySupportedPlate (bvp,lab ,[0,0])
Bop=Hoperator (dim=2,m=2)
Bop .H[0][0]=Loperator (dim=2,a0=1)
eigVal ;eigVec= elib .eBVPsolve (bvp,RHSop=Bop , k=NumZEigs ,
which="LM’ |sigma=sigma , tol=1e —9,maxiter=Th.nq)

Listing 3.3: biharmonic eigenvalue problem for plate vibration with simply supported plate boundary
conditions Q = [0, 3] x [0, 2].

We represent in Figure [3.1] the twelve first eigenvectors obtained with the following python code:

from fc_vfempl eigs.examples.biharmonic_SSP _rectangle ex import run
res=run (N=200,k=12,gsolex=False , gerror=False , trans=False)

In Figure [3:3] the orders of convergence of the first twelve eigenvalues are represented.

One can see that a superconvergence phenomena occurs due to regularity of the hypercube mesh.
Indeed, for the H'-norm an order 1 is expected. To hightlight it, gmsh is now used to generate all the
meshes of €2 : results are given in Figure

Application on a disk with 5 holes

We represent in Figure [3.5] the twelve first eigenvectors.

Mixed boundary conditions

eBVP 2 : biharmonic eigenvalue problem for plate vibration with mixed

boundary conditions
Find )\ € K and u # 0 such that

~

A%y = \u, in Q
u=0 and Au=0, on I'sgp
u=0 and @=0, on I'cp

on

A
a_u: and a—uzo, on I'cy
on on

L J

This problem can be rewritten with operators G and B defined respectively in (3.10) and (3.11). Let
v = —Au and w = (u,v), previous problem becomes

Ldirectory: fc_vfempl_eigs/examples
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Figure 3.3: eigenvalues and eigenfunctions : order computation for biharmonic ... with (SSP) boundary
conditions on rectangle (regular meshes) . Relative errors of eigenfunctions in L2-norm (upper left) and
H'-norm (upper right). Relative errors of eigenvalues (bottom).
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Figure 3.4: eigenvalues and eigenfunctions : order computation for biharmonic ... with (SSP) boundary
conditions on rectangle (gmsh meshes) . Relative errors of eigenfunctions in L?-norm (upper left) and
H'-norm (upper right). Relative errors of eigenvalues (bottom).

3.1.2 Mixed boundary conditions

Vector EBVP 3 : biharmonic eigenvalue problem for plate vibration
with mixed boundary conditions with H-operators
Find A € K and w = (w1, ws) € (H2(2))%, w # 0, such that
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G(w) = \B(w) in (2,

w; =0 and we =0 on I'ssp,

w; =0 and G =0 on I'cp,
ang2

oo and Gy =0 on I'cy.
ong, ong,

Application on disk with 5 holes

The eigenvalues and the eigenvectors of the Laplacian with Dirichlet boundary conditions are given in

(77).

We represent in Figure [3.7] the twelve first eigenvectors.

3.1.Biharmonic eigenvalue BVP for plate vibration
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3.1.Biharmonic eigenvalue BVP for plate vibration
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CWHN  Elasticity problem

Linear elasticity

Let d = 2 or d = 3. We cousider here Hooke’s law in linear elasticity, under small strain hypothesis (see
for example [6]).

For a sufficiently regular vector field u = (uy, ..., uq) : @ — RY, we define the linearized strain tensor
€ by
1
elw) = 5 (V) + V' (w).

We set € = (611, €22, 2612)t in 2d and € = (611, €92, €33, 2€12, 2€93, 2613)t in 3d, with €ij (u) = % (g;:; + gzz ) .
Then the Hooke’s law writes

2=C67

where g is the elastic stress tensor and C the elasticity tensor.

The material is supposed to be isotropic and could be caracterized by its Poisson’s ratio v, its Young’s
modulus F and its density p. For example, for the Aluminium we have v = 0.334, £ = 71 GPa =
71 x 1076 kg.s™2mm™t = 71 x 1072 kg.s™2.m~! and p = 2.770 x 107% kg.mm 3 = 2770 kg.m 3. The
Lameé parameters A and p are given by

FE «nu FE

M) T A

Let v = 2+ A. The elasticity tensor C in dimension 2 or 3 is given by

C— ()\]lg + 2uly 0> or €= </\]13 +2ulz 0 )
0 ) 3x3 0 M) g6

respectively, where 1,4 is a d-by-d matrix of ones, and [; the d-by-d identity matrix.
For dimension d = 2 or d = 3, we have:

oop(u) = 2peapu) + Atr(e(u))dap Vo, B € [1,d]

The eigenvalue problem to solve is the following
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3.2.Linear elasticity

Figure 3.7: title
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r Y

-\@’- Usual EBVP 4 : Elasticity problem

Find (k,u) = K x H2(Q)* such that E
=
—div(e(u)) = kpu, in Qc R4, (3.13) g.
ou)n = 0 onTFE (3.14) % 2
u = 0 onTP. (3.15) @ -3
) :O: ¢_£
We recall the following lemma (see [4]) § ,u_.'l
oo
= =
Lemme 3.2 g
Let H® be the H-operator defined in ((1.10) by I:jn
o
Ha,ﬂ = ‘C’Aavﬁ,O,O,Ov V(Oé,ﬁ) € [[17d]]2 (316) g
T2
with g S
(Aa’ﬂ)k,l = Mdaﬁ(skl + /L(Skgéla ar )\5]6,15“3, V(k},l) € [[l,d]]Q. (3.17) 8 (_3
o
Then, we have &
H (u) = —divo(u) (3.18) 2
-
and, Vo € [[1,d], o
%~ (o)) (3.19) °
e n)y. .

The matrices A%? of previous lemma are explicitely given by

e for d =2,
1,1 _ (7 0 1,2 _ 0 A 21 _ 0 wu 22 _ (M 0
g _(0 u)’A _<M 0>’A _(A 0) 470 s

e for d = 3,
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v 0 0 0 A O 0 0 A
Al=(0 p o], aA%2=(ux 0 0], A =(0 0 0
0 0 u 0 0 0 @ 0 0
0 p O @ 0 0 0 0 0
pl=(x 0 0], a22=(0 ~ o], a23=(0 0 ]|,
0 0 0 0 0 u 0 u O
0 0 u 0 0 0 g 0 0
Ml=(0 0 o], a2=(0 0 x|, a3=(0 p 0
A0 0 0 A O 0 0 ~

So the elasticity problem (3.13)) to (3.23) can be equivalently written as :

g Vector EBVP 4 : Linear elasticity in dimension d =2 or d = 3
Find (k,u) € K x (H2(Q2))? such that

HO (u) =kB° (u), in 0, (3.20)
oy, on TF = TR, Va e [1,d] (3.21)

aan
uy =0, on T2 =TP Vace[l,d]. (3.22)

with BY 5 = 64,6L0,00,p-

L J

Thereafter, we give the python code which sets the operators H? and B? and initialize the eigenvalue
boundary problem with Neumann boundary conditions (3.21)) by default on all boundaries.

@)m fc_vfempl.operators import Hmass, StiffElasHoperator \
from fc_vfempl.BVP import BVP,PDE

mu— E/(2%(1+nu))

lam = Esnu/((14+nu)=*(1—2*nu))

Hop=StiffElasHoperator (2,lam ,mu)

pde=PDE(Op=Hop)

bvp=BVP(Th, pde=pde)

@p:Hmass (Th.dim,Th. dim,a0=rho) /

Oun each boundary with a Dirichlet boundary condition (3.22)), we just have to do:

[bvp.setDirichlet(lab,[0.,0.]) ]

where lab is the label number of the boundary.

Let Q = R? be a 2d tuning fork obtained from file tuning-fork2D02.geo by using gmsh(unit is millime-
ter). One can easily modify the 2d tuning fork parameters a, b, [, R and L (see Figure when we
generate the mesh:

aport 0s \

from fc_vfempl eigs.sys import get geo

geofile="tuning—fork2D02"’

(geodir , geofile )=get geo(2,2,geofile)

options=’"—smooth_4_—setnumber _L_75_—setnumber_1_50"

options+=’_—setnumber_a_10_—setnumber_b_15_—setnumber_R_15"

meshfile=gmsh.buildmesh2d ( geodir+os.sep+geofile+’.geo’ 20,
force=True, options=options)

Q:siMesh(meshfile) /
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(a1 > la (>
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(0,0) -
R
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Figure 3.9: 2d tuning fork geometrical parameters (left) and its boundaries (right)

The eigenvalue problem to solve is the following

-‘@'— Usual EBVP 5 : 2D tuning fork with Dirichlet boundary condition on
I'y

Find (r,u) = K x H}(Q)” such that

—div(o(u)) = kpu, in
oum = 0 onlyuls,
u = 0 onlI}y.

N\

We represent in Figure [3.10] the first eigenvectors obtained with the following python code:

from fc_vfempl_eigs.examples.LinearElasticity _tuning_fork2D02 import run
res=run (k=24 ,N=60,Dirichlet =|1] ,max_displacement=5,
R-=10,1=75,L=80.85,cmap—"jet ’, title=False)

The displayed frequencies are given by f; = \/r;/(27) where &; is the i-th eigenvalue.
In Figure [3.10] we represent the first eigenvectors of the eigenvalue problem

N

Q" Usual EBVP 6 : 2D tuning fork with Neumann boundary condition on
Pl U PQ U Fg
Find (x,u) = K x Hl(Q)2 such that

—div(e(u)) = kpu, in Q
ouyn = 0 onT; uTyUTs,

~

We use the following code:

from fc_vfempl eigs.examples.LinearElasticity tuning fork2D02 import run
res=run (k=24 N=60,max displacement=5, R=10,1=75,L=80.85,cmap="jet ’,title=False)
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Figure 3.10: 2D Tuning fork with Neumann boundary conditions on I's U I's and Dirichlet on I'y: eigen-

vectors of the smallest magnitude eigenvalues streched to a maximum of 5 mm.
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Let Q < R3 be a 3d tuning fork composed of rods of diameter r. The geometry is described in Figure
and the meshes can be obtained by using gmsh (version >= 3.0.0) with the file tuning_fork_02.geo.

n nd=2,lab=1
~d=2,lab=2

>

R

|
|
|
|
|
|
|
LR
t

!
/

Figure 3.12: 3d tuning fork geometrical parameters (left) and its boundaries (right)

The eigenvalue problem to solve is the following

-\@’- Usual EBVP 7 : 3D tuning fork with Dirichlet boundary condition on
I
Find (x,u) = K x HI(Q)3 such that

N

3.2.3 3D example

—div(e(u)) = kpu, inQ
ou)n = 0 onTyuTs,
u = 0 onI}y.

L J

The geometrical parameters, in millimeters, are L = 120, R = 40, [ = 100 and r = 10. The isotropic
material is made of aluminium and so its Poisson’s ratio v is 0.334, its Young’s modulus E is 7.10 x
107 kg.s~2.mm~! and its density p is 2.77 x 1076 kg.mm—3.

In Listing [3.4] we give parts of Python code to solve this eigenvalue BVP.
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3.2.Linear elasticity

import numpy as np

import os

from fc_oogmsh import gmsh

from fc_simesh.siMesh import siMesh
from fc_vfempl.operators import Hmass, StiffElasHoperator
from fc_vfempl .BVP import BVP ,PDE
import fc_vfempl eigs.lib as elib
from fc_ vfempl eigs.sys import get geo
# Geometrical /Mesh properties:

N=75

L=120 # in mm

r=10 # in mm

R=40 # in mm

1=100 # in mm

# Material properties:

nu=0.334 # Poisson’s ratio

Compiled on 2017/06/19 at 16:17:28
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E= 71e6 # Modulus of elasticity in kg/s 2/mm ( GPa=10"9 Pa = 1076 kg/s " 2/mm )
rtho=2.770e—6 # Material density in kg/mm~3
# Select Dirichlet boundary:
dirlab =[1] # Dirichlet on Boundary |Gamma 1
# Parameters for eBVPsolve function
NumEigs=9
sigma=0
# Find .geo file
geofile="tuning fork 02’
(geodir , geofile )=get geo (3,3, geofile)
geoFile=geodir+os.sep+geofile+’.geo’
options=’—smooth_4_—setnumber _L_%g_—setnumber_1_%g_—setnumber_r _%g_—setnumber _R_
%g ' %(L,1,r ,R)
meshfile=gmsh. buildmesh3d (geoFile ,N, force=True, verbose=3,options=options)
Th=siMesh (meshfile)
# Setting the eBVP
mui= E/(2%(1+nu))
lam = Esnu/((14+nu)=*(1—2%nu))
Hop=StiffElasHoperator (3,lam ,mu)
pde=PDE(Op=Hop)
bvp=BVP(Th, pde=pde)
for lab in dirlab:
bvp.setDirichlet (lab ,[0.,0.,0.])
Bop=Hmass(Th.dim,Th.dim, a0=rho)
# Solving the eBVP
eigVal ,eigVec= elib .eBVPsolve (bvp,RHSop=Bop, k=NumEigs, which="LM’ ,sigma=sigma ,
tol=le—9,maxiter=Th.nq)

Listing 3.4: part of the file LinearElasticity_tuning_fork3D02_light.py

One can also use the run function of the fc vfempl eigs.examples.LinearElasticity tuning fork3D02
module to solve this eigenvalue BVP. The twenty-four first eigenfunctions given by the following command
are represented in Figure [3.13

from fc_vfempl_eigs.examples. LinearElasticity _tuning_fork3D02 import run
res=run (N=200,L=120,R=40,1=100,r=10,nu=0.334 ,E=71e6 ,tho=2.77e¢—6,
Dirichlet =[1],k=24,colormap="jet )
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\}

frequency 148.015 Hz frequency 151.456 Hz frequency 337.917 Hz frequency 454.303 Hz

frequency 1044.56 Hz frequency 1045.70 Hz

frequency 2256.27 Hz frequency 3178.71 Hz frequency 4072.56 Hz

frequency 4499.60 Hz frequency 4548.62 Hz frequency 5573.69 Hz frequency 6285.37 Hz

Figure 3.13: 3D Tuning fork with Neumann boundary conditions on I's U I's and Dirichlet on I';: eigen-
vectors of the smallest magnitude eigenvalues streched to a maximum of 10 mm.
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Chapter A

Biharmonic BVP

All this section is taken from the ...
Let Q ¢ RY™ and T' = 0. The biharmonic equation is the fourth-order partial PDE given by

A%y = f, inQ (A1)
dim dim dlm dim dim
2, _
where A%u = Zzax%x 254”2 2 828$2
1=17=1 1=1j5=1i+1

The boundary conditions on I' can be

o Clamped Plate (CP) or pure Dirichlet type:

u= Z—Z =g (A.2)
o Simply Supported Plate (SSP) or Navier type :
u=Au=g (A.3)
e Pure Hinged Plate (PHP) or Steklov type :
u:Au—(l—a)Ka—ufg (A4)
on
e Cahn-Hilliard (CH) type
% _ %“ _y (A.5)

Link with H-operator

Classically the fourth-order PDE (A.1) is converted to the two second-order PDE

—Au = v
—Av = f

—~ o~
F
~N
~—



Link with #-operator n

These two equations can be equivalently written as

g (D B (5) or K (5) - (2) (A8)

where G and K are the H-operators defined by

0 L1,0,0,0 L1000 L0001
- 00, d K= (5000 Looo, A9
g (/Jn,o,o,o ﬁo,o,o,—1> an (Eo,o,o,o L10,0,0 ) (A.9)

The Python code using the FC-VFEMP; package to create the operators G and K are respectively given

in Listings and

from fc_vfempl.operators import from fc_vfempl.operators import
Loperator ,Hoperator Loperator ,Hoperator
Lop=Loperator (dim=2, Lop=Loperator (dim=2,
A=[[1,None]| ,[None,1]]) A=|[[1,None]| ,[None,1]])
Gop=Hoperator (dim=2,m=2) Kop=Hoperator (dim=2,m=2)
Gop.H[0][1]=Gop.H[1][0]=Lop Kop.H[0][0]=Kop.H[1][1]=Lop

Gop.H[1][1]=Loperator (dim=2,a0=-1) Kop.H[0][1]=Loperator (dim=2,a0=-1)

Listing A.1: G operator with the FCc-VFEMP; Listing A.2: K operator with the FC-VFEMP,
packagein 2D package in 2D

Let w = (u,v). With the operator K given in (A.8), the components of the conormal derivative of w
defined in ((1.17) are given by

2

2
U N N (0T wsm) — (5 s m)
B=1 B=1

a’mcl — 6n,€m
= {Vwy,ny=<{Vumn)
ou
= — A.10
n (A.10)
and
v 22: ows_ _ 22: PPV wg,ny— b*Pug,n)
6n,c2 4=1 577,;C2YB 5=1
= (IVwz,n)y=Vu,n)
v
= — A1l
n (A.11)
So with K operator one can impose the following boundary conditions
w,, =g on T2 vaell,2],
0
Yoy afw, =gZ on TH vVae[l1,2]
6nKQ
ie.
U :ng on F1D7 v :g2D on F?v
ou v
n + afzu =g{z on F{?‘, n + a?v =g§‘ on F?

Remark A.1 One can neither impose clamped plate (A.2) nor Pure Hinged Plate (A.4) boundary condi-
tions with I operator. This is why thereafter we will only use the G operator.

In the same way, with the operator G given in (A.8)), the components of the conormal derivative of w
defined in ((1.17)) are given by

2 2

oW ag wg 1,8 _(p!B
ong, Z ong, , <A V'wg,'n,> <b u5,n>
1 B=1 1,8 =1
= <|]Vw2,n>:<Vv,n>
v
- 2 (A.12)
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Link with #-operator

and

2 2

oW 4 Jwp 2,8 2,8
= = APV wg,ny— (b>"ug,n
6ng2 62231 6ngw 1< A > < p >

= {Vwi,ny=Numn)
ou

= — A.13
n (A.13)

Let us denotes the two partitions avec the boundary I':
P ATE =% and T2 UTE =T, Vae[l1,2] (A.14)

From Vector BVP (1.14)-(1.16)), using G operator one can impose the following boundary conditions

wo =gP on T2 vae[1,2],
ai‘; + aflw, =g on T2 Vae[1,2]
ie.
u =gP on TP, v =g2 on TP,
g—z + afu =¢F on I'E, Z—Z + aftv =g& on IT'¥

To resume, we give a generic biharmonic BVP using the operator G in Vector BVP which is
(4)

equivalent to the generic mixed formulation for the biharmonic BVP given in Vector BVP %_
( . s . . £
ﬁ Vector BVP 3 : generic biharmonic BVP with G operator ©
Find w = (w1, w2) € (H?(Q))? such that S
o
f =
G(w) = <0> in Q, (A.15) —
<

o

w; =g on TP, wy =g& on T2, (A.16) 5

o o

Yoy afw, =gF on I'F, Yoy aFwy =g& on T'H. (A.17) -2

ang1 angQ o

-
. . . . . 0 o
Vector BVP 4 : generic mixed formulation for the biharmonic BVP .g S
©
Find w = (u,v) € (H?(Q2))? such that < b}
Q.
o
L EDO-0 *

0,0, — Q, A.18

(ﬁu,mo,o Loo0,-1/) \v 0 o (A.18) =
u =gP on I'P, v =g¥ on T2, (A.19) i
0 0 =
% + aftu =gft on TE % + aftv =g¥ on I'%. (A.20) :
<

It’s very easy to write (A.15) (or (A.18)) from the generic formulation of the biharmonic BVP with
G operator with the FC-VFEMP; package: the source code is given in Listing where Th is a given
siMesh object and f a given python function or scalar.

from fc_vfempl.operators import Loperator ,Hoperator
from fc_vfempl .BVP import BVP,PDE

Lop=Loperator (dim=2,A=[[1,None] ,[None,1]])
Gop=Hoperator (dim=2,m—2)

Gop .H[0][1]=Gop.H[1][0]=Lop

Gop.H[1][1]=Loperator (dim=2,a0=—1)

pde=PDE(Op=Gop, f=[f ,0])

bvp=BVP(Th, pde=pde)

Listing A.3: Writing the G(w) = (g) with the FC-VFEMP; package
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Some boundary conditions n

or more concisely FC-VFEMP;-BIHARMONIC package:

import fc_vfempl biharmonic.lib as blib
bvp=blib . BiharmonicBVP (Th, f=f)

Listing A.4: Writing shortly the G(w) = (f,0)" with the FC-VFEMP;-
BIHARMONIC package

Remark A.2 By default the boundary conditions of a BVP object are set to homogeneous Neumann

so we have
ow ow v Ou
_ =0 & — =
n on

angl B a'l”l‘g2
which is the homogeneous Cahn-Hilliard boundary condition.

Now we will see in the next sections how to set the Clamped Plate (CP), Simply Supported
Plate (CP) and Cahn-Hilliard (CH) boundary conditions.

Some boundary conditions

Let I'iyp < T'. We want to set one of the following boundary conditions on I'jyp:

o Clamped Plate (CP) or pure Dirichlet type:
u
u=g, and e g on Iy (A.21)

o Simply Supported Plate (SSP) or Navier type :

u=g, and Au= —g, on 'y (A.22)
e Cahn-Hilliard (CH) type
ou 0Au
5, =Y and &, = 9% on [ab (A.23)

Now we will see how to rewrite theses boundary conditions as those in Vector BVP [ equations

(A-19)-(A-20), and Vector BVP [3] equations (A.16)-(A.17).

Clamped Plate boundary condition

From (A.19) and (A.20), we deduce that (A.21)) imposes

ou
u=gg onl,C FlD and — =g, on I, C r§‘

on

So with G operator and with w = (u,v) we obtain

wy =g, on Iy C F{D and =gy, onl', C Ff

ng,

Let bvp be the BVP object build in Listing |A.4 We want to set this object with the (CP)
boundary condition. To set the dirichlet condition on tirst component w; = g, on I';yp, we can use the
setDirichlet method of the BVP object:

bvp. setDirichlet (lab, ga,comps=[0])

As python uses 0-based indexing, the first component is selected with comps=[0] .

To set the Neumann condition on second component afl—‘;’ = g, we can use the setRobin method of the
2

BVP object:
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Some boundary conditions n

bvp.setRobin(lab,gb,comps=[1])

As python uses 0-based indexing, the second component is selected with comps=[1] .

A more convenient way is to use the dedicated function setClampedPlate function:

import fc_vfempl biharmonic.lib as blib
blib.setClampedPlate (bvp,lab ,[ga,gb])

Listing A.5: Setting a (CP) boundary condition

Simply Supported Plate boundary condition

From (A.19) and (A.20), we deduce that (A.22) imposes
u=g, onTp, c TP and v=g, onTy, c TP
So with G operator and with w = (u,v) we obtain
— D _ D
w1 =gq On Ty ' and wy =gy on Iy < I

Let bvp bethe BVP object build in Listing We want to set this object with the (SSP)

boundary condition. To set the dirichlet conditions, we can use the setDirichlet method of the BVP
object:

bvp. setDirichlet (lab, ga,comps=[0])
bvp. setDirichlet (lab,gb,comps=[1])

or

bvp. setDirichlet (lab,[ ga,gb])

A more convenient way is to use the dedicated function setSimplySupportedPlate function:

import fc_vfempl biharmonic.lib as blib
blib.setSimplySupportedPlate (bvp,lab ,[ga,gb])

Listing A.6: Setting a (SSP) boundary condition

Cahn-Hilliard boundary condition

From (A.19) and (A.20), we deduce that (A.23) imposes

ov ou
P gy on ', Ff‘ and = ge on 'y < r§
where v = —Au.

So with G operator and with w = (u,v) we obtain

ow

=gy, only,, C Ff‘ and =gq only,y, C I‘f

ong, ong,

Let bvp be the BVP object build in Listing We want to set this object with the (CH)

boundary condition. To set the Neumann conditions, we can use the setRobin method of the BVP
object:

bvp.setRobin(lab,gb,comps=[0])
bvp.setRobin(lab,ga,comps=[1])

or more concisely
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Some boundary conditions n

bvp.setRobin(lab,[gb,ga])

A more convenient way is to use the dedicated function setCahnHilliard function:

import fc_vfempl biharmonic.lib as blib
blib.setCahnHilliard (bvp,lab ,[ga,gb])

Listing A.7: Setting a (CH) boundary condition
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