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Abstract

FC-VFEMP1-SURFACE is an experimental object-oriented Python package dedicated to solve surface
boundary value problems (BVP) by using P!-Lagrange finite element method in any space dimension.
This package is an add-on to the FC-VFEMP; package [?]. It uses the FC-SIMESH package [I] and the
siMesh class which allows to use simplices meshes generated from gmsh (in dimension 2 or 3) or an
hypercube triangulation (in any dimension).

The two FC-SIMESH add-ons FC-SIMESH-MATPLOTLIB [2] and FC-SIMESH-MAYAVI [3] allows a great
flexibility in graphical representations of the meshes and datas on the meshes by using respectively the
MATPLOTLIB and the MAYAVI packages.

The FC-VFEMP; package also contains the techniques of vectorization presented in [5] and extended
in [4] and allows good performances when using P!-Lagrange finite element method.
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Let I' = R"*! be a regular surface. For all z € ', A(z) = (A;;(x))ij=1,. n+1 be a matrix which
maps the tangent space T,I into itself (i.e. A(x) : T,I' — T,I') and let b(z) € T,I', ¢ : I — R"*! and
ag : I' — RR. We denote by L the second order linear differential operator acting on scalar fields defined,
vu e H?(T), by

L(u) ¥ —divp(AVr u) + divp(bu) + (Vi u,€) + agu. (1)
The main of the Surface BVP Addon is to solve generic scalar surface BVP given by

-

Scalar surface BVP 1 : generic problem
Find v € H?(T') such that

L(u) =f in T, (2)
gP on oI'P, (3)
ou

g + a®u =gt on T2, (4)

The conormal derivative of u is defined by

OU  gu

S (AT u ) — Cbu, ) )
N

Before getting to the heart of the matter, the first chapter rapidly presents the FC-VFEMP; package.
For a more complete description one can refers to [|. Thereafter, notations and results on regular surfaces
given in [7] are recalled. Finally some surface BVPs are presented and numericaly solved by using the
Surface BVP Addon for the Fc-vFEMP; Python package.
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Chapter

Generic Boundary Value Problems

The notations of [§] are employed in this section and extended to the vector case.

Scalar boundary value problem

Let  be a bounded open subset of R¢, d > 1. The boundary of € is denoted by I
We denote by Lapea, = £ : H*(2) — L?(2) the second order linear differential operator acting on
scalar fields defined, Yu € H2(2), by

Lape.a ()2 —div(AV u) + div (bu) + (V u,¢) + agu (1.1)

where A e (L®(2))™4, be (L*(Q))4, ce (L*(2))? and ag € L*(2) are given functions and (-, -) is the
usual scalar product in R?. We use the same notations as in the chapter 6 of [§] and we note that we can
omit either div (bu) or (Vu,¢) if b and ¢ are sufficiently regular functions. We keep both terms with b
and ¢ to deal with more boundary conditions. It should be also noted that it is important to preserve the
two terms b and ¢ in the generic formulation to enable a greater flexibility in the choice of the boundary
conditions.

Let TP, T'® be open subsets of T', possibly empty and f € L?(Q), g© e HY2(I'P), g% € L*(I'F),
a® e L*(T!) be given data.

A scalar boundary value problem is given by

gScalar BVP 1 : generic problem
Find v € H2() such that

E(u :f in Q,
u =g on I'P, (1.3)
(jn_ug + afu =g" on T'%. (1.4)

The conormal derivative of u is defined by

B 22 o — i) (1.5)
0n[;

The boundary conditions (|1.3) and (1.4)) are respectively Dirichlet and Robin boundary conditions.
Neumann boundary conditions are particular Robin boundary conditions with a® = 0.



Scalar BVP

To have an outline of the FC-VFEMP; package, a first and simple problem is quickly present. Expla-
nations will be given in next sections.
The problem to solve is the Laplace problem for a condenser.

—\@’- Usual BVP 1 : 2D condenser problem

-

Find v € H2(Q) such that
~Au = 0 in Qc R?, (1.6)
= 0 on F1, (17)
—12 on Fgg, (18)
u = 12 on Fgg, (19)

oi} e — n

J - -
y. >
SR \\

—4 1 ~

-6

Figure 1.1: 2D condenser mesh and boundaries (left) and numerical solution (right)

The problem (|1.6)-(1.9) can be equivalently expressed as the scalar BVP ((1.2)-(1.4) :

gScalar BVP 2 : 2D condenser problem
Find u € H*(Q) such that

L(u

u

in Q,

f
gD on FD = Fl () Fgg () Fgg.

I

where £ := L 0,0,0, f =0, and

gD :=0on I'q, gD := —12 on Igg, gD := +12 on I'gg

In Listing [27] a complete code is given to solve this problem.

meshfile=gmsh . buildmesh2d (’condenser’
Th=siMesh (meshfile) # read mesh
Lop=Loperator (dim=2,d=2,A=[[1,0],[0,1]])
pde=PDE(Op=Lop)

bvp=BVP(Th, pde=pde)

bvp.setDirichlet( 1, 0.)

bvp.setDirichlet ( 98, —12.)

bvp.setDirichlet ( 99, +12.)

u=bvp.solve ();

# Graphic parts

plt.figure (1)

siplt .plotmesh (Th,legend=True)

set _axes equal ()

plt.figure (2)

siplt . plotmesh (Th, color="LightGray’,alpha=0.3)
siplt .plotmesh (Th,d=1,legend=True)

,10) # generate mesh
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Vector boundary value problem “

set _axes equal ()

plt . figure (3)

siplt .plot (Th,u)

plt.colorbar(label="u")

set _axes_equal ()

plt.figure (4)

siplt . plotiso(Th,u,contours=15)
plt.colorbar(label="u")

siplt . plotmesh (Th, color="LightGray’,alpha=0.3)
plt.axis(’off’);set axes equal()

Listing 1.1: Complete Python code to solve the 2D condenser problem with graphical representations

r10.29

[T 343

T -3.43

— —6.86

-1 —t -10.29

—4 -2 0 2 4

Figure 1.2: 2D condenser numerical solution

Vector boundary value problem

(2]
£
o
=
g
o
g E
Let m > 1 and H be the m-by-m matrix of second order linear differential operators defined by § %
o
> £
Moo (@) (@) (110 ig
= (.. ) — f=f1, fm) EHw) ' 573
0]
where ) g
m -
fa= D) Haplug), Yae[l,m], (1.11) -
p=1 LS
with, for all (o, 8) € [1,m]?, - g
def
Ha,p = ‘CAavﬁ’ba,B,ca,ﬁ’ag‘ﬁ (1.12) g
a
—

and AP € (L2 (Q))44, pF e (L2(Q))4, ¢*f e (L*(Q))? and al’ € L*(Q) are given functions. We
can also write in matrix form

£A1v1,b1v1,c1’1,aé’1 EAl,mybl,m’cl,mﬂlé«m (751
H(u) = : : ] (1.13)

LAmvl,bm*l,cm*l,agl’l ce ﬁAm,m7bm,m’cm,m)a70nvm Uy,

We remark that the H operator for m = 1 is equivalent to the £ operator.

For a € [1,m], we define T2 and I'2 as open subsets of T, possibly empty, such that T2 n T2 = .
Let f e (L2(Q)™, g2 e HY2(TD), g% € L2(TE), af € L*(TE) be given data.

A wvector boundary value problem is given by

Compiled on 2017/08/14 at 17:40:47



Vector BVP “_

ﬁ Vector BVP 1 : generic problem
Find u = (u1,...,u,) € (H*(Q))™ such that

H(u) =f in Q, (1.14)

u, =g on 'Y Vae [1,m], (1.15)

Ou + afu, =g= on T2 Va e [1,m], (1.16)
anya

where the a-th component of the conormal derivative of u is defined by

det a’ll:ﬂ _ S a,B o
- lanﬂa,ﬁ—ﬁ;(@ Vug,n) — (" ug,n)). (1.17)

The boundary conditions are the Robin boundary conditions and is the Dirichlet
boundary condition. The Neumann boundary conditions are particular Robin boundary conditions
with aff = 0.

In this problem, we may consider on a given boundary some conditions which can vary depending on

u
5717.Ll

the component. For example we may have a Robin boundary condition satisfying + aflu; = gF and

a Dirichlet one with uy = g2’.
To have an outline of the FC-VFEMP; package, a second and simple problem is quickly present.

-

-\@’- Usual vector BVP 1 : 2D simple vector problem

Find u = (u1,us2) € (H?(Q))? such that
—Au; +uy = 0 in QcR?, (1.18)
~Aug +u; = 0 in Qc R? (1.19)
(ui,ug) = (0,0) on Iy, (1.20)
(up,u2) = (=12.,412.) on Igs, (1.21)
(u1,us) (+12.,—12.) on Tgg, (1.22)

where  and its boundaries are given in Figure [[.]
The problem (1.18))-(1.22) can be equivalently expressed as the vector BVP ([1.2)-(1.4)) :

g Vector BVP 2 : 2D simple vector problem
Find u = (u1,uz) € (H2(Q))? such that

H(u) =f in Q,
U1 =ng on FD = Fl U Fgg U Fgg,
(%) 292[) on FD = Fl U ng U Fgg,

where ﬁ p A
= 1 U
1 = 1,0,0,0 O,O,O,1>7 ] <U1> _ ( ) < 1>
<£o,o,o,1 L1,0,0,0 o U 1 —A) \uz

and

g2 :=0onTy, gP:=—-12, gf := +12 on T'gg, g := +12, g¥ := —12 on Tyg

In Listing [21] a complete code is given to solve this problem. Numerical solutions are given in Fig-
ure

meshfile=gmsh. buildmesh2d (’condenser’,10); # generate mesh
Th=siMesh (meshfile) # read mesh
Hopl=Loperator (dim=2,A=[[1 ,None] ,[None,1]])
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Vector BVP

Hop2=Loperator (dim=2,a0=1)

Hop=Hoperator (dim=2m=2 H=[[Hopl,Hop2] ,[Hop2,Hopl|])
pde=PDE(Op=Hop)

bvp=BVP(Th, pde=pde)

bvp.setDirichlet( 1, 0,comps=[0,1])

bvp.setDirichlet ( 98, [—12,+12],comps=[0,1]);
bvp.setDirichlet ( 99, [+12,—12],comps=[0,1]);
U=bvp.solve(split=True)

# Graphic parts

plt.figure (1)

siplt . plot (Th,U[0])

plt.axis(’off’);set axes equal()

plt . colorbar(label="$u_1$’ ,orientation="horizontal )
plt.figure (2)

siplt . plot (Th,U[1])

plt.axis(’off’);set axes equal()

plt . colorbar(label="$%u_2$’ ,orientation="horizontal )

Listing 1.2: Complete Python code to solve the funny 2D vector problem with graphical representations

Figure 1.3: Funny vector BVP, u; numerical solution (left) and us numerical solution (right)
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Chapter 2

Notations and results on regular surfaces

All the notations and results of this chapter are directly obtain from [7].

Elementary geometric analysis

' Definition 2.1: CF-hypersurface

Let ke N Uoo. I' ¢ R**! is called a C*-hypersurface if, for each point 2 € I, there exists an open
set U € R"*! containing x and a function ® € C¥(U;R) with the property that V® # 0 on ' n U
and such that

P'nU={xeU| ®(z)=0}. (2.1)

The linear space
T, = [V &(z)]* (2.2)

is called the tangent space to I" at x € T'.
A vector v(x) € R"*! is called a unit normal vector at x € I if v(x) L T,T and |v(x)| = 1. We have
Vo(x V &(x)

_ Vo) or v(z)=————
o) = e Y T T Ve@) 23)

A Cl-hypersurface is called orientable if there exists a continuous vector field v : ' — R™*! such
that v(x) is a unit normal vector to I" for all z € T.

' Definition 2.2: Tangential gradient or surface gradient

Let I' € R™*! be a C!-hypersurface and let f : ' — R be differentiable at = € I'. we define the
tangential gradient or surface gradient of f at x € I" by

Vr f(2) =V f(2) =V f(2),v(z))v(z) = P(2) V f(z), (2.4)

where (P(z))i; = 0;; — vi(z)v;z, V(i,j) € [1,n+ 1]% Here f is a smooth extension of f to a
neighbourhood U < R™*! of the surface I, so that fr=1r




Elementary geometric analysis n

We shall use the notation

Vr f(z) = (D1 f(z),..., D,y f(2)) (2.5)

for the n+ 1 components of the surface gradient. Note that (Vr f(z),v(x)) = 0 and hence V. f(z) € T,.T.
We denote by :

e CO(T';R) the set of functions f : I' — R which are continous.

e C}(T;R) the set of functions in C°(T'; R) which are differentiable at every point z € I' and for which
D, e CO(T;R), for all i € [1,n + 1].

e C/(T;R), I € N provide that I is a C*-hypersurface with k > I.

Let g : I' —> R"*! be differentiable at 2 € " (g is a vector field) and f : I' — R be twice differentiable
at « € I'. The surface divergence is given by

n+1
divr g(z 2 D.gi(x (2.6)
and, the Laplace-Beltrami operator is given by
+
Arf(z) = divr Vr f(z Z D,D;f (2.7)

' Definition 2.3: Extend Weingarten map

Let T' be a C?-hypersurface. The extend Weingarten map is the matrix H € M,,;1(C°(T; R)) define
by
Hi; = Dv;, Y(i,j)€[1,n+1]% (2.8)

The matrix H is symmetric and Hv = 0. The restriction of H to the tangent space is called the Weingarten
map.
The mean curvature of I' at point x € I' is the quantity

H(z) = trace H(z) = Y Hii(x). (2.9)
It differs from the common definition by a factor of n.

Lemme 2.4

Let T’ be a C2-hypersurface and u € C?(I'; R). Then, we have

D;D;u—D;D;u= (HVru)v; — (HVru)w;, Y(i,j)e[l,n+ 1] (2.10)

Theorem 2.5: integration by parts on surfaces

Assume that I is a hypersurface in R"*! with smooth boundary oI' and that f € C'(T;R). Then

JQifdA=J fHuidAJrJ fuidA, Vie[ln+1] (2.11)
T r or

and so
J Vr fdA = f fHvdA + fudA. (2.12)
iy iy or

Here, p denotes the co-normal vector which is normal to ¢I" and tangent to T
A compact hypersurface I' does not have boundary, dI' = ¢, and the last term on the right-hand
side vanishes.
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Sobolev space on surface

Note that dA in connection with an integral over I" denotes the n-dimensional surface measure, while dA
in connection with an integral over oI is the n — 1-dimensional surface measure.

Sobolev space on surface

Let I' be a C2-hypersurface for the following.
For p € [1,] we let LP(T") denote the space of functions f : I' — R which are measurable with
respect to the surface measure dA and have a finite norm, where the norm is defined by

ey = ( | flpdA> ”

for p < o0, and for p = 00 we mean the esential supremum norm.
LP(T) is a Banach space and for p = 2 a Hilbert space. For 1 < p < oo the spaces C°(T'; R) and
CH(T;R) are dense in LP(T).

' Definition 2.6

A function f € LP(T) has the weak derivative v; = D, f € LP(I) if, for every function ¢ € C}(I'; R)
with compact support {x € T' | p(z) # 0} = I', we have the relation

f fD;pdA = —J fuidA + J fpHy;dA.
r g Iy
The Sobolev space H>?(T) is defined by
HYY() = {feL”(T) | D;f € L*(T),i € [1,n + 1]} (2.13)

with norm

£l zmry = (1o ey + 190 Fpry ) (2.14)

Theorem 2.7: Poincaré’s inequality

Assume that T is a C3-hypersurface and 1 < p < oo. Then there is a constant C' > 0 such that, for
every function f € H'P(I') with SF ddA = 0, we have the inequality

”f”LP(I‘) < C|Vr f”Lp(F) . (2.15)

Theorem 2.8: Green’s formula
Let T be a C2-hypersurface. Then for all f € HYP(T') and g € H*P(T') we have
[[@crvegan—— sargaas [ r@rgmwan (2.16)
r r or

A compact hypersurface I' does not have boundary, 0I' = &, and the last term on the right-hand
side vanishes.

Proof. Let i € [1,n], we have
D, (fD;(9)) = D;,(f)D;(g) + fD,D;(g)

and then

LQz(f) g)dA = JD (fD;(g)) dA — JfDD (9)dA
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Variational formulation of a surface BVP

Using integration by parts formula (2.11) with f identify to fD,(g) we obtain

f D,(£)D,(g)dA = f FDi(g)HvdA + f £ D (g)pidA f /D,D;(g)dA
I I or N
By summing in ¢, we obtain
f (Vi £,V gydA :f f<vrg,u>HdA+f f<vrg,u>dA—f fArgdA
I I or I

Since (Vr g,v) = 0, the formula is prooved. O

Variational formulation of a surface BVP

In this section, the variational formulation of the generic scalar surface BVP (1.2)-(|1.4) is established by
using previous results.

Lemme 2.9

Let T’ be a C2-hypersurface. Then, for all f,g € H'(T') and for all i € [1,n + 1], we have

fgi(f>gdA= f fgHvidA — f fDi(g)dA + f FamidA. (2.17)
T I I or

Proof. We have D,(f)g = D;(fg) — fD;(g) and by integration we obtain using ...

w
Q
| ithoaa = [ Ditgaa- | spig)aa s
r r r c
— | sottviaa+ | fomda- | fD,(g)aa o
r or r s>
8o OO
O €9
el
23
Lemme 2.10 T
¢
Let T' be a C2-hypersurface. Then, for all u € H?(T') and v € H*(I'), we have e85
(=
n 8
f divp(AVr u)vdA = _f (AVpu,VpvydA + f (AVpu,pydA. (2.18) S E
T r or "5
8-
23
Proof. Using (2.17) with f = Ai,ij(u) and g = v we obtain )
®
J QI(ALJQJ(U))UCIA = J Ai,ij(u)’UHVidA*J AZ,]Q](U)Ql(U)dA ;
r r r )
N
+J A17]Q](u)’l}[_tsz
or
Summation in ¢ and j give
‘[ divp(AVpu)vdA = f (AVru,vy HvdA —J (AVru,VrvydA
r r r
+ J (AVru, pydA.
or
By hypothesis on A, A(z) Vru(z) € T,I" and so {A(z) Vru(z),v(z)) = 0. O
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Variational formulation of a surface BVP

Lemme 2.11

Let T’ be a C2-hypersurface. Then, for all u,v € H'(T), we have

J divr(bu)vdA = —J (bu,VpvydA + f (bu, pyvd A. (2.19)
r r ar

Proof. Using with f = bju and g = v we obtain
f D, (bju)vdA = J buvHy;dA — J biuD,(v)dA + J byuvp;dA.
r r r ar

Summation in i give
J divp(bu)vdA = J (bu,vy HvdA — f (bu,VroydA
r r r
+ J (bu, pyvd A.
or

By hypothesis, for all € T, b(z) € T, and so (b(x)u(x),v(z)) = u(x){b(z),v(x)) = 0. O

So we have prooved the following theorem

Theorem 2.12
Let I' < R™*! be a C%-hypersurface. Let ag, b;, ¢;, A;; € L®(T), ¥(i,5) = [1,n + 1]*>. We also
assume that for all z € ', b(z) € T,I" and the matrix A(z) = (A4; ;(x)); j=1,.. n+1 maps the tangent

space T, T into itself (i.e. A(z): T,I' — T,T"). We denote by L the second order linear differential
operator acting on scalar fields defined by

L(u) ¥ — divp(AVr ) + divp (bu) + (Vi u,¢) + agu, Yu e H(T).

Then, for all u e H*(T') and v € H'(T'), we have
j L(u)vdA = j (AVru,VrpvydA +J apuvdA
r r r
= (J u{Vrv,bydA — J (Vru,c) vdA)
r r

—J (AVr u, pyvdA + J Cbu, pyvd A.
or or

Let Dz = Dap.c,qa, be the first order bilinear differential operator acting on scalar fields associated to
the £ operator defined V(u,v) € (H*(T))? by

De(u,v) =<AVru,Vrv)y — (Vru,byu —(Vru,e)v) + aguv. (2.20)
tfhe variational formulation associated to the scalar surface BVP — is given by
-\@'-Variational formulation of the scalar surface BVP ([1.2)-(1.4)
Find v € Hng,aFD (T") such that
Az (u,v) = F(v) Yve Hé,aFD () (2.21)
where
Ar(u,v) = f Dr(u,v)dA + J afuvdA (2.22)
r orR
Flv) = f fudA + J gftvdA (2.23)
r orR
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Chapter 3

scalar surface BVP

This next section looks first at the construction of surface BVPs where analytic solutions are known by
using Sage (a formal calculation software). Thereafter, some surface BVPs are numerically solved by
using the FC-vFEMP; Python package and solutions compared to exact solutions when we know them.

Analytical solutions of surface BVPs

SHBE  Sage computation of Laplace-Beltrami operator on hypersurfaces

Let the hypersurface I' given by a level set function ® : R? — R :
I={zecR’| o) =0}
For the unit sphere, one can use
Qx> af a2+ -1

With the FC-00GMSH and FC-SIMESH packages, one can easily generated this surface from a sphere mesh
made by gmsh and sphere4surf.geo :



Analytical solutions of surface BVPs

geofile=’spheredsurf’

(geodir , geofile )=get geo (3,2, geofile)

meshfile=gmsh. buildmesh3ds(geodir+os.sep+geofile+’.geo’ 20,
force=False , verbose=0)

Th=siMesh (meshfile)

Listing 3.1: Mesh of a sphere with 8 subdomains, I' = Q7 U --- U Qg.

More complicated surfaces can be obtained by mapping the unit sphere S? onto I'. we note F : S? —
T" the map function. From example 4.8 in [7], we take

1 1 .
F(yi,y2,93) = <2y1,y2, 58 <1 + §SIH(27T?J1)>> el, Vy=(y1,92,y3) € S* (3.1)

The representation of I' = F(S?) as a hypersurface {z € R? | ¢(z) = 0} follows from y? + y3 + y3 = 1
with the level set function
4%

(1 + 1 sin(mz))?

o(x) = lx% + 23+ —1. (3.2)

4

With the FC-00GMSH and FC-SIMESH packages, one can easily generated this surface from a mesh of
the sphere made by gmsh and sphere4surf.geo :
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3.1.Analytical solutions of surface BVPs




Analytical solutions of surface BVPs

geofile=’spheredsurf’

(geodir , geofile )=get geo (3,2, geofile)

meshfile=gmsh. buildmesh3ds(geodir+os.sep+geofile+’.geo’ 20,
force=False , verbose=0)

from numpy import sin , pi

map=lambda x,y,z : [2%x,y,0.5%z%(1+0.5%sin(2*pixx))]

Th=siMesh (meshfile ,mapping=map)

Listing 3.2: Mesh of a sphere with 8 subdomains transform with mapping function F, T' =
Qru---uQs.
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To compute the Laplace-Beltrami operator apply on a given function over a given surface we use the
Sage software (see [6]) by implementing :

Q.
>
a]
)
o
dy
)
=
(7]
1=
8
©
Q
(7]
)

o the surface gradient operator Vr, formula (2.4),
o the surface divergence operator divr, formula (2.6]),
o the Laplace-Beltrami operator Ar, formula ([2.7).

The source code is given in Listing [3.3]

3.1.Analytical solutions of surface BVPs
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Analytical solutions of surface BVPs

Listing 3.3: Implementation of Laplace-Beltrami operator, Sage code

# gradient of function Phi
def Gradient (Phi):

return Phi. diff ()
# normal to the surface function Phi
def normal (Phi):

G=Gradient (Phi)

return G/G.norm ()
# Projection matriz on tangent space
def Pmat(normal):

P—=||;dim=len (normal)

for i in range(dim):

Pr=[];
for j in range(dim):
if i—j:
Pr.append(l—normal[i]+*normal[j])
else:

Pr.append(—normal[i]*normal[j])
P.append (Pr)
return matrix (P)
# Surface gradient of u over surface function Phi
def SurfGrad(u,Phi):
P=Pmat (normal (Phi))
gradu=Gradient (u)
return Pxgradu
# Surface divergence of u over surface function Phi
def SurfDiv (V,Phi):
P=Pmat(normal (Phi))
f=0
for i in range(len(V)):
g=P+Gradient (V[1i])
f=f4+g[i]
return f.simplify full ()
# Laplace—Beltrami operator on u over surface function Phi
def LaplaceBeltrami(u,Phi):
return SurfDiv (SurfGrad (u,Phi),Phi).simplify full ()

Under Sage, one can now compute some exact solutions on hypersurfaces :

e sample 1: I' = 52
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load(’../sage/LaplaceBeltrami.sage’)
var(’x,y,z’ ,domain=RR)
Phi(x,y,z)=x**2+y**x2+z**2 -1
u(x,y,z)=x*y
f(x,y,z)=-LaplaceBeltrami(u,Phi)

So with @ : (z,y,2) = 22 +y>+ 2?2 —1 and u: (7,y,2) — 2y we have

6 xy

= Aru: >y
f ru (x,y,z) x2+y2+22

e sample 2 : [ = 62

load(’../sage/LaplaceBeltrami.sage’)
var(’x,y,z’ ,domain=RR)
Phi(x,y,2z)=x**2+y**x2+z**2 -1
u(x,y,z) =x**2%y**2
f(x,y,z)=-LaplaceBeltrami(u,Phi)

So with @ : (z,y,2) — 22 +y?> + 22 —1 and u : (v,y,2) — 2%y? we have

2 (z* — 822y* + y* + (2% + ¢?)2?)
22 4+ y? + 22

3.1.Analytical solutions of surface BVPs

f=—Aru:(z,y,2) — —

Compiled on 2017/08/14 at 17:40:47



Numerical samples on closed hypersurfaces

e sample 3 : I' = F(S?) with F given by (3.1) and the level set function ® defined in (3.2)

load(’../sage/LaplaceBeltrami.sage’)

var(’x,y,z’ ,domain=RR)

u(x,y,z)=x*y
Phi(x,y,z)=x**2/4+y**2+(4*z**2) / (1+sin(pi*x)/2)**2 -1
f(x,y,z)=-LaplaceBeltrami(u,Phi)

In this case, the function f = —Aru obtained is to long to be written.
Numerical samples on closed hypersurfaces
—Aru + agu = f with exact solution on S?

We want to solve the surface PDE on a closed hypersurface T :
—Aru+apu=f, onT (3.3)

where f € L?(T") and ag € L*(T) are given with ag > 0. With this last assumption we have existence and
unicity of a u € H?(I').

To solve and compare to exact solution, we choose u(x) = 172, ap(x) = 1 + 22 and we calculate the
right-hand side f as f = —Aru + apu using sage with I' = S2. The complete code using the FC-VFEMP;
Python package is given in Listing [3.4] In figure [3.]

One can also used the run function from the module fc vfempl surface.examples.sBVP sphere

from fc_vfempl surface.examples import sBVPsamples
from fc_vfempl surface.examples.sBVP _sphere import run
u=sBVPsamples. uxyz01

f=sBVPsamples. fxyz01

Fmap=sBVPsamples . Fmapxyz01

al0=lambda x,y,z: 14+x*x*2

run (N=75,u=u, f=f ,Fmap=Fmap, a0=a0)
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3.2.Numerical samples on closed hypersurfaces
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Numerical samples on closed hypersurfaces

0000124
In,ooom
849005
71105
533005
356005

1,780-05

6,600-10

print ( "sxx_Building /reading_mesh )

N=75;geofile="spheredsurf’;

(geodir , geofile )=get geo (3,2, geofile)

meshfile=gmsh. buildmesh3ds(geodir+os.sep+geofile+’.geo’ N,
force=False ,verbose=0)

Th=siMesh (meshfile)

print ( "xxx_Setting_surface _BVP’)

u=lambda x,y,z: xxy

LPu=lambda x,y,z: 6xxxy/(x*%2 + y*%2 + z%x%2)

a0=lambda x,y,z: 14+x**2

f=lambda x,y,z: LPu(x,y,z)+a0(x,y,z)*u(x,y,z)

Lop=Loperator (dim=3,d=2,A=[[1,None, None] ,[None,1 ,None| ,[ None,None,1]], a0=a0)

pde=PDE(Op=Lop, f=f)

bvp=BVP(Th, pde=pde)

print ( 'xxx_Solving_surface _BVP’)

U=bvp.solve ()

Listing 3.4: Solving —Aru + agu = f on unit sphere with ag(z,y,2) = 1 + 22, solution (left) and
relative error (right)
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3.2.Numerical samples on closed hypersurfaces

Figure 3.1: Order for surface BVP —Aru + apu = f on unit sphere with ag(z,y,z) = 1 + 22 and exact
solution u(x,y, 2) = xy.
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Numerical samples on closed hypersurfaces

SN —Aru + agu = f on F(S?) with exact solution

To solve and compare to exact solution, we choose u(x) = 122, ap(x) = 1 + 2 and we calculate with
Sage the right-hand side f as f = —Aru + apu where I' = F(S?) and F given by (3.1).

The complete code using the FC-VFEMP; Python package is given in Listing In figure 7?7 the
orders for the L? and H' norms are represented.

0000223
Imom
0000139
0000127
9510-05

6,360-05

3,180-05

6.40e-10

from fc_vfempl surface.examples import sBVPsamples
from fc_vfempl surface.examples.sBVP _sphere import run
u=sBVPsamples. uxyz03

f=sBVPsamples. fxyz03

Fmap—sBVPsamples. Fmapxyz03

al0=lambda x,y,z: 14+x**2

res=run (N=75,u=u, f=f ,Fmap=Fmap, a0=a0)

Listing 3.5: Solving —Aru + apu = f on F(S?) with ag(z,y,2) = 1+ 22, solution (left) and relative
error (right)
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3.2.Numerical samples on closed hypersurfaces

Figure 3.2: Order for surface BVP —Aru-+agu = f on unit sphere mapping by function (3.1)) : u(x,y,2) =
zy.
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Numerical samples on closed hypersurfaces
—Aru + agu = f on F(S?) without explicit solution

We want to solve the surface PDE

—Aru +agu = f, onT = F(S?) (3.4)

with ag(z,y,2) =1+ 0.9cos(x+y+2), f=1

from numpy import cos,sin , pi

a0=lambda x,y,z: 1+0.9%cos(xt+y+z)

f=1

Fmap=lambda x,y,z: [2%x, y,0.5%xz%(0.5%sin (2xpixx) + 1)]

print ( ’+xx_Building /reading_mesh’)

N=75;geofile="spheredsurf’;

(geodir , geofile )=get geo (3,2, geofile)

meshfile=gmsh. buildmesh3ds(geodir+os.sep+geofile+’.geo’ N,
force=False , verbose=0)

Th=siMesh (meshfile ,mapping=Fmap)

print ( *xxx_Setting_surface _BVP’)

Lop=Loperator (dim=3,d=2,A=[[1,None, None] ,[None,1 ,None| ,[ None,None,1]], a0=a0)

pde=PDE(Op=Lop, f=f)

bvp=BVP(Th, pde=pde)

print ( '#xx_Solving_surface _BVP’)

U=bvp.solve ()

Listing 3.6: Solution of —Aru + 4+agu = f PDE on unit sphere mapping by function (3.1 with
ap(z,y,2z) =14 0.9cos(z +y + z) and f = 1. Python code

c
.2
-
=
(=}
(7]
Lol
5}
ISl
X
Q
=
&=
3
—
N
w0
=
Ry
=
(=]
S~
Il
Jr
N
U,
~
>
N
+
3
~
<
|
<
«y
(32

a8
>
(aa)]
)
5]
E
)
=
(7))
£
)
]
o
(")
)

—Aru + (Vru,e) + agu = f on F(S?) with exact solution

We want to solve the surface PDE on a closed hypersurface I" :

—Aru+{Vru,ey+au=f, onT (3.5)

where f e L?(T"), ce (L*(T))? and ag € L®(T") are given with ag > 0.
For this example we choose I' as the surface obtained by mapping the unit sphere by the function

defined in (3.1))

To solve and compare to exact solution, we choose

3.2.Numerical samples on closed hypersurfaces

u(x) = 2122, ao(®) =1+ 22 and c(x) = (cos(x1),sin(zs),2 + z12023)"
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Numerical samples on closed hypersurfaces

With Sage, we compute —Apwu and V u. The results are saved in module fc_vfempl surface.examples.sBVPsamples

as functions respectively obtain by
from fc_vfempl surface.examples.sBVPsamples import fxyz04
from fc_vfempl surface.examples.sBVPsamples import gradSuxyz04
as well as corresponding u and map function respectively given by

from fc_vfempl surface.examples.sBVPsamples import uxyz04

from fc_vfempl surface.examples.sBVPsamples import Fmapxyz04
We give in Listing 77 the complet Matlab code to solve [3.5] with

cos(z1)
ap:x—1+27 and c:z+— sin(z)
2+ T1T2X3

The order of the P;-lagrange finite element method used in the FC-VFEMP; toolbox is given in Figure [3.2]

000539
Iﬂ,oauz
000325
000308
o00251

0,00154

0.000770

from numpy import cos,sin , pi

from fc_vfempl surface.examples import sBVPsamples

from fc_ vfempl surface.examples.sBVP _sphere import run

u=sBVPsamples . uxyz04

f=sBVPsamples. fxyz04

Fmap=sBVPsamples . Fmapxyz(04

gradSu=sBVPsamples.gradSuxyz04

a0=lambda x,y,z: 14+x**2

c=[lambda x1,x2,x3: cos(xl), lambda x1,x2,x3: sin(x2), lambda x1,x2,x3:
2+x1%x2%x3 |

cgradSu=lambda x,y,z: np.sum(np.array (gradSu(x,y,z))*np.array ([c[0](x,y,z),
c[1](x,y,2),c[2](x,y,2)]) ,axis=0)

# RHS function

RHSfun=lambda x,y,z: f(x,y,z)+cgradSu(x,y,z)+al0(x,y,z)*u(x,y,z)

print ( "sxx_Building /reading_mesh’)

N=75;geofile="spheredsurf’;

(geodir , geofile )=get geo (3,2, geofile)

meshfile=gmsh. buildmesh3ds(geodir+os.sep+geofile+’.geo’ N,
force=False , verbose=0)

Th=siMesh (meshfile ,mapping=Fmap)

print ( 'xxx_Setting_surface _BVP’)

Lop=Loperator (dim=3,d=2,A=[[1 ,None,None| ,[None,1 ,None]| ,[None, None,1]],
c=c,al=a0)

pde=PDE(Op=Lop , f=RHSfun)

bvp=BVP(Th, pde=pde)

print ( 'xxx_Solving_surface _BVP’)

U=bvp.solve ()

Listing 3.7: Solution of surface BVP —Aru+<{Vru,¢)+agu = f on unit sphere mapping by function
(3.1). Python code
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Numerical samples on closed hypersurfaces

— |up— mulul|z

— |up— mp{u)|H:
-4 O(h)
—e- O(h?)

1072 1

1073 1

3Ix1072 4x1072 6x1072 1071

Figure 3.3: Order for the surface BVP —Aru +<{Vru,¢) + agpu = f on unit sphere mapping by function

B.1).

SRS —Aru+ (Vru,e) + agu = f on F(S?) without exact solution

From previous sample, just differs the f function given by

f(x) = 5cos(bxy — bxo + Txs)
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Numerical samples on closed hypersurfaces

from numpy import cos,sin , pi

a0=lambda x,y,z: 1+0.9%cos(xt+y+z)

c=[lambda x1,x2,x3: cos(xl), lambda x1,x2,x3: sin(x2), lambda x1,x2,x3:
2+x1%x2%x3 |

f=lambda x1,x2,x3: 5xcos(5*xx1—5xx2+T7xx3)

Fmap=lambda x,y,z: [2%x, y,0.5%xz%(0.5%sin (2xpixx) + 1)]

print ( ’+xx_Building /reading_mesh’)

N=75;geofile="spheredsurf’;

(geodir , geofile )=get geo (3,2, geofile)

meshfile=gmsh. buildmesh3ds(geodir+os.sep+geofile+’.geo’ N,
force=False , verbose=0)

Th=siMesh (meshfile ,mapping=Fmap)

print ( 'xxx_Setting_surface _BVP’)

Lop=Loperator (dim=3,d=2,A=[[1,None,None| ,[None,1,None]| ,[ None,None,1]],
c=c ,al0=al)

pde=PDE(Op=Lop, f=f)

bvp=BVP(Th, pde=pde)

print ( ’xxx_Solving_surface _BVP’)

U=bvp.solve ()

Listing 3.8: Solution of surface PDE —Aru+{Vru,¢)+agu = f on unit sphere mapping by function
(3.1) without exact solution. Python code

3D surface Laplace-Beltrami BVP on closed hypersurface

On closed and regular hypersurface there is no boundary. The surface Laplace-Beltrami BVP is the
following

f!Scalar surface BVP 2 : Laplace-Beltrami
Let T be a regular and closed hypersurface. Find u € H!(T') such that

—Aru = f inT (3.6)

J udq 0.
I

From [7], (Therorem 3.3, page 302 and Therorem 4.9, page 319) we obtain
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Numerical samples on closed hypersurfaces

Theorem 3.1

Suppose that f e L?(I' Wlth S qu = 0. There exists a unique solution v € H?(I") of the Laplace-
Beltrami surface BVP -(3.7]
Let uy be the P;- Lagrange FEM solution of the discrete Laplace-Beltrami surface BVP then

lu — uh”Hl(Fh) <Cih and u— Uh||L2(1"h) < Coh®. (3.8)

The linear system Auj;, = b obtain from (3.6|) is singular. Numerically, to solve the problem ({3.6))-(3.7),
we done the following step:

1. Replace the first row of the system by u; = 1 (i.e. the first row of A is replaced by (1,0,...,0) and
by is set to one).

2. Solve the new system Aup = b
3. Compute Ij, = Srh updq
4. Replace uyp by up, — I, /|| and then we have SFh updq = 0.

By construction, we necessarily have {. fdA = 0. Indeed for all ¢ € H'(T') we have

—f ArupdA = J fepdA
r r

By using Green formula, we obtain

| @rureaa- | poas
T I
Taking ¢ =1 gives { fdA = 0.

On the unit sphere I' = S?, exact solution uc(z,y,2) = C + 2y

With Sage, one can compute f = —Aru : (x,y,2) — Wﬁzﬁﬁ where u : (z,y,z) — zy. Furthermore,
we have SSQ udq = 0 and so the constant C' is equal to zero.

0000143
0.000123
0000102
819605
614005

4,100-05

Figure 3.4: Numerical solution for 3D surface Laplace-Beltrami BVP on unit sphere (left) and error where
exact solution is u(z,y, z) = zy (right)
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Numerical samples on closed hypersurfaces n

— |up = mnlu)]ez n

— lup-mlWl e

1073 1

1074 4

10-2 2x1072 3x1072 4x1072

Figure 3.5: Order for 3D surface Laplace-Beltrami BVP on unit sphere : u(x,y, z) = xy.

On the unit sphere I' = S?| exact solution uc(z,y, 2) = C + x%y>

With u : (2,9,2) — 2?y? we obtain from Sage

2 (z* — 822y* + y* + (27 + ¢?)2?)

f=7A1—\ui(l‘,y,Z) = =
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Furthermore, we have Ss2 udq # 0 and so the constant C' is not equal to zero. %
To compute the contant C' we use (??) and o
g
4 ]
Uexdq = Cdq + udq = 4nC + — 7 = 0. 5
S2 52 S2 15 7}
]
So we obtain ®
C= ! o
15 )
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Figure 3.6: Numerical solution for 3D surface Laplace-Beltrami BVP on unit sphere (left) and error where
exact solution is u(z,y, z) = 2%y? + C (right)

3.2.Numerical samples on closed hypersurfaces
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Figure 3.7: Order for 3D surface Laplace-Beltrami BVP on unit sphere : u(z,y,2) = 2%y? + C.

On the unit sphere, exact solution u(z,y,2) = C + cos(2rzy) sin(27z)
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Figure 3.8: Numerical solution for 3D surface Laplace-Beltrami BVP on unit sphere (left) and error where
exact solution is u(x,y, z) = C + cos(2mzy) sin(27z) (right)

3.2.Numerical samples on closed hypersurfaces
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Figure 3.9: Order for 3D surface Laplace-Beltrami BVP on unit sphere : w(z,y,2) = C +

cos(2mzy) sin(27z).

On the unit sphere mapping by a function F, exact solution u(z,y,z) = C + zy

The mapping function is given in (3.1).
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Figure 3.10: Numerical solution for 3D surface Laplace-Beltrami BVP on unit sphere mapping by function
(3.1) (left) and error where exact solution is u(z,y, z) = C' + zy (right)
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3.2.Numerical samples on closed hypersurfaces




Numerical samples on closed hypersurfaces n
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Figure 3.11: Order for 3D surface Laplace-Beltrami BVP on unit sphere mapping by function (3.1 :
u(z,y,z) = C + zy.

On the unit sphere mapping by a function F', exact solution u(z,y, z) = C+cos(2rz)+sin(272)+
Yz

The mapping function is given in (3.1)).
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Figure 3.12: Numerical solution for 3D surface Laplace-Beltrami BVP on unit sphere mapping by function
(3-1) (left) and error where exact solution is u(z,y, z) = C' + cos(27x) + sin(27z) + zyz (right)
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3.2.Numerical samples on closed hypersurfaces




Numerical samples on closed hypersurfaces n
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Figure 3.13: Order for 3D surface Laplace-Beltrami BVP on unit sphere mapping by function (3.1)) :
u(z,y,z) = C + cos(2nzx) + sin(27z) + zyz.

On the unit sphere mapping by a function F, exact solution C + zy
The hypersurface was constructed by mapping a discretization of the unit sphere S? onto the surface I'
by

1 1
F(y) = <y17y27y3 % + 2y% + §y§> , Y= (y17 y27y3) € 52- (39)

The representation of I' = F(S?) as a hypersurface {z € R3 | ¢(x) = 0} follows from y? + y2 + y5 = 1

with the level set function )
T
px) =2+t + — e 1. (3.10)
e T
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Figure 3.14: Numerical solution for 3D surface Laplace-Beltrami BVP on unit sphere mapping by function
(13.9) (left) and error where exact solution is u(x,y, z) = C' + zy (right)
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3.2.Numerical samples on closed hypersurfaces




Numerical samples on non-closed hypersurfaces
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Figure 3.15: Order for 3D surface Laplace-Beltrami BVP on unit sphere mapping by function (3.9) :
u(z,y,2) = C + zy.

Numerical samples on non-closed hypersurfaces

Let I" be a non-closed hypersurfaces and 0I" be its none empty boundary. We want to solve the scalar

BVP (-

BN —Aru + (Vru,c) + apu = f with Dirichlet boundary conditions on an half-

sphere

We represente in Listing [3.9] the unit demi-sphere z > 0. As we can remark, the physical boundaries are
labeled from 1 to 4 : the label 5 to 8 only serves us for graphic representation purposes.
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3.3.Numerical samples on non-closed hypersurfaces




Numerical samples on non-closed hypersurfaces

print ( ’*xx_Building /reading_mesh’)

N=20;geofile="halfsphered4surf’;

(geodir , geofile )=get geo (3,2, geofile)

meshfile=gmsh. buildmesh3ds (geodir+os.sep+geofile+’.geo’ N,
force=False ,verbose=0)

Th=siMesh (meshfile)

Listing 3.9: Mesh of a half-sphere with 4 subdomains, I' = Q; U --- U Q4 (left) and boundaries
' =T7 u---uTy (right)

We want to solve the

Scalar surface BVP 3 : non-closed surface, sample 1
Find u € HY(T) such that

—Aru+{Vru,e)+au = f, inT
u = g, ondl.

With exact solution u(x,y, z) = cos(2mxy) sin(27z), we compute —Aru and Vr u with Sage and store
the results as Python functions, in the fc_vfempl surface.examples.sBVPsamples module, respectively

named fxyz02 and gradSuxyz02 .
We give in Listing ?? the complet Python code to solve 3.5 with

cos(z1)
ap:x—1+2? and ¢:z+— sin(xz)
2+ r12973
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Numerical samples on non-closed hypersurfaces
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0.00128
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0,000854

0,000641
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from numpy import cos,sin ,sqrt,pi

from fc_vfempl surface.examples import sBVPsamples

u=sBVPsamples. uxyz02

f=sBVPsamples. fxyz02

gradSu=sBVPsamples.gradSuxyz02

Fmap=sBVPsamples . Fmapxyz02

a0=lambda x,y,z: 14+x**2

c=[lambda x1,x2,x3: cos(xl), lambda x1,x2,x3: sin(x2), lambda x1,x2,x3:
2+x1%x2%x3 |

cgradSu=lambda x,y,z: np.sum(np.array(gradSu(x,y,z))*np.array ([c[0](x,y,z),
c[1](x,y,2),c[2](x,y,2)]) ,axis=0)

# RHS function

RHSfun=lambda x,y,z: f(x,y,z)+cgradSu(x,y,z)+al0(x,y,z)*u(x,y,z)

print ( ’+xx_Building /reading_mesh’)

N=75;

geofile="halfspheredsurf’;

(geodir , geofile )=get geo (3,2, geofile)

meshfile=gmsh. buildmesh3ds (geodir+os.sep+geofile+’.geo’ N,
force=False ,verbose=0)

Th=siMesh (meshfile)

print ( 'xxx_Setting_surface _BVP’)
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Lop=Loperator (dim=3,d=2,A=|[[1,None,None| ,|[None,1 ,None| ,[None,None,1]] , c=c,al=a
pde=PDE(Op=Lop, f=RHSfun)
bvp=BVP(Th, pde=pde)
for lab in [1,2,3,4]:
bvp.setDirichlet (lab ,u)

~—

print ('sxx_Solving_surface _BVP’)
U=bvp.solve ()

Listing 3.10: Solution of —Aru + {(Vru,e) + apu = f with Dirichlet boundary condition

3.3.Numerical samples on non-closed hypersurfaces
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Numerical samples on non-closed hypersurfaces
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Figure 3.16: Order for 3Ds BVP —Arpu +(Vpu,¢) + apu = f with Dirichlet boundary condition on unit
half-sphere

—Aru+{Vru,c)+aou = f with mixed boundary conditions on an half-sphere

yVe want to solve the

Scalar surface BVP 4 : non-closed surface, sample 2
Find v € HY(T") such that

_AFU+<VFU,C>+(10U = fa in ' (313)
u = g¢gp, ondl'p. (3.14)

(Vrg,u) = gn, ondly. (3.15)

(3.16)

(Vrg,py+au = ggr, on dl'g.

On the half-sphere (z > 0), we have g = (0,0, —1)* on oI
We also have to set gy and gr functions. We obtain them with the following Python code

from fc_vfempl surface.examples import sBVPsamples
u=sBVPsamples. uxyz02

gradSu=sBVPsamples.gradSuxyz02

gN=lambda x,y,z: —gradSu(x,y,z)[2]

gR=lambda x,y,z: —gradSu(x,y,z)[2]+alpha(x,y,z)*u(x,y,z)

We give in Listing ?? the complet Python code to solve (3.13)-(3.16]) with
6FD = Fl U Fg, aFN = FQ, 8FR = F4

and
cos(z1)

ap: x> 1+ c:x— sin(xz) and a:x— 1+a3
2+ x12973
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Numerical samples on non-closed hypersurfaces

000192

0.00164
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5,130-17

from numpy import cos,sin ,sqrt,pi

from fc_vfempl surface.examples import sBVPsamples

u=sBVPsamples. uxyz02

f=sBVPsamples. fxyz02

gradSu=sBVPsamples.gradSuxyz02

Fmap=sBVPsamples . Fmapxyz02

a0=lambda x,y,z: 14+x**2

c=[lambda x1,x2,x3: cos(xl), lambda x1,x2,x3: sin(x2), lambda x1,x2,x3:
2+x1%x2%x3 |

cgradSu=lambda x,y,z: np.sum(np.array(gradSu(x,y,z))*np.array ([c[0](x,y,z),
c[1](x,y,2),c[2](x,y,2)]) ,axis=0)

# RHS function

RHSfun=lambda x,y,z: f(x,y,z)+cgradSu(x,y,z)+al0(x,y,z)*u(x,y,z)

alpha=lambda x,y,z: 1+z*x%2

print ( '#xx_Building /reading _mesh’)

N=75;

geofile="halfspheredsurf’;

(geodir , geofile )=get geo (3,2, geofile)

meshfile=gmsh. buildmesh3ds(geodir+os.sep+geofile+’.geo’ N,
force=False ,verbose=0)

Th=siMesh (meshfile)

print ( 'xxx_Setting_surface _BVP’)
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Lop=Loperator (dim=3,d=2,A=[[1,None, None| ,[None,1 ,None]| ,[ None,None,1]] , c=c, al=a
pde=PDE(Op=Lop , f=RHSfun)
bvp=BVP(Th, pde=pde)
for lab in [1,3]:
bvp.setDirichlet (lab ,u)
gN=lambda x,y,z: —gradSu(x,y,z)[2]
gR=lambda x,y,z: —gradSu(x,y,z)[2]+alpha(x,y,z)*u(x,y,z)
bvp.setRobin (2,gN)
bvp.setRobin (4,gR, ar=alpha)
print ( ’xxx_Solving_surface _BVP’)
U=bvp.solve ()

Listing 3.11: Solution of —Aru 4+ {Vru,¢) + apu = f with mixed boundary condition
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3.3.Numerical samples on non-closed hypersurfaces

Compiled on 2017/08/14 at 17:40:47



Numerical samples on non-closed hypersurfaces
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Figure 3.17: Order for 3Ds BVP —Aru + (Vru,¢) + apu = f with mixed boundary condition on unit
half-sphere

Mixed boundary conditions on an half-sphere mapping by a function

We represente in Listing [3.9] the unit demi-sphere z > 0. As we can remark, the physical boundaries are
labeled from 1 to 4 : the label 5 to 8 only serves us for graphic representation purposes.
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from numpy import sin , pi

Fmap=lambda x,y,z: [2%x,y,0.5%2z%(14+0.5%sin (2% pix*x)) |

N=20;geofile="halfsphered4surf’;

(geodir , geofile )=get geo (3,2, geofile)

meshfile=gmsh. buildmesh3ds(geodir+os.sep+geofile+’.geo’ N,
force=False , verbose=0)

Th=siMesh (meshfile ,mapping=Fmap)

Listing 3.12: Mesh of a half-sphere with 4 subdomains, T' = Q; U -+ U Q4 (left) and boundaries
o' =T7 u---uTy (right)

3.3.Numerical samples on non-closed hypersurfaces
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Numerical samples on non-closed hypersurfaces

On this mesh, we also have g = (0,0, —1)* on oT.
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Iu,ooaas
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0,00302
0,00201

0,00101

0,00

from numpy import cos,sin , pi

from fc_vfempl surface.examples.sBVP02_ halfsphere Mixed import run

from fc_vfempl surface.examples import sBVPsamples

u=sBVPsamples. uxyz04

f=sBVPsamples. fxyz04

Fmap=sBVPsamples. Fmapxyz04

gradSu=sBVPsamples. gradSuxyz04

al0=lambda x,y,z: 14+x**2

alpha=lambda x,y,z: 1+z*%2

c=[lambda x1,x2,x3: cos(x1l), lambda x1,x2,x3: sin(x2), lambda x1,x2,x3:
24+x1%x2%x3 |

run (N=70,u=u, f=f ,Fmap=Fmap, gradSu=gradSu ,a0=a0 ,c=c, alpha=alpha)

Listing 3.13: Solution of the surface BVP —Aru +(Vru,¢) + apu = f on unit half-sphere mapping
by function (3.1) with mixed boundary conditions
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Figure 3.18: Order for the surface BVP —Aru +<{Vru,¢) + apu = f with mixed boundary condition on
unit half-sphere mapping by function (3.1)).

3.3.Numerical samples on non-closed hypersurfaces
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