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Abstract

FC-VFEMP; is an experimental object-oriented Python package dedicated to solve scalar or vector
boundary value problems (BVP) by Pl-Lagrange finite element method in any space dimension. It uses
the FC-SIMESH package [?| and the siMesh class which allows to use simplices meshes generated from
gmsh (in dimension 2 or 3) or an hypercube triangulation (in any dimension).

The two FC-SIMESH add-ons FC-SIMESH-MATPLOTLIB [?] and FC-SIMESH-MAYAVI [?] allows a great
flexibility in graphical representations of the meshes and datas on the meshes by using respectively the
MATPLOTLIB and the MAYAVI packages.

This package also contains the techniques of vectorization presented in [?] and extended in [?] and
allows good performances when using P'-Lagrange finite elements method.
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Chapter

Generic Boundary Value Problems

The notations of [?] are employed in this section and extended to the vector case.

Scalar boundary value problem

Let Q be a bounded open subset of R?, d > 1. The boundary of € is denoted by I.
We denote by Lapea, = £ : H*(2) — L?*(Q) the second order linear differential operator acting on
scalar fields defined, Yu € H2(2), by

Lape.a () —div(AV u) + div (bu) + (V u,¢) + apu (1.1)

where A e (L®(2))™4, be (L*(Q))4, ce (L®(2))? and ag € L*(2) are given functions and (-, -) is the
usual scalar product in RY. We use the same notations as in the chapter 6 of [?] and we note that we can
omit either div (bu) or (Vu,¢) if b and ¢ are sufficiently regular functions. We keep both terms with b
and ¢ to deal with more boundary conditions. It should be also noted that it is important to preserve the
two terms b and ¢ in the generic formulation to enable a greater flexibility in the choice of the boundary
conditions.

Let TP, T'® be open subsets of T', possibly empty and f € L?(Q), ¢© € HY2(I'P), g% e L*(I'F),
a® e L*(T!) be given data.

A scalar boundary value problem is given by

g Scalar BVP 1 : generic problem
Find v € H2(Q) such that

E(u :f in Q,
u =g on I'P, (1.3)
(jn_ug + afu =g" on TR, (1.4)

The conormal derivative of u is defined by

O+ (A ) — (u,m) (1.5)
0n[;

The boundary conditions (|1.3) and (1.4]) are respectively Dirichlet and Robin boundary conditions.
Neumann boundary conditions are particular Robin boundary conditions with a® = 0.



Scalar BVP

To have an outline of the FC-VFEMP; package, a first and simple problem is quickly present. Expla-
nations will be given in next sections.
The problem to solve is the Laplace problem for a condenser.

20- Usual BVP 1 : 2D condenser problem
% P

-

Find u € H2(2) such that
~Au = 0 in QcR?, (1.6)
= 0 on F1, (17)
—12 on Fgg, (18)
v = 12 on Iy, (1.9)

o J— — n
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Figure 1.1: 2D condenser mesh and boundaries (left) and numerical solution (right)

The problem (|1.6)-(1.9) can be equivalently expressed as the scalar BVP (1.2))-(1.4)) :

fgScalar BVP 2 : 2D condenser problem
Find u € H?() such that

L(u

u

in Q,

on FD = Fl () Fgg () Fgg.

I

f
gP

where L := L10,0,0, f =0, and

gD :=0on I, gD := —12 on Igg, gD := +12 on I'gg

In Listing [27] a complete code is given to solve this problem.

meshfile=gmsh.buildmesh2d ( ’condenser’
Th=siMesh (meshfile) # read mesh
Lop=Loperator (dim=2,d=2,A=[[1,0],[0,1]])
pde=PDE(Op=Lop)

bvp=BVP(Th, pde=pde)

bvp.setDirichlet( 1, 0.)

bvp.setDirichlet ( 98, —12.)

bvp.setDirichlet ( 99, +12.)

u=bvp.solve () ;

# Graphic parts

plt.figure (1)

siplt .plotmesh (Th, legend=True)

set _axes equal ()

plt.figure (2)

siplt .plotmesh (Th, color="LightGray’,alpha=0.3)
siplt . plotmesh (Th,d=1,legend=True)

,10) # generate mesh
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Vector boundary value problem

set _axes equal ()

plt.figure (3)

siplt.plot (Th,u)

plt.colorbar (label="u"’)

set _axes equal ()

plt.figure (4)

siplt . plotiso (Th,u, contours=15)
plt.colorbar(label="u’)

siplt .plotmesh (Th, color="LightGray’,alpha=0.3)
plt.axis(’off’);set axes equal()

Listing 1.1: Complete Python code to solve the 2D condenser problem with graphical representations

r10.29

[T 343

T -3.43

— —6.86

-1 —t -10.29

—4 -2 0 2 4

Figure 1.2: 2D condenser numerical solution

Vector boundary value problem

Let m > 1 and H be the m-by-m matrix of second order linear differential operators defined by

Ho (H2(Q)™ — (L2Q)"
{ u=(u1,...,um) — f:(fla,fm)d:e{,]‘[(u) (1.10)
where .
fa = Z Ha,ﬁ(uﬁ)a Va e [Lm]]? (111)
B=1
with, for all (o, B) € [1,m]?,
Hap g‘cAavﬁ’ba,B,ca,ﬁ’ag‘ﬁ (1.12)

and A%P e (L®(Q))?*4, b*F e (L* ()4, ¢*F e (L*(Q))? and ag"’B € L*(f2) are given functions. We
can also write in matrix form

£A1v1,b1v1,c1’1,aé’1 EAl,mybl,m’cl,mﬂlé«m (75}

H(u) = : : B (1.13)
‘CAmvl,bmvl,cmvl,agl’l ﬁAm,m7bm,m’cm,m)a70nvm U,
We remark that the H operator for m = 1 is equivalent to the £ operator.
For a € [1,m], we define T2 and I'2 as open subsets of T, possibly empty, such that T2 n T2 = .
Let f e (L2(Q)™, g2 e HY2(TD), g% € L2(TE), af € L*(TE) be given data.
A wvector boundary value problem is given by
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Vector BVP n

ﬁ Vector BVP 1 : generic problem
Find u = (u1,...,u,) € (H*(Q))™ such that

H(uw) =f in Q, (1.14)

u, =g on TP Va e [1,m], (1.15)

Cu + afu, =g% on I'E Vo e [1,m], (1.16)
anya

where the a-th component of the conormal derivative of u is defined by

ou d_efm a’uﬂ . — a,B _ /pB
2 $ B e Tum) - 6. (L7

The boundary conditions are the Robin boundary conditions and is the Dirichlet
boundary condition. The Neumann boundary conditions are particular Robin boundary conditions
with aff = 0.

In this problem, we may consider on a given boundary some conditions which can vary depending on

u
5717.Ll

the component. For example we may have a Robin boundary condition satisfying +afu; = gff and
a Dirichlet one with uy = g2’.

To have an outline of the FC-VFEMP; package, a second and simple problem is quickly present.

-

-\@’- Usual vector BVP 1 : 2D simple vector problem

Find u = (u1,us) € (H2(Q2))? such that
~Auy +uz = 0 in QcR? (1.18)
~Aug +u; = 0 in Qc R? (1.19)
(u1,u2) = (0,0) on Iy, (1.20)
(up,u2) = (=12.,412.) on Igs, (1.21)
(u1,us) (+12.,—12.) on Tgg, (1.22)

where Q and its boundaries are given in Figure [I.1]
The problem (|1.18)-(|1.22)) can be equivalently expressed as the vector BVP ([1.2))-(1.4)) :

g Vector BVP 2 : 2D simple vector problem
Find u = (u1,uz2) € (H3(Q))? such that

-

H(u) =f in Q,
U7 =ng on FD = Fl ) Fgg ) Fgg,
(%) 292[) on FD = Fl U ng U Fgg,

where ﬁ p A
= 1 U
1 = 1,0,0,0 O,O,O,1>7 ] <U1> _ ( ) < 1>
<£o,o,o,1 L1,0,0,0 o U 1 —A) \uz

and

gf :=0on I}, ng = —12, g2D := 412 on I'gg, ng = +12, gf := —12 on I'yg

In Listing a complete code is given to solve this problem. Numerical solutions are given in Fig-
ure

meshfile=gmsh.buildmesh2d (’condenser’,10); # generate mesh
Th=siMesh (meshfile) # read mesh
Hopl=Loperator (dim=2,A=[[1,None| ,[None,1]])
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Vector BVP

Hop2=Loperator (dim=2,a0=1)

Hop=Hoperator (dim=2m=2 ,H=[[Hopl,Hop2]| ,[Hop2,Hopl|])
pde=PDE(Op=Hop)

bvp=BVP(Th, pde=pde)

bvp.setDirichlet( 1, 0,comps=[0,1])
bvp.setDirichlet ( 98, [—-12,+12],comps=[0,1]);
bvp.setDirichlet ( 99, [+12,—12],comps=[0,1]);
U=bvp.solve (split=True)

# Graphic parts

plt . figure (1)

siplt . plot (Th,U[0])

plt.axis(’off’);set axes equal()

plt . colorbar(label="$u_ 1$’ ,orientation="horizontal )
plt.figure (2)

siplt .plot (Th,U[1])

plt.axis(’off’);set axes equal()
plt.colorbar(label="8u_2$’ ,orientation="horizontal ’)

Listing 1.2: Complete Python code to solve the funny 2D vector problem with graphical representations

Figure 1.3: Funny vector BVP, u; numerical solution (left) and us numerical solution (right)

Obviously, more complex problems will be studied in section ?? and complete explanations on the
code will be given in next sections.

In the following of the report we will solve by a P!-Lagrange finite element method scalar B.V.P. (1.2)
to and vector B.V.P. to without additional restrictive assumption.
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Chapter 2

siMesh ObJ GCt

The siMesh object is defined in the FC-SIMESH Python package

http://www.math.univ-parisl3.fr/~cuvelier/software/fc-simesh-Python.html

An user’s guide is also provided on this web page.

As 2d example, we use in this report the mesh obtained from square4holes6dom.geo by using the
code given in Listing and represented in Figure [2.1

Listing 2.1: Python code to get a 2D mesh
from fc_simesh.siMesh import siMesh
from fc_oogmsh import gmsh
from fc_vfempl.sys import get_ geo
(geodir , geofile )=get _geo (2,2, square4holes6dom )
meshfile=gmsh.buildmesh (2, geodir+’/’+geofile ,50, verbose=0)
Th=siMesh ( meshfile)
print ('Th—>_’"+str (Th));

Output
Th -> siMesh object

d: 2
dim : 2
nq : 13258
nme : 25994
sTh : list of 16 siMeshElt
nsTh : 16

sThsimp : (16,) ndarray
[1111111111222222]

sThlab : (16,) ndarray
[1 23 45 6 7 810202 4 6 8 10 20]



http://www.math.univ-paris13.fr/~cuvelier/software/fc-simesh-Python.html
http://www.math.univ-paris13.fr/~cuvelier/software/fc-simesh-Python.html
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Figure 2.1: Mesh from squared4holes6dom.geo, domains representation (left) and boundaries (right)

From the 2d mesh example given in Listing [2.1] and Figure [2.I] we have

=) % with labs2 = {2,4,6,8,10,20} (2.1)
le labs2

I, o, = J T with labsl = {1,3,5,7,10,20} (2.2)
le labsl

where each one of the Qﬁl is a 2-simplicial elementary mesh and each one of the Flh is a 1-simplicial
elementary mesh. With the siMesh object Th , we easily can obtain each one of these elementary
meshes. For example, we have

QO < Th.sTh[Th.find(2,8)] ['}? <~ Th.sTh|Th.find(1,10)]
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Chapter 3

Python objects

3.1 Loperator object

The object Loperator is used to create the operator Lap ¢ q, defined in (1.1J).

The Loperator main properties are

EgProperties of Loperator object

dim :  integer, space dimension.

A : a dim -by- dim list.
Used to store the A functions such that
Ali-1][j-1] < A; ;.

b : list with dim elements.
Used to store the b functions such that b[i—1] < b;.

c ¢ list with dim elements.
Used to store the ¢ functions such that c[i—1] < ¢;.

a0
Used to store the ag function such that a0 < ag.

To set all the functions contain in this operator (i.e. function from R4™ to R) we accept in Python
various type of datas collectively known as operator data function and given by

v Definition 3.1: operator data function

In Python, we say that a data is an operator data function if its
e a scalar (for constant function),
e a def function,

e a lambda function,




Loperator object

e a numpy array (when used with a mesh),

e a None value for the 0 function.

Sl Constructor

Its contructor is

obj=Loperator (x*xkwargs)

Description

obj=Loperator(key=value,...) | The key could be

e dim : to set the space dimension (default 2),
e A : to set the matrix-valued function A (default is a list of dim lists of dim  None if
fill is True otherwise default is None ),

e b : to set the vector-valued function b (default is a list of dim  None otherwise default

is None ),
e c : to set the vector-valued function ¢ (default is a list of dim  None otherwise default
is None ),

e a0 : to set the function ag (default None ),
e fill :if True fill the default data with a dim -by- dim matriz of None for field A
and with a vector of None for fields b and c¢ (default False ).

Samples
—Auy = £|707070(u)
in R Lop=Loperator(dim=1,A=[[1]])

in R?  Lop=Loperator(dim=2,A=[[1,None],[None,1]])
in R? Lop=Loperator(dim=3,A=[[1,None,None],[None,1,None|,[None,None,1]|)

—Au+u:=L0,0,1(u)

in R Lop=Loperator(dim=1,A=[[1]],a0=1)
in R? Lop=Loperator(dim=2,A=[[1,None|,[None,1]],a0=1)
in R®  Lop=Loperator(dim=3,A=[[1,None,None|,[None,1,None|,[None,None, 1]],a0=1)

In R27 —Au + (1 + COS((E + y))u = ‘Cl,O,O,(w,y)'—)(l-‘rcos(w-‘ry))(u)

Lop=Loperator(dim=2,A=|[1,None|,[None,1]],a0=lambda x,y:1+np.cos(x+y))
or
Lop=Loperator(dim=2,A=[[1,None|,[None,1]|,a0=lambda X:1-+np.cos(X[0]+X][1]))

(x,y,2) —x4+y+2z

In R3 let o : (2,9,2) — 1+a?2+y?+2% B: (2,9,2) — 1+2% V = 1 and
(@,y,2) > xryxz

. Then we have

>
Il
S o R
o Q O
Qoo

— diV(OLV U) + <V, v u> + Bu = EA’()’V’/;)(U).
The associated python code is given in Listing (3.1
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Hoperator object

Listing 3.1: sample

from fc_vfempl.operators import Loperator

af=lambda x,y,z: 14+x#*24y**2+2z%%2

Vx=lambda x,y,z: xty+z; Vy=1; Vz=lambda x,y,z: x*y*z

beta=lambda x,y,z: 14x*%2

Lop=Loperator (dim=3,A=|[af ,None,None| ,[None, af ,None| ,[None,None, af ||, c¢=[Vx,Vy,Vz], al=beta)
print (Lop)

Output

Loperator : (dim,d,order) = (3,3,2)
A : [[Function, None, None], [None, Function, None], [None, None, Function]]
b : None
¢ : [Function, Scalar, Function]
a0 : Function

3.2 Hoperator object

The object Hoperator is used to create the operator H defined in (|1.10). Its main properties are

f! Properties of Hoperator object

dim : integer, space dimension.
m :  integer
H :  List of m-by-m elements.

Used to store the H operators such that
H[i-1][j—-1] < #H;;, Yi,j € [1,m]. Each element
contains a Loperator object or a None value.

=
<}
3]
Constructor 2
Ll
(2]
Its contructor are é
obj=Hoperator () :
obj=Hoperator (dim=..., m=...) P
obj=Hoperator (dim=..., m=..., H=...) ]
=
o
. . :
Description =
&
obj=Hoperator() |create an empty/null operator with dim=2 and m=2 . 0
48
o
obj=Hopertor(dim=..., m=...) |create an empty/null operator with the given dimensions dim and 8
@
m 2
o
o
obj=Hopertor(dim=...,m=..., H=...) |create an operator with a given H N
o)
Samples

In R?, with u = (u1,us2) the operator H defined by

Hw) ™ (—Aul + uQ)

uy — A’LLQ

()= )

9y — (L1000 Looo.
Looo1 L1000

could be written as

and then
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PDE object

Listing 3.2: sample

from fc_vfempl.operators import Loperator ,Hoperator
Lopl=Loperator (dim=2,A=[[1,None| ,[None,1]])
Lop2=Loperator (dim=2,a0=1)

Hopl=Hoperator (dim=2,m=2 H=[[Lopl,Lop2] ,[Lop2,Lopl]|]|)
print ("sxx_Hopl_—>_ +str (Hopl))

Hop2=Hoperator (dim=2,m=2)

Hop2.set (0,0,Lopl);Hop2.set (0,1,Lop2)

Hop2.set (1,0,Lop2);Hop2.set(1,1,Lopl)

print ("sxx_Hop2_—>_’+str (Hop2))

Output

**x Hopl -> Hoperator :
(dim,d,m) : (2,2,2)
order : 2
H[0][0] : Loperator : (dim,d,order) = (2,2,2)
A : [[Scalar, None], [None, Scalar]]
H[0][1] : Loperator : (dim,d,order) = (2,2,0)
a0 : Scalar
H[11[0] : Loperator : (dim,d,order) = (2,2,0)
a0 : Scalar
H[1]1[1] : Loperator : (dim,d,order) = (2,2,2)
A : [[Scalar, None], [None, Scalar]]
**x Hop2 -> Hoperator :
(dim,d,m) : (2,2,2)
order : 2
H[0][0] : Loperator : (dim,d,order) = (2,2,2)
A : [[Scalar, None], [None, Scalar]]
H[0][1] : Loperator : (dim,d,order) = (2,2,0)
a0 : Scalar
H[1]1[0] : Loperator : (dim,d,order) = (2,2,0)
a0 : Scalar
H[11[1] : Loperator : (dim,d,order) = (2,2,2)
A : [[Scalar, None], [None, Scalar]]

Sl Methods

set function
zeros function

opStiffElas function

(7))
°
<}
=
L
s
=
5
o)

5¥¢] rpeE object

This object is used to store the scalar PDE (|1.2)) or the vector PDE (|1.14):

3. Python objects

3.3.PDE object

L(u) = f or H(u)=f

acting on d-dimensional submanifold of RY™. For example with dim = 3, a 2-dimensional submanifold is
a surface, a 1-dimensional submanifold is a curve and a 0-dimensional submanifold is a point. Its main
properties are

ngroperties of PDE object

dim :  integer, space dimension.

d : integer, submanifold dimension.

m :  integer

Op : Loperator or Hoperator object.

f : (list of) operator data function or None

Used to store the right-hand side of the PDE. If Op
isan Loperator object then f isan operator data

function . If Op is an Hoperator object then f

is a list of Op.m operator data function or None
value

Its contructor are
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BVP object
obj=PDE ()
obj=PDE(dim=..., m=..., Op=..., f=...)
Description
obj=PDE() |create an empty PDE object with dim=2 and m=1

obj=PDE(dim=dval) |create an empty PDE object with dim=dval and m=1

obj=PDE(m=mval) |create an empty PDE object with dim=2 and m=mval

obj=PDE(Op=op) |create the PDE object with f =0, : i.e. Op(u)=0 with dim=Op.dim and m=1

if fclstop is a Loperator object and m=op.m if op is an Hoperator object.

obj=PDE(Op=op,f=fun) |create the PDE Op(u)=f. If Op isan Hoperator object then f must

be a cell array of length Hoperator.m .

Samples

In R?%, —Au +u = f, with f(x,y) = zy?

from fc_vfempl.operators import Loperator

from fc_vfempl.BVP import PDE

Lop=Loperator (dim=2,A=[[1,None]| ,[None,1]] ,a0=1)
g=lambda x,y: x*xy#*x2

pde=PDE(Op=Lop, f=g)

print (pde)

Listing 3.3: Test

Output

PDE object : (dim,m) = (2,1)
Op :

f:
delta : [ 0.]

Loperator : (dim,d,order) = (2,2,2)
A : [[Scalar, Nonel, [None, Scalar]]
b : None

c : None

a0 : Scalar

<function <lambda> at 0x2ad86db52e18>

Bvp object

The object BVP is used to create a scalar boundary value problem (1.2))-(1.4]) or a vector boundary
value problem (|1.14)-(1.16]). The usage of this object is strongly correlated with good comprehension of

the FC-SIMESH

package and more particularly with the siMesh object.

The properties of the object BVP are

EgProperties of BvVP object

Th : a siMesh object

dim :  integer, space dimension (equal to Th.dim ).
d :  integer, (equal to Th.d ).

m : integer, system of m PDE’s.

pdes : list of Th.nsTh  PDE objects.

Used to store the PDE associated with each submesh
Th.sTh[i]. If pdes[i] iSs None then there is no PDE
defined on Th.sThli].
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BVP object

Constructor

Its contructor are

obj=BVP (Th)

obj=BVP(Th,pde=...,labels=...)

Description

obj=BVP(Th) |create a

obj=BVP(Th,pde=pde)

BVP object with no PDE’s defined,

create a BVP object with PDE’s defined by pde object on all submeshes

of index Th.find(pde.d) i.e. on all submeshes such that Th.sTh[i].d==pde.d. By default, homogeneous
Neumann boundary conditions are set on all boundaries.

obj=BVP(Th,pde=pde,labels=labs) | similar to previous one except among the selected objects are

choosen those with label (Th.sTh[i].label) in labs array/list. By default, homogeneous Neumann
boundary conditions are set on all boundaries.

g4  Main methods

Let bvp bea BVP object.

setPDE function

bvp.setPDE (pde)
bvp.setPDE (pde,

labels=..., d=...)

Description

bvp.setPDE(pde) | associated the pde object with the all the d-dimensional elementary meshes

where d is bvp.Th.d .

bvp.setPDE(pde,labels=labs,d=dval) | associated the pde object with the dval -dimensional ele-

mentary meshes with labels in labs array/list.

setDirichlet function

bvp.setDirichlet (label,g)
bvp.setDirichlet (label,g,m=...)

Description

bvp. setDirichlet (label ,g)

for scalar B.V.P., sets Dirichlet boundary condition (|L.3])

and for vector B.V.P.,

u= g, on [yl

sets Dirichlet boundary condition (1.15])

Uy = gla—1,Yae[l,m] on T label -

bvp. setDirichlet (label ,g,comps=Lc) | for vector B.V.P.; sets Dirichlet boundary condition :

Va € Lc, let ¢ such that @ = Lec [i] then

Ug = g[i] , onT label °
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BVP object

setRobin function

bvp.setRobin(label,gr)
bvp.setRobin(label,gr,ar=...,comps=...)

Description

bvp.setRobin(label,gr) | for scalar B.V.P., sets Neumann boundary condition (i.e. Robin boundary

condition (??) with af* = 0)
ou

—anﬁ =gr, onI label °
For vector B.V.P., sets Neumann boundary conditions (i.e. Robin boundary condition (??) with
ag = 0)
ou
P =grla—1], Yae[l,m]onT label °

bvp.setRobin(label,gr,ar=arfun) | for scalar B.V.P., sets Robin boundary condition (|1.4)

Ju + arfun X u = I
ang arfun x u =gr, onI' . .

For vector B.V.P., sets Robin boundary condition (|1.16)

ou

T, + arfun[i—1Ju; = gr[i—1], Vie[l,m]onT label °

bvp.setRobin(label,gr,comps=Lc) | for vector B.V.P., sets Robin boundary condition (1.16) :

Va € Lc, let i such that & = Lc [¢] then the a-th components equation is

0
L + arfun[i] X uq = gr[i], on I’ 1

onyy,, abel °
solve function
x=bvp.solve ()
x=bvp.solve (key,value,...)

Description

x=bvp.solve()) |uses P;-Lagrange finite elements method to solve the B.V.P. described by the bvp

object.

x=bvp.solve(key,value ,...)

e ’solver’
e ’split’
e ’local’

b b
e ’perm
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Finite element functions with Loperator object
Finite element functions with Loperator Object

SN  Notations on €2y,

Let Dy = Dap.c.a, be the first order bilinear differential operator acting on scalar fields associated to the
Lap.c,a, operator defined V(u,v) € (H'(Q2))? by

De(u,v) =<AVu, Vo) — (ud,Vv)y—vVu,c)) + apuv. (3.1)

Let Q;, = | Q! be a partition of Q. We denote by

le labs
o Df (Q}) the fig-by-fiq (local) matrix defined by
Dﬁ Q) f De(p;,3i)dq (3.2)
where fi, is the number of vertices of 2} and {Pi}ic1,a,] are the (local) Pi-Lagrange basis functions
on Qﬁl
e D4(Q}) the ny-by-n, (global) matrix defined by
DE, (52 f Delpjpi)da (3.3)
where ng is the number of vertices of €, and {(; }ie[1,n,] are the (global) P1-Lagrange basis functions

on Qh.

e DX(9,) the ny-by-n, matrix defined by

D, () = 0 Dr(pj; pi)dq (3.4)

where 1, is the number of vertices of Q, and {(;}ie[1,n,] are the (global) P;-Lagrange basis functions
on ;. We can remark that
DA(2,) = >, D5()

le labs

Notations on I,

Let Dz = Dap.c.a, be the first order bilinear differential operator acting on scalar fields associated to the
Lab.c.a, operator defined V(u,v) € (H(T))? by

Dr(u,v) = (AVru,Vro) — (ub,Vrv) — v{Vru,e)) + aguv. (3.5)

where A....
Let 'y, = UlE labs I‘lh be a partition of I';,. We denote by

o D (T'%) the fi-by-iy (local) matrix defined by

BE, (1) f De(35,80)dq (3.6)

where fiy is the number of vertices of I'}, and {®;}e[1,5,] are the (local) P1-Lagrange basis functions
on I'.

e D(T%) the ng-by-n, (global) matrix defined by
Dy, (T,) J D), i)da (3.7)

where ng is the number of vertices of 2, and {; }ic[1,n,] are the (global) P1-Lagrange basis functions
on Q.

Compiled on 2017/06/23 at 08:02:45

3. Python objects

3.5.Finite element functions with Loperator object

an
c
o
(2]
e
.2
=
(]
-
(=}
2
S
=
o




Finite element functions with Loperator object

e DX(I',) the ng-by-n, matrix defined by

Df;(Th) = . De(pj,¢i)dq (3.8)
h

where ng is the number of vertices of 2, and {; }ic[1,n,] are the (global) P1-Lagrange basis functions
on 5. We can remark that
DA = Y DETY)

le labs

AssemblyP1 function

Let Th be a siMesh object representing 2;, and, at least, all its boundaries. Let eTh be a siMeshElt
object obtained from the array Th.sTh (i.e. eTh=Th.sTh[idx] ). Let Lop be the Loperator object
representing Lap ¢, q,-

D—AssemblyP1(Th,Lop) |returnsthe Th.nq -by- Th.ng matrix D*(€2;,) defined in (3.8).

As example, we compute in Listing [3.4] the Mass matrix and the Stiffness matrix for the mesh obtain
with Listing

Listing 3.4: Examples of usage of the function AssemblyP1

from fc_vfempl.operators import Loperator

from fc_vfempl .FEM import AssemblyP1
LopMass=Loperator (dim=2,a0=1)

print (% _Compute_mass_matrix ")
Mass=AssemblyP1 (Th, LopMass)

print ('Mass_—>_ +Mass.__repr__ ())

print (" xx*_Compute_stiffness_matrix’)
LopStiff=Loperator (dim=2,A=[[1,None]| ,|[None,1]])
Stiff=AssemblyP1(Th, LopStiff)

print (’Stiff _—>_’+Stiff. _repr__())

c
.2
e
(€}
c
=
-
2%
=
=}
=
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0
7]
<
o
=
o

Output

*** Compute mass matrix

Mass -> <13258x13258 sparse matrix of type ’<class ’numpy.float64’>’
with 91768 stored elements in Compressed Sparse Column format>

**%x Compute stiffness matrix

Stiff -> <13258x13258 sparse matrix of type ’<class ’numpy.float64’>’
with 91768 stored elements in Compressed Sparse Column format>

3. Python objects

th Loperator object

D=AssemblyP1(Th,Lop,labels=labs) |returns the Th.ng -by- Thang matrix D(Q}2P%) where

o= ) Qe

le labs

ions wi

and we also have

DE@™) = 3 DE(O). with DE (@) = | | Deloyp)da(i.d) € [Lng]?
le labs "

te element funct

mni

Listing 3.5: function AssemblyP1 with labels option

Th=siMesh (meshfile)

from fc_vfempl.operators import Loperator

from fc_vfempl.FEM import AssemblyP1

Lop=Loperator (dim=2,A=[[1,None] ,[None,1]]| ,a0=lambda x,y:14x*%2)
M = AssemblyP1(Th,Lop)

Ma= AssemblyP1(Th,Lop, labels =[2,4,6,8])

Mb= AssemblyP1(Th,Lop,labels =[10,20])

E = M- (MaiMb)

print ('E.—_"+E. __repr__())

3.5.F

Output

E -> <13258x13258 sparse matrix of type ’<class ’numpy.float64’>’
with O stored elements in Compressed Sparse Column format>
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Finite element functions with Loperator object

LoM,LtoG=AssemblyP1(Th,Lop,local=True)

returns a list of sparse matrix LoM and a list of numpy array LtoG . With idx=Th.find(Th.d)
, we have

LoM][i]=AssemblyP1(Th.sTh[idx]i]],Lop)
and

LtoGli|=Th.sTh[idx[i]]. toGlobal .

LoM,LtoG=AssemblyP1(Th,Lop,local=True,labels=labs)

D=AssemblyP1(Th,Lop,d=dvalue)

D=AssemblyP1(Th,Lop,d=dvalue,labels=labs)

LoM,LtoG=AssemblyP1(Th,Lop,d=dvalue,local=True)

LoM,LtoG=AssemblyP1(Th,Lop,d=dvalue,local=True,labels=labs)

sy function

This function can be used to numerically compute (¢, Vu) + agu := L0,0,¢,a0(1) on a given mesh. This
method only works if the A and b properties of the operator are None .

U=apply(Th,Lop,u) |returns the numpy array with Th.nq
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Chapter 4

Scalar boundary value problems

Poisson BVP’s

The generic problem to solve is the following

-@'— Usual BVP 2 : Poisson problem
Find u € HY(2) such that

where @ ¢ RYU™ with 0Q =Tp uTg and I'p nTr = .
The Laplacian operator A can be rewritten according to a £ operator defined in (1.1)) and we have

" dim 02
-A= - Frci L1,0,0,0- (4.4)
i=1 """

The conormal derivative a(% of this £ operator is given by

(9u def - (lu

We now will see how to implement different Poisson’s BVP while using the FC-VFEMP; toolbox.

ZWBE 2D Poisson BVP with Dirichlet boundary conditions on the unit square

Let © be the unit square with the associated mesh obtain from HypErRCUBE function (see section ?? for
explanation and Figure ?? for a mesh sample) by the command

Th=fc_simesh.siMesh.HyperCube(2,50)



Poisson BVP's

101 ; [yt —n
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Figure 4.1: 2D hypercube (left) and its boundaries (right)

We choose the problem to have exact solution
2 2
(@, y) = €08 (x — y) sin (& + ) + eV,
So we set f = —Auey i.e.
flzyy) =—4 g2e(=2"=v") _ 4y26(_x2_y2) +4 cos (z — y)sin (xz +y) + ge(="=v"),
On all the 4 boundaries we set a Dirichlet boundary conditions (and so I'r = &) :
U = Uex, OHFD =F1UF2UF3UF4.

So this problem can be written as the scalar BVP

fgScalar BVP 3 : 2D Poisson BVP with Dirichlet boundary conditions
Find u € H' () such that

£|’0,070(’u) = f inQ= [0, 1]2,
U = Uex on Ty Ul uTl3uUly,

In Listing [I0} we give the complete code to solve this problem with FC-VFEMP; toolbox.
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Poisson BVP's

14

0.000025
13

0.000020
12

0.000015
11

0.000010
1.0

0.000005
09

0.000000

uex=lambda x,y: np.cos(x—y)#*np.sin (x+y)+np.exp(—(x**2+yxx2))
f=lambda x,y: —4xx*%2xnp.exp(—x*x2—y*%2) — 4kxy**2xnp.exp(—x* x2—y*xx2) +
4xnp. cos (x—y)*np.sin (x+y) + 4*np.exp(—x*x*¥2—yxx2)
Th=HyperCube (2,50) ;
Lop=Loperator (dim=2,A=[[1,None] ,[None,1]])
pde=PDE(Op=Lop, f=f)
bvp=BVP(Th, pde=pde)
for lab in [1,2,3,4]:
bvp.setDirichlet ( lab, uex)
U=bvp.solve () ;

Listing 4.1: Poisson 2D BVP with Dirichlet boundary conditions : numerical solution (left) and
error (right)

2D Poisson BVP with mixed boundary conditions

Let €2 be the unit square with the associated mesh obtain from HyperCuBe function (see section ?? for
explanation and Figure ?? for a mesh sample)
We choose the problem to have exact solution

Uex(z,y) = cos 2z +y).

So we set f = —Auey i.e.
flz,y) =5cos (22 + ).

On boundary labels 1 and 2 we set a Dirichlet boundary conditions :

U = Uex, ON '’=1,0ul,.

On boundary label 3, we choose a Robin boundary condition with a®(z,y) = 2% + y? + 1. So we have

0
—u+aRu=gR, onI‘R=F3
on
with g% = (22 + y*> + 1) cos (2z + y) +sin(2z + ).
On boundary label 4, we choose a Newmann boundary condition. So we have

0
XN onTVN =1,
on
with g%V = —sin (22 + y) . this can be also written in the form of a Robin condition with aR = 0

So this problem can be written as the scalar BVP
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Poisson BVP's

f!Scalar BVP 4 : 2D Poisson BVP with mixed boundary conditions

Find u € HY(£2) such that
Lipoo(u) = f inQ=10,1 (4.8)
U = Uex on 7 Ul ul'3uly, (4.9)
ai—uﬁ +afu = ¢f onTs, (4.10)
;n_uﬁ = ¢V onTy, (4.11)

0.00025
0.00020
0.00015
0.00010

0.00005

0.75
0.50
0.25
0.00
—0.25
—0.50
-0.75

uex=lambda x,y: np.cos(2xx+ty)

f=lambda x,y: 5%np.cos(2*xxty)

gradu=[lambda x,y: —2#np.sin (2*xx+y),lambda x,y: —np.sin (2xx+y) |
ar3 = lambda x,y: 1+4x*¥2+y*%2

Th=HyperCube (2,50)

Lop=Loperator (dim=2,A=[[1,None] ,[None,1]])

pde=PDE(Op=Lop, f=f)

bvp=BVP(Th, pde=pde)

bvp.setDirichlet ( 1, uex)

bvp.setDirichlet ( 2, uex)

bvp.setRobin( 3,lambda x,y: —gradu[l](x,y)+ar3(x,y)*uex(x,y) , ar=ar3)
bvp.setRobin( 4, gradu[l])

U=bvp.solve ()

Listing 4.2: Poisson 2D BVP with mixed boundary conditions : numerical solution (left) and error
(right)

3D Poisson BVP with mixed boundary conditions

Let Q be the unit cube with the associated mesh obtain from HyperCuBE function (see section ?? for
explanation and Figure ?? for a mesh sample)
We choose the problem to have exact solution
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4.1.Poisson BVP’s

Uex (T, y,y) = cos (4 —3y+52).

So we set f = —Auey i.e.
flx,y,2) =50 cos (4 —3y+52).

On boundary labels 1,3,5 we set a Dirichlet boundary conditions :

U = Uex, ODFD=F1UF3UF5.
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Poisson BVP's

On boundary label 2, we choose a Robin boundary condition with a(z,y) = 1. So we have

0
l+aRu=gR, onI=T,uTy
on
with ¢®(z,y,2) = cos(4x — 3y +52)—4sin(dz — 3y +52),on Ty and g (x,y, 2) = cos (4z — 3y + 52)+
3sin(dx—3y+52), on Iy
On boundary label 6, we choose a Newmann boundary condition. So we have
0
—u:gN, on TV =TI
on
with ¢V = —5 sin (42 — 3y + 5 2) . this can be also written in the form of a Robin condition with aR = 0
on FG-
So this problem can be written as the scalar BVP [

gScalar BVP 5 : 3D Poisson BVP with mixed boundary conditions

-

Find u € H'(£2) such that
Liooo(u) = [ inQ=][0,1], (4.13)
U = Uex onl'y ulz Ul (4.14)
o +au = ¢gf onTyuTy, (4.15)
6n£
ou i
— = r 4.1
é’ng g on lg, ( 6)

In Listing [I5] we give the complete code to solve this problem with FC-VFEMP; toolbox.
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149 0,436 0,724 1,01 -1,00 -0,713-0,425-0,1380,149 0,436 0,724 1,01

00918 0,0110 0,0128 0,00 0,00184 0,00367 0,00551 0,00734 0,00918 0,0110 0,0128

uex=lambda x,y,z: np.cos(4xx—3xy+5%z)
f=lambda x,y,z: 50xuex(x,y,z)
gradu=[lambda x,y,z: —4*np.sin (4xx—3*xy+5*z), lambda x,y,z:
3xnp.sin (4xx—3*y+5xz) , lambda x,y,z: —5*np.sin (4xx—3%y+5%z) |

ar = 1
Th=HyperCube (3,30)
Lop=Loperator (dim=3,d=3,A=[[1,None, None| ,[None,1,None]| ,[None,None,1]])
pde=PDE(Op=Lop, f=f)
bvp=BVP(Th, pde=pde)
for lab in [1,3,5]:

bvp.setDirichlet ( lab, uex)
bvp.setRobin( 2,lambda x,y,z: gradu[0](x,y,z)+arxuex(x,y,z) , ar=ar)
bvp.setRobin( 4,lambda x,y,z: gradu[l](x,y,z)tarsuex(x,y,z) , ar=ar)
bvp.setRobin( 6,gradu[2])
u=bvp.solve () ;

4.1.4 1D BVP : just for fun
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Listing 4.3: 3D Poisson BVP with mixed boundary conditions : numerical solution (upper) and
error (bottom)

1D BVP : just for fun

Let Q be the interval [a, b] we want to solve the following PDE

4.1.Poisson BVP’s

—u"(z) + c(z)u(z) = f(z) Vz €la,b]

with the Dirichlet boundary condition u(a) = 0 and the homgeneous Neumann boundary condition on b
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0.100

0.075 4

0.050 4

0.025 4

0.000 +

—0.025 4

—0.050 1

—0.075 1

T T T T T T T T T
-1.00 —=0.75 —0.50 —0.25 0.00 0.25 0.50 0.75 1.00

f=lambda x: np.cos(np.pi*x)

c=lambda x: 1+(x—1)%x2

a=—1; b=1

Th=HyperCube (1,50 ,mapping=lambda x: a + (b—a)x*x)
Lop=Loperator (dim=1,A=[[1]] ,a0=c)
pde=PDE(Op=Lop, f=f)
bvp=BVP(Th, pde=pde)
bvp.setDirichlet ( 1,
U=bvp.solve ()

0)

Listing 4.4: 1D BVP with mixed boundary conditions

(AN Stationary convection-diffusion problem in 2D

Stationary convection-diffusion problem

The 2D problem to solve is the following

-@'— Usual BVP 3 : 2D stationary convection-diffusion problem

Find v € HY(Q) such that
—div(aVu) +<{V,Vuy+pu = f inQcR? (4.18)
u = 4 only, (4.19)
u = —4 on Ty, (4.20)
u = 0 on FQO U F21, (421)
a—u = 0 on Fl ) F3 ) FlO (422)
on

where € and its boundaries are given in Figure ??. This problem is well posed if a(z) > 0 and
B(x) = 0.
We choose o, V', § and f in €2 as :

afx) = 0.1+ (z;—0.5)?

V(z) = (—10x9,102;)",

B(z) = 0.01,

f(®) = —200exp(—10((z; — 0.75)% + z3)).
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Stationary convection-diffusion problem

—

=0.25 4

—0.50 1

—0.751

—1.00 1

-1.0 -0.5 0.0 0.5 10

—_

0.75 i
—

—_— T
—_ T2
—_—

—=0.25 1
—=0.50 1
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Figure 4.2: 2D stationary convection-diffusion BVP :
by using matplotlib package

mesh (left) and boundaries (right) representations

The problem (4.18)-(#.22) can be equivalently expressed as the scalar BVP (1.2))-(1.4) :

-

Find u € H'(Q) such that
L(u) =f
u=g”
0
ﬁT A (LRU =gR

where

ﬁScalar BVP 6 : 2D stationary convection-diffusion problem

in Q,

on I'P,

on I'E.

o L:=Ln0,v,3, and then the conormal derivative of u is given by

ou

ou

— = (AVu,n) — bu,n) = a—.

6n£

on

° FD:FQUF4UFQOUF21 andFR=F1UF3UF10

o gD :=4 on 'y, and gD := —4 onI'y and gD :=0on I'yguTly

o af* = gf:=0o0onTF.

The algorithm using the toolbox for solving (4.18)-(4.22)) is the following:

Algorithm 1 Stationary convection-diffusion problem in 2D

: Tp < siMEesH(...)
ca— (x,y) — 0.1+ (y —0.5)(y — 0.5)
. B« 0.01
. f - (IL’,y) — _2006—10((m—0.75)2+y2)
a 0 —10y
(5 o) ()2
: pde «— PDE&Lr(Lop, f)
: bvp « BVP(Tp, pde)
: bvp.serDiricuLET (2, 4.0)
: bvp.serDiricHLET (4, —4.0)

10: bvp.serDiricHLET(20, 0.0)

(

11: bvp.serDiricaLET(21, 0.0)
12: u < bvp.sowvi()

W N =

wt

: Lop « LoPERATOR(2, 2,

© 00 N O

> Get mesh

> Set ’Dirichlet’ condition on I'y
> Set ’Dirichlet’ condition on I'y
> Set ’Dirichlet’ condition on I'yg
> Set ’Dirichlet’ condition on I'9;
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Stationary convection-diffusion problem

2.7
o1
:— -25
=50 5 :, -51 =
:——7 7
-10.0 :——10.3
-12.5 :——12.9

geofile="disk3holes’

af=lambda x,y: 0.1+(y—0.5)*(y—0.5)

Vx=lambda x,y: —10%y

Vy=lambda x,y: 10xx

b=0.01;g2=4;g4=—4;

f=lambda x,y: —200.0xexp(—((x—0.75)*x2+y=%2)/(0.1))

w

meshfile=fc_oogmsh.gmsh.buildmesh2d (geofile ,N, force=True, verbose=0)

pde=PDE(Op=Loperator (dim=2,d=2,A=[[af ,None] ,[None, af|] , c=[Vx,Vy],a0=b) , f=f)
bvp=BVP(Th, pde=pde)

bvp.setDirichlet (2,g2)

bvp.setDirichlet (4,g4)

bvp.setDirichlet (20,0)

Listing 4.5: Setting the 2D stationary convection-diffusion BVP and representation of the numerical solution by using matplotlib package

The numerical solution for a given mesh is shown on figures of Listing [1.5]

Stationary convection-diffusion problem in 3D

Let A = (z4,ya) € R? and C'y ([2min, Zmaz]) be the right circular cylinder along z—axis (2 € [2min, Zmaz )
with bases the circles of radius r and center (x4, Y4, Zmin) and (T4, YA, Zmaz)-
Let © be the cylinder defined by

Q=C 0,0 ([0, 3])\{0 0 0)([07 3)u C?d,l—o.n([oa 3D v C?d,lo.n([ov 3D}

We respectively denote by I'1gpg and I'1gg1 the z = 0 and z = 3 bases of 2.
I'1, T19, Iy and T'y; are respectively the curved surfaces of cylinders C(lo’o)([O,3]) C(oo ([0,3]),

C(o —0. 7)([ 3]) and C(o 0.7) ([0,3]).
The domain 2 and its boundarles are represented in Figure 1.3

rd=2 lab=1 rd=2.lab=10
1.d=2|ab=10

rd=2lab=21
rd=2 lab=100
rd=2lab=101

rd=2lab=21
rd=2lab=100
rd=2lab=101

Figure 4.3: 3D stationary convection-diffusion BVP : all boundaries (left) and boundaries without I'y
(right) representations by using Mayavi package

The 3D problem to solve is the following
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Stationary convection-diffusion problem

°Q° Usual BVP 4 :
3D problem : Stationary convection-diffusion Find u € H2(2) such that

—div(aVu) +(V,Vuy+pu = f inQcR? (4.23)

0
a—u + asu = goo on I'gg, (4.24)

on

0
Ozﬁ + a1y = @go1 On Fgl, (425)

on
2% = 0 onIV (4.26)

where T'V = T'; U T'19 U I'1go0 U I'1g01. This problem is well posed if a(z) > 0 and B(zx) > 0.
We choose agg = as1 = 1, go1 = —gog = 0.05 § = 0.01 and :

alz) = 0.7+x3/10,
V((B) = (—10.’172, 101’1, 10$3)t,
f) = —800exp(—10((x; — 0.65)% + 23 + (x3 — 0.5)?))

+800 exp(—10((x; + 0.65)2 + 23 + (x5 — 0.5)?)).

The problem (4.23)-(#.26) can be equivalently expressed as the scalar BVP (T1.2))-(1.4) :

fgScalar BVP 7 :
3D stationary convection-diffusion problem as a scalar BVP Find u € H?(Q) such that

-

L(u) =f in Q,

ou

+ aftu =g

R

on TZ.

ong

where

o L:=La0,v,3, and then the conormal derivative of u is given by

ou ou

o T =T1 Ul Ul Ul Ul U0 (and TP = )
[ ]

0 onI'yulipulig v oo

af* =

1 on F20 U F21

0 on I'y UT'19 U T1000 U I'1001
gR = 0.05 on I'yq,

—0.05 on Fgo

We give respectively in Listing [4.6] the corresponding Python codes and the numerical solution for a
more refined mesh.
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2D electrostatic BVPs

3,60 3,60

-1,62 -1,62
-6,83 -6,83
-12,1 -12,1
-17,3 -17,3

-22,5

verbose=10
geofile="cylinder3holes’
af=lambda x,y,z: 0.7+z/10
Vx=lambda x,y,z: —10xy;Vy=lambda x,y,z: 10%x;Vz=lambda x,y,z: 10xz
f=lambda x,y,z: —800.0xnp.exp(—10%((x—0.65)*x2+ysxy+(z—0.5)*%2))+\
800.0%np.exp(—10%((x+0.65)*+2+yxy+(z—0.5) *x%2))
b=0.01
meshfile=fc_oogmsh.gmsh.buildmesh3d (geodirtos.sep+geofile+’.geo’ N, force=True, verbose=0,meshdir=meshdir)
Th=siMesh (meshfile)
pde=PDE(Op=Loperator (dim=3,d=3,A=[|af ,None, None] ,[None, af ,None| ,[None,None, af |] , ¢=[Vx,Vy,Vy]|,a0=b) , f=f)
bvp=BVP(Th, pde=pde)
bvp.setRobin (20,+0.05,ar=1)
bvp.setRobin(21,—0.05,ar=1)

Listing 4.6: Setting the 3D stationary convection-diffusion BVP and representation of the numerical solution by using Mayavi package

2D electrostatic BVPs

In this sample, we shall discuss electrostatic solutions for current flow in resistive media. Consider a
region 2 of contiguous solid and/or liquid conductors. Let j be the current density in A/m?. It’s satisfy

divj =0, in Q. (4.27)

j=cE, inQ. (4.28)

where o is the local electrical conductivity and E the local electric field.
The electric field can be written as a gradient of a scalar potential

Q
o
4=
=
9
2
o
-
Q.
e
2
(2]
=
—
5=
<
(=
.2
-
Q
(]
>
e
o
(S}
>
-
(]
S
=
s
(]
-
(%]
=
%
<

E=—-Vy, inQ. (4.29)

Combining all these equations leads to Laplace’s equation
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div(c V) =0 (4.30) "
Q
In the resistive model, a good conductor has high value of ¢ and a good insulator has 0 < ¢ « 1. This 5
table shows the resistivity p and the conductivity o of various materials at 20°C" I
-
2
Material p(Q.m) at 20°C o(S/m) at 20°C <
Carbon (graphene) | 1.00 x 1078 1.00 x 108 g
Gold 2.44 x 1078 4.10 x 10® °
Aluminium 2.82 x 107% 3.50 x 107 Q
Zinc 5.90 x 1078 1.69 x 107 e
Drinking water 2.00 x 10* to 2.00 x 103 5.00 x 10™* to 5.00 x 1072 <
Silicon 6.40 x 10? 1.56 x 1072
Glass 1.00 x 10! to 1.00 x 10'® | 10~ to 10~ 11
Air 1.30 x 106 to0 3.30 x 10'6 | 3 x 10715 to 8 x 10715

As example, we use the mesh obtain with gmsh from square4holes6dom.geo file represented in

Figure [4.4]
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2D electrostatic BVPs

[E—) 1.00 - —_—ly — T

Qs 0.75 4 [E} s
[ — h — T
3 O
CJ Q20

_—I5 = T2

0.25 0.251

@
&)

0.00

—0.25

—0.25 O

—0.504 —0.50 4

—0.751 —0.75 1

-1.00 A -1.00 A

T T T T T T T T T T
-1.0 -05 0.0 0.5 10 -1.0 -0.5 0.0 0.5 10

Figure 4.4: Mesh from squared4holes6dom.geo, domains representation (left) and boundaries (right)

We have two resistive medias
Qa:Qlo and QbZQQ()UQQUQ4UQ6U98.
In Q, and €2 the local electrical conductivity are respectively given by

(0. = 104, imnQ,
7Y o = 107 inQ,

We solve the following BVP
-\@/— Usual BVP 5 : 2D electrostatic problem

Find ¢ € HY(Q) such that
div(c V) =0 in €, (4.31)
p=0 onI's uT7, (4.32)
v =12 onTy UTs, (4.33)
0
aa—i -0 on T (4.34)

The problem (4.31))-(4.34) can be equivalently expressed as the scalar BVP (1.2))-(1.4) :

-

éScalar BVP 8 : 2D electrostatic problem
Find ¢ € HY(Q) such that

L(p)=0 in Q,

¢ =g" on I'?,

where

o L:=L;10,v,3, and then the conormal derivative of ¢ is given by

o ._ _ _ %
%.—<AV¢,1’L> <bg0,n>—oan.

e I'P =T, uUl'3suls Ul and I'® = I';y. The other borders should not be used to specify boundary
conditions: they do not intervene in the variational formulation and in the physical problem!
e gP:=0onT3uTl7 and g” :=120n T UTs.

o aff = gff:=0onTTF.
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2D electrostatic BVPs

To write this problem properly with FC-VFEMP; toolbox, we split (4.31]) in two parts

div(eo, V) =0 in Q,
diV(O’bV(p) =0 in Qb

and we set these PDEs on each domains. This is done in Python Listing [£.7}

Listing 4.7: Setting the 2D electrostatic BVP, Python code

if verbose >=10:
return

meshfile=fc_oogmsh.gmsh.buildmesh2d (geodir+os.sep+geofilet+’.geo’ N, force=True)
Th=siMesh (meshfile)
if verbose>=2:

print ('_____ Mesh_sizes_:_nqg=%d, _nme=%d, _

h=%.3¢ ’%(Th.nq,Th.get nme() ,Th.get h()))
print(’2._Setting_2D_Electrostatic _BVP”)

pde=PDE(Op=Loperator (dim=2,A=[[sigma2 ,None]| ,[None,sigma2]]))
bvp=BVP(Th, pde=pde)

We show in Figures and respectively the potential ¢ and the norm of the electric field E.

Figure 4.5: Test 1, potential ¢
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4.3.2D electrostatic BVPs

Figure 4.6: Test 1, norm of the electrical field £
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Chapter 5

Vector boundary value problems

Elasticity problem

BBE  General case (d = 2,3)

We consider here Hooke’s law in linear elasticity, under small strain hypothesis (see for example [?]).
For a sufficiently regular vector field u = (uy, ..., uq) : © — RY, we define the linearized strain tensor
€ by

e(u) = % (V(u) + V' (w).

We set €= (6117 €99, 2612)t in 2d and € = (611, €99, €33, 2612, 2623, 2613)t in 3(17 with eij(u) = % (gg’ + ZZ]>
j i
Then the Hooke’s law writes

g = Ce,

where g is the elastic stress tensor and C the elasticity tensor.
The material is supposed to be isotropic. Thus the elasticity tensor C is only defined by the Lamé
parameters A and p, which satisfy A + p > 0. We also set v =2pu+ A. For d =2 or d = 3, C is given by

co ()\112 + 2uly 0) or Co (Ang +2ulz 0 >
0 K/ 3x3 0 m3) 66’

respectively, where 1, is a d-by-d matrix of ones, and |5 the d-by-d identity matrix.
For dimension d = 2 or d = 3, we have:

Gas(W) = 2preas(u) + Atrle()das Vo B e [1,.d]

The problem to solve is the following

-
Ny

-@'— Usual vector BVP 2 : Elasticity problem
Find u = H2(Q)d such that

—div(e(u)) = f, inQcRY (5.1)
ou)n = 0 onT%E
u = 0 onIP.

Now, with the following lemma, we obtain that this problem can be rewritten as the vector BVP



Elasticity problem

defined by (1.14) to (1.16).

Lemme 5.1

Let H be the d-by-d matrix of the second order linear differential operators defined in (1.10]) where
H@yﬁ = EAa,ﬁ,Op)o, V(O[,IB) € Hl, d]]Q, Wlth

(Aa’ﬁ)kJ = H5a65kl + ,U/(Skﬁdla + )\5ka5l67 V(k,l) S [[1, d]]Q. (5.4)
then
H(u) = —divo(u) (5.5)
and, Yo € [1,d],
ou
anHQ - (a(u)'n)a- (56)

The proof is given in appendix ?7. So we obtain

:5 Vector BVP 3 : Elasticity problem with H operator in dimension d = 2
ord=3
Let ‘H be the d-by-d matrix of the second order linear differential operators defined in where
V(Ot,ﬁ) € ﬂl,dﬂQ, Haﬁ = EAO"B,O,O,Oa with
e for d =2,
11_ (v O 12 _ (0 A 201 _ (0 n 22 _ (# 0
A _(0 u)’A _(u 0)’A _(AO’A ~\0 7
e for d = 3,
v 0 O 0 A O 0 0 A
At =10 p O, AY2=1|p 0 0], A3=10 0 0
0 0 u 0O 0 O w0 0
0 p O w0 0 0 0 O
A2t =X 0 O, A22=10 ~ 0], A23=1(0 0 M|,
0O 0 O 0 0 wu 0 u O
0 0 u 0 0 O pw 0 0
At =10 0 O, A2 =10 0 ul|, A3=10 p 0].
A0 O 0 A 0 0 0 v
The elasticity problem to can be rewritten as :
Find u = (u1,...,uq) € (H3(Q))? such that
H(u) =f, in Q, (5.7)
n on TR = TR, Va e [1,d] (5.8)
o,
uq =0, on T2 =TP vacel[l,d].

For example, in 2d, we want to solve the elasticity problem to where €2 and its boundaries are
given in Figure [5.1

The material’s properties are given by Young’s modulus F and Poisson’s coefficient v. As we use
plane strain hypothesis, Lame’s coefficients verify

__F by — 2+ A
F=sa+wy T 0rna—2v 777

The material is rubber so that E = 21.10°Pa and v = 0.45. We also have f = £ — (0,—1)" and we
choose T =Tt T2 T3, TP =T4.
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5.1.Elasticity problem




Elasticity problem

—

T T T T
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Figure 5.1: Domain and boundaries

Listing 5.1: 2D elasticity, Python code

mu= E/(2%(1+nu))

lam = Esnu/((14+nu)*(1—2%nu))

gam=lam+2xmu

uex=[lambda x,y: cos(2xx+y), lambda x,y: sin(x—3xy)]

f=[lambda x,y: 4xlamxcos(2*x + y) + 9*muxcos(2+«x + y) + 3xlamxsin(—x + 3xy) +
3xmukxsin(—x + 3xy) ,
lambda x,y: 2xlam*cos(2%x + y) + 2*xmuxcos(2*x + y) — 9xlamxsin(—x + 3xy) —

19smuxsin(—x + 3xy) |

g2=[lambda x,y: —3kxlamxcos(—x + 3xy) — 2xlam=*sin (2xx + y) — 4smuxsin (2xx + y),

lambda x,y: mux(cos(—x + 3xy) — sin(2%x + y))]

print (’ )
Th=HyperCube (2,[2%N,20%N] , mapping=mapping)
print ('_____ Mesh_sizes_:_ng=%d, .nme=%d, _h=%.3e ’%(Th.nq,Th.get nme() ,Th.get h()))

Hop .H[0][0] = Loperator (d=2,A=[[gam, None| , [None ,mu]])
Hop.H[0][1]= Loperator (d=2,A=[[None,lam| , [mu, None|])
Hop.H[1][0]= Loperator (d=2,A=[[None,mu] ,[lam,None|])
Hop.H[1][1]=Loperator (d=2,A=[[mu, None| ,[None,gam]])
pde=PDE(Op=Hop, f=[0,—1])

bvp=BVP(Th, pde=pde)

bvp.setDirichlet (1,[0,0])

One can also use the Python function StirrELasHoPERATOR from rc_ vFEMP1.0PERATORS module to
build the elasticity operator :

Hop=StiffElasHoperator(2,lam,mu)

For a given mesh, its displacement scaled by a factor 50 is shown on Figure
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Elasticity problem

0.016
0.014

0.012

QEEEERARRRRERRREARARS EERENERIET | -

0.006
0.004

0.002

-8

0.0 2.5 5.0 7.5 10.0 12,5 15.0 17.5 20.0

Figure 5.2: 2D elasticity problem: mesh displacement scaled by a factor 50 (left) and norm of the
displacement (right)

3D example

Let Q = [0,5] x [0,1] x [0,1] = R3. The boundary of Q is made of six faces and each one has a unique
label : 1 to 6 respectively for faces x1 = 0, x1 = 5, 2 = 0, x2 = 1, z3 = 0 and z3 = 1. We represent
them in Figure [5.3]
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5. Vector boundary value problems

5.1.Elasticity problem

Figure 5.3: Domain and boundaries

We want to solve the elasticity problem (5.1) to (5.3) with T'? = T'y, I'V = U?:Q I'sand f =z —
(0,0,—1)%.

Listing 5.2: 3D elasticity, Python code

mu= E/(2x(1+nu))

lam = Esnu/((14+nu)*(1—2%nu))

gam=lam+2xmu

L=5;N=7

print (’ )
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Stationary heat with potential flow in 2D
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Figure 5.5: Domain and boundaries

Th=HyperCube (3 ,[L«N,N,N]| , mapping=mapping)

print ('_____ Mesh_sizes_:_ng=%d, .nme=%d, _h=%.3¢ ’%(Th.nq,Th.get nme() ,Th.get h()))
pde=PDE(Op=Hop, {=[0,0, —1])

bvp=BVP(Th, pde=pde)

bvp.setDirichlet (1,{0,0,0])

The displacement scaled by a factor 2000 for a given mesh is shown on Figure [5.4]

0.00035
0.00030

0.00025

0.00020
El
0.00015

0.00010

0.00005

Figure 5.4: 3D elasticity problem: mesh displacement scaled by a factor 2000 (left) and norm of the
displacement (right)

Stationary heat with potential flow in 2D

Let T'; be the unit circle, I'1g be the circle with center point (0,0) and radius 0.3. Let I'yg, I'aq, T'a2 and I'ag
be the circles with radius 0.1 and respectively with center point (0, —0.7), (0,0.7), (=0.7,0) and (0.7,0).
The domain © = R? is defined as the inner of I'; and the outer of all other circles (see Figure .

The 2D problem to solve is the following
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5.2.0 3D example




Stationary heat with potential flow in 2D

-

-\@‘ Usual BVP 6 : 2D problem : stationary heat with potential flow

Find u € H%(2) such that
—div(aVu) +{(V,Vuy+pBu = 0 in Qc R? (5.10)
u = 20xxy on gy, (5.11)
u = 0 on FQQ () F23, (512)
0
l = 0 on Fl ) FlO ) FQO (513)
on

where  and its boundaries are given in Figure This problem is well posed if a(z) > 0 and
B(z) = 0.
We choose o and § in Q as :

alz) = 0.1+,
B(x) = 0.01

The potential flow is the velocity field V' = V ¢ where the scalar function ¢ is the velocity potential
solution of the 2D BVP (5.14)-(5.17)

-\@’- Usual BVP 7 : 2D velocity potential BVP

Find ¢ € H?(Q) such that
~A¢p = 0 inQ, (5.14)
¢ = —20 on Iy, (5.15)
¢ = 20 on Dy, (5.16)
¢
= = 0oml ulyuly (5.17)

Then the potential flow V is solution of ([5.18

-

-\@‘ Usual vector BVP 3 : 2D potential flow
Find V = (V,V3) € HY(Q) x H(Q) such that

V = V¢ inQ, (5.18)

For a given mesh, the numerical results are represented in Figure |5.6
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Stationary heat with potential flow in 2D
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Figure 5.6: Heat u (top left), velocity potential ¢ (top right), norm of the potential flow (middle left),
potential flow V' colorized with heat u (middle right and bottom)

Now we will present two manners of solving these problems using FC-VFEMP; codes.

SWAE  Method 1 : split in three parts

The 2D potential velocity problem ([5.14)-(5.17) can be equivalently expressed as the scalar BVP (1.2))-
(L.4) :

5.2.Stationary heat with potential flow in 2D
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Stationary heat with potential flow in 2D “

fgScalar BVP 9 : 2D potential velocity

Find ¢ € H?(Q) such that
L(g) =f in Q,
¢ ng on FDy
6_(;5 + afp =g% on I'f.
8n£

where

o L:=L0,0,, and then the conormal derivative of ¢ is given by

20 AV §m)— bpymy = 2.

ong on

. @) =0
e TP =Ty uTly
o FR=F1UF23UF22

gP := 20 on Ty, and ¢g” := —20 on I'y;

e g% =a® := 0 on I'’. (Neumann boundary condition)
The code using the package for solving (5.14))-(5.17) is given in Listing 5.3

Listing 5.3: Stationary heat with potential flow in 2D, Python code (method 1)

split in three parts

af=lambda x,y: 0.1+y*%2

gD=lambda x,y: 20xy

b=0.01

geofile="diskb5holes.geo’

Th=siMesh (meshfile)

print(’____. Mesh_sizes.:ng%d, .nme=%d , _h=%.3e¢’%(Th.nq,Th.get nme() ,Th.get h()))
bvpVelocityPotential=BVP(Th, pde=PDE(Op=Lop) )
bvpVelocityPotential.setDirichlet (20,+20.)
bvpVelocityPotential.setDirichlet (21,—20.)
print ( ’xxx_Solving_2D_velocity_potential _BVP’)
print ( 'sxx_Setting _2D_potential _flow_operator’)

5.2.1 Method 1 :

Now to compute V', we can write the potential flow problem (5.18) with #H-operators as
Vi ¢
V= =B
<V2) <¢>

B— (ﬁo2,02,(1,o)t,1 0 )
0 L0,,0,,(0,1)t,0
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where

The code using the package for solving this problem is given in Listing

Listing 5.4: Stationary heat with potential flow in 2D, Python code (method 1)
Hop.H[0][0] = Loperator (dim=dim,c=[1,0])
Hop.H[1][1]= Loperator (dim=dim,c=[0,1])
print ( 'sxx_Applying_2D_potential _flow_operator’)
print ( xxx_Setting _2D_stationary_heat _BVP_with_potential_flow ”)

5.2.Stationary heat with potential flow in 2D

Obviously, one can compute separately V1 and V.
Finally, the stationary heat BVP (5.10)-(5.13) can be equivalently expressed as the scalar BVP (1.2)-

T3 :
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Stationary heat with potential flow in 2D

-

-\@‘ Usual BVP 8 : 2D stationary heat
Find u € H%(2) such that

where
o L:=L o 0 , and then the conormal derivative of u is given by
s
0
0 0
% = (AV u,n) — (bu,n) = aa%.
e f:=0

o TP =Ty uT9 Ul

o FR:F1UF10UF20

e gP(x,y) :=20y on T'yy, and gP := 0 on Tyy U a3

e gf:=0and a® :=0on I'F
The code using the package FO-vFEMP; for solving ([5.10))-(5.13) is given in Listing /5.6

Listing 5.5: Stationary heat with potential flow in 2D, Pythoncode (method 1)
bvpHeat=BVP(Th, pde=PDE(Op=Lop) )
bvpHeat.setDirichlet (21,gD)
bvpHeat.setDirichlet (22, 0)
bvpHeat.setDirichlet (23, 0)
print ( ’xxx_Solving_2D_stationary_heat _BVP_with_potential_flow ”)

WA Method 2 : have fun with H-operators

We can merged velocity potential BVP (5.14)-(5.17) and potential flow to obtain the new BVP

-@'— Usual vector BVP 4 : Velocity potential and potential flow in 2D
Find ¢ € H?(Q2) and V = (V1,V3) € H () x H!(Q) such that

v, av,\ .

- <ax T ay) = 0 in Q, (519)
o :

V- W = 0 in Q, (5.20)
o :

Vy— - 0 in Q, (5.21)

¢ = —20 onTa, (5.22)

¢ = 20 on Iy, (5.23)

% _ 0 onTyulyuT (5.24)

on onliulogzUlsg .

We can also replace (5.19) by —A¢ = 0.

¢
Let w = | V1 |, the previous problem (5.19)-(5.24) can be equivalently expressed as the vector BVP
Vs
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Stationary heat with potential flow in 2D

Find w = (w1, w2, w3) € (H2(2))3 such that

H(w) =f
Wy =g£

ow R R
o + A Wo =4,

ﬁ Vector BVP 4 : Velocity potential and potential flow in 2D

on 'Y vae[1,3], (5.26)

on T2 Vae[l,3],

in Q,

where T'® = T2 = (¥ for all a € {2,3} (no boundary conditions on V; and V) and

e 7{ is the 3-by-3 operator defined by

0 L£0,—e100 L£0,—-e5,00
H=1|Loo-e,0 Looo1 0
L£0,0,—e5,0 0 L£0,00,1
its conormal derivative are given by
(3'w1 (9’11)2 a'w3
—— =0, — = WaNq, = ws3ny,
anq{l,l a’n/;.(l 2 anﬂm
0 0 0
w1 _ 0, w2 _ 0, w3  _ 0
6nH211 6nH2 2 anyze_
6w1 6w2 6w3
=Y, = O, =
&nHS’l (3774.[3 2 anH&S
So we obtain s
ow def 0wa a¢
= =(V,n) = —, 5.28
onqy, ;1 ony, < ) on (5.28)
and 2 2
wo_ . ._ (5.29)
(9774.[2 an%

From ([5.29)), we cannot impose boundary conditions on components 2 and 3.

e f:=0
L] FID = FQO U Fgl and F{% = Fl ) FlO ) FQQ ) Fgg
. ng := 20 on I'yg, and ng = —20 on I'y;

e gf=all:=0onT#

The solution of this vector BVP is obtain by using the Python code is given by Listing ?7.

Listing 5.6: Stationary heat with potential flow in 2D, Python code (method 1)

Hop .H[0][1]= Loperator (dim=dim,b=[—1,0])
Hop.H[0][2]= Loperator (dim=dim ,b=[0, —1])
Hop.H[1][0]=Loperator (dim=dim,c=[—1,0])
Hop .H[1][1]= Loperator (dim=dim, a0=1)
Hop.H[2][0]= Loperator (dim=dim,c=[0, —1])
Hop.H[2][2]= Loperator (dim=dim ,a0=1)
bvpFlow=BVP(Th, pde=PDE(Op=Hop) )
bvpFlow. setDirichlet (20,20 ,comps=[0])
bvpFlow. setDirichlet (21,—20,comps=[0])

print ( "xxx_Solving _2D_potential_velocity /flow_BVP’)

print ( 'xxx_Setting _2D_stationary_heat _BVP_with_potential_flow ”)

phi=U[0]

Lop=Loperator (dim=d,d=d ,A=[[af ,None] ,[None, af]] , c=V, a0=b)

Compiled on 2017/06/23 at 08:02:45

(2]
=
2
]
<)
S
=
)
=
®
>
>
1Y
&
]
=
=
<}
o
3
<)
e
O
D
>
10

(2]
-
(=}
-
]
-
(]
Q.
¢
xR
=
5=
2
e
=
(¥
(]
>
(]
=
(o]
=]
o
=
=
=
=
%
T9)
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Stationary heat with potential flow in 3D

Stationary heat with potential flow in 3D

Let © < R? be the cylinder given in Figure

Figure 5.7: Stationary heat with potential flow : 3d mesh

The bottom and top faces of the cylinder are respectively I'1g00 U 1020 W' 1021 and T'aggg UT2020 UT'2021 -
The hole surface is I'1g U I'1; U I's; where I'1g U I'1; is the cylinder part and I's; the plane part.
The 3D problem to solve is the following

3@'— Usual BVP 9 : 3D stationary heat with potential flow

-

(2]
-
(=}
-
]
-
(]
Q.
¢
xR
=
5=
2
e
=
(¥
(]
>
(]
=
(o]
=]
o
=
=
=
=
%
T9)

Find u € H?(2) such that
—div(aVu) +(V,Vuy+pu = 0 in QcR?, (5.30)
u = 30 on F1020 ) Fgogo, (531)
u = 106‘2_1|>0'5 on FlOa (532)
0
% = 0 otherwise (5.33)

where () and its boundaries are given in Figure This problem is well posed if a(z) > 0 and
B(zx) = 0.
We choose o and S in 2 as :

af@) = 14 (z3—1)%,
B(z) = 0.01

(2]
=
<
N
o
=
(=5
(]
=
(]
>
b
9
1]
©
c
=
(=}
2
f.
(=}
=
Q
(]
>
10

The potential flow is the velocity field V' = V ¢ where the scalar function ¢ is the velocity potential
solution of the 3D BVP (5.34)-(5.37)

-\@'- Usual BVP 10 : 3D velocity potential

Find ¢ € H'(Q) such that
“A$ = 0 mQ, (5.34)
¢ = 1 onI'1p21 U o001, (5.35)
¢ = —1 onI'20 v I'2020, (5.36)
0
a—i = 0 otherwise (5.37)

5.3.Stationary heat with potential flow in 3D

Then the potential flow V is solution of (5.38])
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Stationary heat with potential flow in 3D “.

¢F Usual vector BVP 5 : 3D potential flow
Find V = (V,V3,V3) e H(Q) x HY(Q) such that

= V¢ inQ,

For a given mesh, the numerical result for heat u is represented in Figure velocity potential ¢ in
Figure [5.9] and potential flow V are shown in Figure [5.10)
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5.3.Stationary heat with potential flow in 3D
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Figure 5.9: Velocity potential ¢
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Figure 5.10: Potential flow V'

Now we will present two manners of solving these problems using FC-VFEMP; codes.

5.3.Stationary heat with potential flow in 3D
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Stationary heat with potential flow in 3D n
Method 1 : split in three parts

The 3D potential velocity problem ([5.34)-(5.37) can be equivalently expressed as the scalar BVP (1.2))-
[) -

fgScalar BVP 10 : 3D potential velocity
Find ¢ € H'(Q) such that

where

o L:=L0,0,0, and then the conormal derivative of ¢ is given by

¢ ¢ 0
— =(AV ¢,n) — (bp,n) = —.
2 Vo oy = 2 2
=
o
o f(z):=0 =
=)
o I'P =T020 U 1021 U Tap20 U Tag21 =
Cd
e T® =Ty Ul Ul Ul UTgeo U Ta000 o
e gP :=10nTyp21 U021, and g := —1 on T'1g20 U 2020

e g% =a®f := 0 on I'. (Neumann boundary condition)
The code using the package for solving (5.34)-(5.37)) is given in Listing 77

Listing 5.7: Stationary heat with potential flow in 3D, Python code (method 1)

gD=lambda x,y,z: 10%(np.abs(z—1)>0.5)

a=lambda x,y,z: 1+(z—1)**2

b=0.01

geofile=’cylinderkey . geo’

print (’ )
bvpFlow=BVP(Th, pde=PDE(Op=Lop) )

bvpFlow. setDirichlet (1021 ,1.)

bvpFlow.setDirichlet (2021 ,1.)

bvpFlow.setDirichlet (1020,—1.)

bvpFlow.setDirichlet (2020, —1.)

print ( "xxx_Solving _3D_potential_velocity /flow_BVP’)

5.3.1 Method 1 :
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Now to compute V', we can write the potential flow problem ([5.38))

e with H-operators as

5.3.Stationary heat with potential flow in 3D

v, o}

V=|Vy|=Blo¢

V, ¢

where
L£0,,04,(1,0,0)%,1 0 0
B = 0 L0,,05,(0,1,0)%,0 0
0 0 L0, .05,(0,0,1)t,0
e with L-operators as

Vi L0,.,05,(1,0,0)t,0(9)
V=1V2]=Vo=1Lo,0,01,000(0)
Vs L0,.05,00,0,1),0()

The code using FC-VFEMP; package for solving this problem with £-operators is given in Listing [5.8]
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Stationary heat with potential flow in 3D

Listing 5.8: Stationary heat with potential flow in 3D, Python code (method 1)

Lop=Loperator (dim=dim,c=[1,0,0])

V[0]=Apply (Lop,Th, phi, solver=solver , perm=perm)

print ( "sxx__2)_Computing V[1] )

V[1]=Apply (Lop,Th, phi,solver=solver ,perm=perm)

print ( "sx*__3)_Computing_V[2] )

V[2]=Apply (Lop,Th, phi, solver=solver ,perm=perm)

V=np.array (V)

print ( 'xxx_Set_3D_stationnary_heat BVP_with_potential_flow )

Finally, the stationary heat BVP ([5.30)-(5.37) can be equivalently expressed as the scalar BVP (L.2)-
() -

fg Scalar BVP 11 : 3D stationary heat
Find u € HY(£2) such that

where
o L:=L o 0 0 , and then the conormal derivative of u is given by
0 a 0|0V
0 0 «
0 0
i = (AV u,n) — (bu,n) = aa%.
e f:=0

D
o '™ =T'1020 U I'a020 U T'10
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o ' =T UT11 UT31 U000 U Tio21 U T2000 U T2021
e g (z,y,2) := 30 on I'gep U agag, and gP(z,y, 2) := 10(]z — 1] > 0.5) on '
e gf:=0and a:=0on I'F

The code using the package for solving —(??) is given in Figure

Listing 5.9: Stationary heat with potential flow in 3D, Python code (method 1)

bvpHeat=BVP(Th, pde=PDE(Op=Lop) )

bvpHeat.setDirichlet (1020,30.)

bvpHeat.setDirichlet (2020,30.)

bvpHeat.setDirichlet (10, gD)

print ( 'sxx_Solve_3D_stationnary_heat BVP_with_potential_flow )

Method 2 : have fun with H-operators

To solve problem ([5.30)-(5.33)), we need to compute the velocity field V. For that we can rewrite the
potential flow problem ((5.34)-(5.37), by introducing V = (V1,V3,V3) as unknowns :
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Stationary heat with potential flow in 3D n

-

-\@/— Usual vector BVP 6 : Velocity potential and velocity field in 3D

Find ¢ € H2(Q) and V € H(Q)® such that
- (66‘;1 + 68‘22 + a;?) = 0 inQ, (5.39)
vV, — g—i’ - 0 inQ, (5.40)
Vy— Z—Z’ - 0 inQ, (5.41)
Vs — g—f - 0 inQ, (5.42)
with boundary conditions (5.35) to (5.37]).

We can also replace (5.39) by —A¢ = 0.

¢
Let w = “;1 , the previous PDE can be written as a vector boundary value problem (see section
2
Vs
where the H-operator is given by
H(w) =0 (5.43)
with
Hi1 =0, Hi2 = L0,—e,,0,0s H1,3 = L0,—€,0,0 Hia = L0,—e3,0,0 (5.44)
Ho1 = L£0,0,—e1,05 Hao = L0001, Ha3 =0, Hoa =0, (5.45)
Hs1 = L0,0,—es,0 Hzz =0, Hs3 = L0001, Hza =0, (5.46)
Ha1 = L0,0,—es,0 Hypo =0, Haz =0, Haa = L0001, (5.47)
and € = (1,0,0)t, €y = (0, 1,0)t, €3 = (O, 0, 1)t.
The conormal derivatives are given by
6w1 _ 07 &wl _ 07 é’wl _ 07 6w1 _ 0,
6nym 6nH2,1 é’nHS,l é’nﬂm
0 0 0 1%
w2 =Vin, i:(h &zo7 ﬁz(),
anﬂl,z 6n7.[2,2 6nH3,2 6nH4,2
0 0 0 1%
o = V2n27 s = 07 s = 07 e = 07
677/7.(113 &nym énm’s (3n7.[4,3
0 0 0 0
2 — Vin,, P o, Y1y, Y1 _,
a77”;'-[1,4 an'H2,4 &n/ﬂs,zl an?‘-l4,4
So we obtain
L ow
Yoa =V =(Vén), (5.48)
a=1 anHLO‘
and A A .
ow ow ow
o _ o« e —0. (5.49)
;1 &n% o ;1 6nH31a a1 (777/;.[4@

From , we cannot impose boundary conditions on components 2 to 4. Thus, with notation of section
[1.2] we have I =T =TV =T with g}’ = ¢}V = g¥ = 0.
To take into account boundary conditions (5.35) to (5.37), we set I'’ = T'1920 U T'1o21 U T'agao U Daga1,
F{V = F\F? and ng =dr 0202020 T 5F1021UF2021’ g{V =0.
The operator in is given by La10,v,3. The conormal derivative a(% is
ou ou

The code using the package for solving (5.39)-(5.42)) is given in Listingm
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Stationary heat with potential flow in 3D “

Listing 5.10: Stationary heat with potential flow in 3D, Python code (method 2)

Hop.H[0][1]= Loperator (dim=dim ,b=[—1,0,0])
Hop.H[0][2]= Loperator (dim=dim ,b=[0,—1,0])
Hop .H[0][3]= Loperator (dim=dim,b=[0,0, —1])
Hop.H[1][0]= Loperator (dim=dim,c=[—1,0,0])
Hop.H[1][1]=Loperator (dim=dim,a0=1)
(
(
(

Hop .H[2][0]= Loperator (dim=dim,c=[0,—1,0])
Hop.H[2][2]= Loperator (dim=dim ,a0=1)
Hop.H[3][0]=Loperator (dim=dim,c=[0,0,—1])

Hop .H[3][3]= Loperator (dim=dim, a0=1)

bvp=BVP(Th, pde=PDE(Op=Hop) )

bvp.setDirichlet (1021,1.,comps=[0])
bvp.setDirichlet (2021,1.,comps=[0])
bvp.setDirichlet (1020, —1.,comps=[0])
bvp.setDirichlet (2020, —1.,comps=[0])

print ( "xxx_Solving _3D_potential_velocity /flow_BVP’)
V=np.array ([U[1],U[2],U[3]])

phi=U[0]

print ( "xxx_Set_3D_stationnary_heat _BVP_with_potential_flow )
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