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Abstract

FC-VFEMP; is an object-oriented Matlab toolbox dedicated to solve scalar or vector boundary value
problem (BVP) by P!-Lagrange finite element methods in any space dimension. It integrates the Fc-
SIMESH toolbox which allows a great flexibility in graphical representations of the meshes and datas on
the meshes.

This toolbox also contains the techniques of vectorization presented in [2] and extended in [I] and
allows good performances when using finite elements methods.
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The notations of [4] are employed in this section and extended to the vector case.

1.1 Scalar boundary value problem

Let  be a bounded open subset of R¢, d > 1. The boundary of € is denoted by I
We denote by Lape.a, = £ : H3(Q) — L?() the second order linear differential operator acting on
scalar fields defined, Yu € H2(2), by

Lape.a ()2 —div(AV u) + div (bu) + (V u,¢) + agu (1.1)

where A € (L*(Q))4*4, b e (L*(Q))%, ce (L*(Q))? and ag € L*(12) are given functions and (-, -) is the
usual scalar product in R?. We use the same notations as in the chapter 6 of [4] and we note that we can
omit either div (bu) or (Vu,¢) if b and ¢ are sufficiently regular functions. We keep both terms with b
and ¢ to deal with more boundary conditions. It should be also noted that it is important to preserve the
two terms b and ¢ in the generic formulation to enable a greater flexibility in the choice of the boundary
conditions.

Let TP, I'® be open subsets of ', possibly empty and f € L*(Q), g” € H/2(I'P), ¢% e L*(I'F),
a® e L*(T!) be given data.

A scalar boundary value problem is given by

:!Scalar BVP 1 : generic problem
Find v € H2() such that

E(u :f in Q,
u =g on I'?, (1.3)
ai_uﬁ + afu =g* on T'%. (1.4)

The conormal derivative of u is defined by

B 22 ey — i) (1.5)
0n£

The boundary conditions (|1.3) and (1.4)) are respectively Dirichlet and Robin boundary conditions.
Neumann boundary conditions are particular Robin boundary conditions with o = 0.
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Scalar BVP 4

To have an outline of the FC-VFEMP; toolbox, a first and simple problem is quickly present. Expla-
nations will be given in next sections.
The problem to solve is the Laplace problem for a condenser.

-

—\@’- Usual BVP 1 : 2D condenser problem

Find v € H2() such that
~Au = 0 in Qc R?, (1.6)
= 0 on F1, (17)
—12 on Fgg, (18)
u = 12 on Fgg, (19)

where  and its boundaries are given in Figure [[.]

T

_I‘gH

99

-10

Figure 1.1: 2D condenser mesh and boundaries (left) and numerical solution (right)

The problem (|1.6)-(1.9) can be equivalently expressed as the scalar BVP (1.2)-(1.4) :

f!Scalar BVP 2 : 2D condenser problem
Find u € H*(Q) such that

in Q,

f
gD on FD = Fl () Fgg () Fgg.

L(u

u

where £ := L 0,0,0, f =0, and

gP? :=00onTy, gP := —12 0n Tgs, g° := +12 on I'yg

In Listing [I9)a complete code is given to solve this problem.

meshfile=gmsh.buildmesh2d(’ condenser?,10); % generate mesh
Th=siMesh(meshfile); % read mesh
Lop=Loperator(2,2,{1,0;0,1},[L[I.[D;
pde=PDEelt(Lop);

bvp=BVP(Th,pde);

bvp.setDirichlet( 1, 0.);

bvp.setDirichlet( 98, —12.);

bvp.setDirichlet( 99, +12.);

U=bvp.solve();

% Graphic parts

figure(1)

Th.plotmesh(?color?,0.7%[1,1,1])

hold on
Th.plotmesh(?d?,1,’Linewidth’,2,’legend’,truc)
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axis off,axis image
figure(2)

.plot(U,’edgecolor’,’none’,’ facecolor’,’ interp’)
axis off,axis image;colorbar

Listing 1.1: Complete Matlab code to solve the 2D condenser problem with graphical representations

Obviously, more complex problems will be studied in section ?? and complete explanations on the
code will be given in next sections. Previously, the vector BVP is formally presented with an application.

1.2 Vector boundary value problem

Let m > 1 and H be the m-by-m matrix of second order linear differential operators defined by

Ho (H2Q)™ — ()"
{ w=(uy,...,un) — f=1, . fm) EH@) (1.10)

where .
fa= ) Haplug), Yae[l,m], (1.11)
=1
with, for all (o, 8) € [1,m]?,
Hap = Lpas pous ot g8 (1.12)

and A%F e (L®(Q))¥*? b*F e (L*(Q))4, P e (L*(Q))? and ag’ﬂ e L™(€2) are given functions. We
can also write in matrix form

£A1’1,b1v1,c1~1,a(l)’1 cee EAI,'HL1b1,7n’cl,'rn’a(1]!m U1
H(u) = : : Cl (1.13)

£Am=1,bmv1,cmv1,a(’f"1 . £Am,7n’bm,m’cm,m7a0m,m Um

We remark that the H operator for m = 1 is equivalent to the £ operator.

For a € [1,m], we define T2 and T'F as open subsets of I, possibly empty, such that T2 ~n T2 = ¢5.
Let f e (L2(Q)™, g2 e HY2(TD), g% € L2(T]), af € L*(T'E) be given data.

A wector boundary value problem is given by

ﬁ Vector BVP 1 : generic problem
Find u = (u1,...,u,) € (H*(Q))™ such that

H(u) =f in Q, (1.14)
Uy =gP on T2, Va e [1,m], (1.15)
0
L allu, =g% on T2 Vae [1,m], (1.16)
6717{&

where the a-th component of the conormal derivative of u is defined by

OU  gef Z a’U,B _ Z (<Aoc,[3 V’U,B,n> _ <bo"ﬁu5,n>) ) (1.17)
p=1

.8

The boundary conditions are the Robin boundary conditions and is the Dirichlet
boundary condition. The Neumann boundary conditions are particular Robin boundary conditions
with aff =

In this problem, we may consider on a given boundary some conditions which can vary depending on

ou R, R
+aj'u, = and
H, 1U1 = g1

the component. For example we may have a Robin boundary condition satisfying

on

a Dirichlet one with us = g&.
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Vector BVP

To have an outline of the FC-VFEMP; toolbox, a second and simple problem is quickly present.

-@'— Usual vector BVP 1 : 2D simple vector problem
Find u = (u1,uz) € (H2(Q))? such that

~Au; +uz = 0 in Qc R? (1.18)
—Auz +u; = 0 in QcR? (1.19)
(u1,u2) = (0,0) on Ty, (1.20)
(u1,ug) (—=12.,412.) on I'gs, (1.21)
(u1,us2) (+12.,—12.) on Iy, (1.22)

where Q) and its boundaries are given in Figure
The problem ([1.18)-(1.22)) can be equivalently expressed as the vector BVP (1.2))-(1.4) :

H(u) =f
uy =g

D
U2 =4gg

where

and

_ (L1000
H =
Lo,0,0,1

g¥ :=0onTy, g~

ﬁ Vector BVP 2 : 2D simple vector problem
Find u = (u1,us2) € (H?(Q))? such that

in €,
on FD = Fl U ng () Fgg,

on FD = 1—‘1 ) Fgg \V Fgg,

Lo,0,0,1 u)  (—A 1 Uy
i) =) = (G SIE)

= —12, gP := 412 on I'gg, gP := +12, gf := —12 on T'yg

In Listing 21| a complete code is given to solve this problem. Numerical solutions are given in Fig-

ure [[.2
= . (’condenser?’,10); % generate mesh
= ( ); % read mesh
= (2,2,2);
set([1,2],[1,2], (2:2{L[ (L1 5 L1.10);
'Set([1’2]7[231]7 (2’23[]3[]3[]31));
= (Hop);
= ( ) )§
. (1,0.1:2);
(98, {—12,+12},1:2);
(99, {+12,—-12},1:2);
—bvp.solve(>split?,true);
% Graphic parts
figure(1)
plot(U{1})
axis image;axis off;shading
colorbar
figure(2);
plot(U{2})
axis image;axis off;shading
colorbar

Listing 1.2: Complete Matlab code to solve the funny 2D vector problem with graphical representations
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Figure 1.2: Funny vector BVP, u; numerical solution (left) and us numerical solution (right)

Obviously, more complex problems will be studied in section ?? and complete explanations on the
code will be given in next sections.

In the following of the report we will solve by a P!-Lagrange finite element method scalar B.V.P. (1.2)
to and vector B.V.P. to without additional restrictive assumption.
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2.1 rdata Object

This object is used to create the datas associated with the scalar boundary value problem (1.2))-(1.4) or
vector boundary value problem (|1.14))-(1.16]).

2.2 Loperator object

The object Loperator is used to create the operator Lap¢,q, defined in (1.1). Its main properties are

~

ngroperties of Loperator object

d : integer, space dimension.

A : array of d-by-d cells.
Used to store the A functions such that A{i,j} < A; ;.
Each cell contains a Fdata object or is empty for 0

value
b : array of d-by-1 cells.

Used to store the b functions such that b{i} < b;.
Each cell contains a Fdata object or is empty for 0

value
@ : array of d-by-1 cells.

Used to store the ¢ functions such that c{i} < ¢;.
Each cell contains a Fdata object or is empty for 0

value
a0 : a Fdata object or empty for 0 value

Used to store the ag function such that a0 < ag.
order : integer

order of the operator : 2 if A is not empty, 1 if A
is empty and b or ¢ not empty, 0 if A, b and c are
empty.




Hoperator object 9

2.2.1 Constructor

Its contructor are

rtor(dim,d,A,b,c,a0)

Description

obj=Loperator() ‘ create an empty operator.

obj=Loperator(dim,d,A,b,c,a0) ‘

[ ]
Samples
—Au = £|707070
in R Lop=Loperator(1,1,{1H[,IL.I)

in R? Lop=Loperator(2,2,{1,[;[],1},[I.1,[1)
in R? L“’l):L'L)l)‘i'l‘il‘l"‘)1‘(3737{17[]7[];”717[15[]7[]71}7[]7[]7[])

—Au+u:= £|,o,o,1

in R Lop=Loperator(1,1,{1},[],[],1)
in R? T‘-i,)p:T‘()pa‘l‘{lia)‘[‘(2,2,{1,[];[],1},”,”,1)
in R? L'«">l’:L"1)‘"17—71“’1(3737{17[]7[];[]717[];[]7[]71}7[]7[]71)

In R2, —Au + (1 + COS(I + y))u = ‘Cl,O,O,(m,y)r—»(1+cos(m+y))

L“l’:L“I“’Nl[""’I(2727{17[];[]71}7[]7[]7 ‘1“(?\1,'\')1+COS(X+}'))

222 Methods
apply function

2.3 Hoperator object

The object Hoperator is used to create the operator H defined in (|1.10). Its main properties are

gProperties of Hoperator object

d : integer, space dimension.

m @ integer

H : array of d-by-d cells.
Used to store the H operators such that H{i,j} <
H;j, Vi,j € [1,m]. Each cell contains a Loperator
object or an empty value.

2.3.1 Constructor

Its contructor are
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obj=Hoperator ()
obj=Hoperator(d,s,m)

Description

obj=Hoperator() ‘ create an empty operator with all dimensions set to 0.

’ obj=Hopertor(d,s,m) ‘ create an empty/null operator with the given dimensions.

Samples

In R?, with u = (uy,us) the operator H defined by

Hw) = (—Au1 + ’LLQ)

Uy — AUQ

()= (0 W) ()

(L1000 £Loo,0:1
Y —
Lo0.0,1 L1000

could be written as

and then

Hop=Hoperator(2,2,2);
L(:’l)l:LOP‘—‘HI["*:)l>(2727{17[];[]71}7[]7[]7[]);
Lop2=Loperator(2,2,[],[],[],1);
Hop.set(1,1,Lopl);Hop.set(2,2,Lopl);
Hop.set(1,2,Lop2);Hop.set(2,1,Lop2);

[ I N N

or

1 Hop=Hoperator(2,2,2);
2 llop.set([l,2],[1,2],L<;>p(*m[(,)1'(2,2,{1,[];[],1},[],[],[]));
3 Hop.set([1,2],[2,1],Loperator(2,2,[],[I,[],1));

2.3.2 Methods

set function
zeros function

opStiffElas function
2.4 roeei object

This object is used to create the scalar PDE (1.2) or the vector PDE ([1.14):
L(u)=f or H(u)=f.

Its main properties are
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EgProperties of PDEeIt object

integer, space dimension.

m integer
Op Loperator or Hoperator object.
- (cells of) Fdata object or empty.
Used to store the right-hand side of the PDE. If Op
is an Loperator object then f is an Fdata object or is
empty. If Op is an Hoperator object then f is a cell
array of Op.m Fdata object or empty value.
Its contructor are
obj=PDEelt ()
obj=PDEelt (Op)

obj=PDEelt (Op,f)

Description

create an empty object.

]«.w“;:1’;/»1(-1r(1,>1>) \ create the PDE with f = 0: i.e. Op(u)=0

’-"-‘w\j:l’ijllvlr(t )p,f) ‘ create the PDE Op(u)=f. If Op is an Hoperator object then f must be a cell array of

length Hoperator.m.

Samples

In R?, —Au +u = f, with f(z,y) = zsin(z + y)

1 Lop=Loperator(2,2,{1,[[;[l,1},[].[l.1);

2 f=Q(x,y) x.#sin(x+y);
3 pde=PDEelt(Lop,f);

The f function must be written in a vectorized form.

2.5 &vr object

The object BVP is used to create a scalar boundary value problem — or a vector boundary value
problem —. The usage of this object is strongly correlated with good comprehension of the
FC-SIMESH toolbox and and more particularly with the siMesh object.

The properties of the object BV are

ngroperties of Bvr object

integer, space dimension.
integer, system of m PDEs.

a siMesh object

Th.nsTh-by-1 cell array.
Used to store the PDE associated with each submesh

Th.sTh{i}. If pdes{i} is empty then there is no PDE
defined on Th.sTh{i}.

25.1 Constructor

Its contructor are
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obj=BVP()
obj=BVP(Th,pde)
obj=BVP(Th,pde, labels)

Description

obj=BVP() | create an empty BV object.

‘obj:B\'P(Th,pdc) ‘ create a BVP object with PDE’s defined by pde object on all submeshes of index
Th.find(pde.d) i.e. on all submeshes such that Th.sTh{i}==pde.d. By default, homogeneous Neu-
mann boundary conditions are set on all boundaries.

‘obj:B\'P(Th,p(l(x,lul,)(‘ls) ‘ similar to previous one except among the selected objects are choosen those
with label (Th.sTh{i}.label) in labels array. By default, homogeneous Neumann boundary conditions
are set on all boundaries.

2.5.2 Main methods

Let bvp be a BVP object.

setPDE function

bvp.setPDE(d,label,pde)

Description

bvp.setPDE(d,label,pde) ‘ associated the pde object with the ¢-th submesh such that i=bvp.Th.find(d,label)

If 4 exists then bvp.pdes{i} is set to pde.

setDirichlet function

bvp.setDirichlet (label,g)
bvp.setDirichlet(label,g,Lm)

Description

bvp.setDirichlet(label,g) | for scalar B.V.P., sets Dirichlet boundary condition

U =g, On Iabel
and for vector B.V.P., sets Dirichlet boundary condition

u; = g{i},Vie [[Lmﬂ on Flal,)ol'

bvp.setDirichlet(label,g,Lm) ‘ for vector B.V.P.; sets Dirichlet boundary condition

UL () = g{i}, Vi € [1,length(Lm)] on I',},q-

setRobin function

bvp.setRobin(label,gr,ar)
bvp.setRobin(label,gr,ar,Lm)

2. Matlab objects
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BVP object -

Description

bvp.setRobin(label,gr,ar) | for scalar B.V.P., sets Robin boundary condition

u
—— +aru =gr, on Flabel'

6n5
For vector B.V.P., sets Robin boundary condition (|1.16)

ou
8nH.

i

+ar{i}u; = gr{i}, Vie[l,m]on I} .-

|bvp.setRobin(label,gr,ar,Lm) |for vector B.V.P., sets Robin boundary condition ({1.16) :
Vi € [1,length(Lm)], let a = Lm(i) then

ou
6nH

+ ar{iu, = gr{i}, on I'| ;.-

o

solve function

x=bvp.solve()
x=bvp.solve(key,value,...)

Description

x=bvp.solve()) | uses P;-Lagrange finite elements method to solve the B.V.P. described by the bvp object.

| x=Dbvp.solve(key,value,...) |

® ’solver’ :

e ’split’ :
e ’local’ :
® ’perm’ :
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3.1 Poisson BVP’s

The generic problem to solve is the following

-‘@'— Usual BVP 2 : Poisson problem
Find v € HY(Q) such that

where Q ¢ RU™ with 0Q =Tp uTgr and I'p n Tk = .
The Laplacian operator A can be rewritten according to a £ operator defined in (1.1)) and we have

» dim (92
“A=E-)Y — =L . 34
21 5z ~ Frooo (3.4)
The conormal derivative a‘l—’; of this £ operator is given by
au def au
<A - = — . 3.5
S AV um) ~ Gum) = (33)

We now will see how to implement different Poisson’s BVP while using the FC-vFEMP; toolbox.

3.1.1 2D Poisson BVP with Dirichlet boundary conditions on the unit square

Let € be the unit square with the associated mesh obtain from HyperCuse function (see section ?? for
explanation and Figure ?? for a mesh sample) by the command

Th=fc_simesh.HyperCube(2,50);
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Figure 3.1: 2D hypercube (left) and its boundaries (right)

We choose the problem to have exact solution
w22
Uex (T, y) = cos (x — y)sin (z + y) + e(=a=v?),
So we set f = —Auey i.e.
flzyy) = —4 p2e(—2*—v*) _ 4y26<_"”2_y2) +4 cos (z —y)sin (x +y) + ge(=2"=v"),
On all the 4 boundaries we set a Dirichlet boundary conditions (and so I'p = &) :
U=1Uex, ONI'p=T1ulul3uUlly.

So this problem can be written as the scalar BVP

gScalar BVP 3 : 2D Poisson BVP with Dirichlet boundary conditions
Find v € HY(Q) such that

Lipoo(w) = f inQ=][0,1]% (3.6)

u Uex ON 'y Uy LT3 UTYy,

In Listing[9] we give the complete code to solve this problem with FC-VFEMP; toolbox.
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x10°°

1| uex=0Q(x,y) cos(x—y).xsin(x+y)+exp(—(x."24+y.~2));

2 | f=0(x,y) —4%x.”2.xexp(—x."2—y."2) — 4xy."2.xexp(—x."2—y."2) + 4xcos(x—y).*sin(x+y) + ...
4xexp(—x."2—y."2);

Th=fc_simesh.HyperCube(2,50);

Lop=Loperator(2,2,{1,0;0,1},[l.I],[1);

pde=PDEelt(Lop,f);

bvp=BVP(Th,pde);

for lab=1:4, bvp.setDirichlet( lab, uex);end

U=bvp.solve();

w N e o os W

Listing 3.1: Poisson 2D BVP with Dirichlet boundary conditions : numerical solution (left) and
error (right)

In line ?? we set the Dirichlet boundary conditions and in line ?? we solve the BVP.

3.1.2 2D Poisson BVP with mixed boundary conditions

Let Q be the unit square with the associated mesh obtain from HyperCuse function (see section ?? for

explanation and Figure ?? for a mesh sample)
We choose the problem to have exact solution

Uex (T,y) = cos (22 + y) .

So we set f = —Auey i.e.
flz,y) =5cos(2z+y).

On boundary labels 1 and 2 we set a Dirichlet boundary conditions :
U = Uex, ON re = 'y uls.

On boundary label 3, we choose a Robin boundary condition with a*(z,y) = 2% + 32 + 1. So we have

0
—u+aRu=gR, on I =Ty

on

with g% = (22 + y*> + 1) cos (2z + y) +sin(2z + y) .
On boundary label 4, we choose a Newmann boundary condition. So we have

0
—u = N, on FN = F4
on
with gV = —sin (2 + y) . this can be also written in the form of a Robin condition with aR = 0

So this problem can be written as the scalar BVP
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gScalar BVP 4 : 2D Poisson BVP with Dirichlet boundary conditions

Find v € HY() such that
Lipoo(u) = f inQ=1[0,1]% (3.8)
U = Uex onT7 Ul U3 Uy, (3.9)
ou +afu = gf onTsy, (3.10)
&‘nL

ou N
= T 11
(9715 g on 1y, (3 )

uex=Q(x,y) cos(2*x+y);

f=0Q(x,v) 5*cos(2xx+7);

gradu={Q(x,y) —2xsin(2+x+y), Q(x,y) —sin(2*x+y)};
ar3=Q(x,y) 1+x."2+4y."2;
Th=fc_simesh.HyperCube(2,50);
Lop=Loperator(2,2,{1,0;0,1},[L,Il.ID;
pde=PDEelt(Lop,f);

bvp=BVP(Th,pde);

bvp.setDirichlet( 1, uex);

bvp.setDirichlet( 2, uex);

bvp.setRobin( 3, Q(x,y) —gradu{2}(x,y)+ar3(x,y).xuex(x,y),ar3);
bvp.setRobin( 4, gradu{2},[]);

U=Dbvp.solve();

© W N ;A W N e

== e
v o= O

[
w

Listing 3.2: Poisson 2D BVP with mixed boundary conditions : numerical solution (left) and error
(right)

We set respectively in lines [I1] and [I2] the Robin and the Neumann boundary conditions by using
SsETROBIN member function of BVP class.

3.1.3 3D Poisson BVP with mixed boundary conditions

Let Q be the unit cube with the associated mesh obtain from HyrerCuBr function (see section ?? for
explanation and Figure ?? for a mesh sample)
We choose the problem to have exact solution

Uex (2, y,y) = cos (4 —3y+52).

So we set f = —Auey i.e.
f(z,y,2) =50 cos(dx—3y+52).
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On boundary labels 1, 3,5 we set a Dirichlet boundary conditions :
U = Uex, onTP =Ty ul3UTls.
On boundary label 2, we choose a Robin boundary condition with a(z,y) = 1. So we have

u
+aRu:gR, onTF=T,0Ty
on

with gf(2,y,2) = cos (4o — 3y +52)—4 sin(4dx — 3y +52),onTsand g¥(z,y,2) = cos(4z — 3y + 52)+
3sin(dz—3y+5z),on 'y
On boundary label 6, we choose a Newmann boundary condition. So we have
0
Tung, on I'N =T
on
with gV = —5 sin (42 — 3y + 5 2) . this can be also written in the form of a Robin condition with aR = 0
on I'g.
So this problem can be written as the scalar BVP

EgScalar BVP 5 : 3D Poisson BVP with mixed boundary conditions

Find v € H*(Q) such that
Liooo(w) = f inQ=[0,1] (3.13)
U = Uex onIl'y U3 UTs, (3.14)
0
X fofu = g onTyuTy, (3.15)
8n5
ou N
— T 1
. g on Tg, (3.16)

In Listing [16] we give the complete code to solve this problem with FC-VFEMP; toolbox.
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1| uex=0Q(x,y,z) cos(2%x—y—z).*sin(x—2xy+2);

2 | {=0(x,y,2) 6%cos(x — 2xy + z).4sin(24x — v — z) + 12%cos(24x — v — z).xsin(x — 2xy + 7);

3 |ar=1;

4 | gradu={Q(x,y,2) cos(2xx — vy — z).xcos(x — 2%y + 7) — 2xsin(2*x — v — z).xsin(x — 2xy + 7), ...
5 Q(x,y,2) —2%cos(2%x — y — z).xcos(x — 2%y + z) + sin(2xx — y — z).xsin(x — 2xy + z), ...
6 Q(x,y,z) cos(2+x — y — z).4cos(x — 2%y + z) + sin(2*x — y — z).*sin(x — 2%y + z)};

7 | Th=fc_simesh.HyperCube(3,30);

s | Lop=Loperator(3,3,{1,0,0;0,1,0;0,0,1},[],[].[D;

o | pde=PDEelt(Lop,f);

10 | bvp=BVP(Th,pde);

11 | for lab=[1,3,5], bvp.setDirichlet( lab, uex);end

12 | bvp.setRobin(2,Q(x,y,z) gradu{l}(x,y,z)+arxuex(x,y,z),ar);

13 | bvp.setRobin(4,Q(x,y,z) gradu{2}(x,y,z)+arxuex(x,y,z),ar);

14 | bvp.setRobin(6,Q(x,y,z) gradu{3}(x,y,z),[]);

15 | U=bvp.solve();

Poisson BVP's 19
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0 0
-0.2 -0.2
-0.4 -0.4
-0.6 -0.6
0.8 0.8

x107* %107
4.5 4.5
\ 4 4
3.5 35
3 3
25 2.5
2 2
15 15
1 1
0.5 0.5
0 0

error (bottom)

Listing 3.3: 3D Poisson BVP with mixed boundary conditions :

numerical solution (upper) and

3.1.4 1D BVP : just for fun

Let 2 be the interval [a,b] we want to solve the following PDE

3.1.4 1D BVP : just for fun

3. Scalar boundary value problems

3.1.Poisson BVP's

—u"(z) + c(z)u(z) = f(x) Vz €la,b]

with the Dirichlet boundary condition u(a) = 0 and the homgeneous Neumann boundary condition on b
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=0(x) cos(pixx);
—@(x) 1+(x=1)."2;
=—L;b=1;
= . (1,50,,131‘&'[15’, ( ) +( - )* )ﬂ
= ( (1’17{1}’”’”’ )?
(Th,pde);
(1,0);

[ I = T B NI R CRE

Listing 3.4: 1D BVP with mixed boundary conditions

3.2 Stationary convection-diffusion problem

3.2.1 Stationary convection-diffusion problem in 2D

The 2D problem to solve is the following

-‘@'— Usual BVP 3 : 2D stationary convection-diffusion problem

Find u € HY(2) such that
—div(aVu) +{V,Vuy+pu = f inQcR? (3.18)
u = 4 on Ty, (3.19)
u = —4 on Ty, (3.20)
u = 0 on FQO U F217 (321)
0
:7“/ = 0 on Fl U ].—‘3 V) Fl() (322)

where  and its boundaries are given in Figure ??. This problem is well posed if a(z) > 0 and
B(z) = 0.
We choose o, V', 8 and f in Q2 as :

() = 0.1+ (z1—0.5)2

V(z) = (—10x9,10x;)",

B(x) = 0.01,

f(®) = —200exp(—10((x; — 0.75)% + 23)).
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Figure 3.2: 2D stationary convection-diffusion BVP : mesh (left) and boundaries (right)

The problem (3.18)-(3.22)) can be equivalently expressed as the scalar BVP (1.2)-(1.4) :

gScalar BVP 6 : 2D stationary convection-diffusion problem

Find v € H*(Q) such that

E(u =f in Q,
u =g” on I'P,

0
o + aPu =g* on TE.

where

o L:=Ln0yv,3, and then the conormal derivative of u is given by

ou ou
~Z .—(AV - = a—.
g AV u,n)y — (bu,ny = « o

° FD:FQUF4UF20UF21 andFszlququ
. gD :=4 on I'y, and gD :=—4onTly and gD :=0o0n I'yguTy
e af? = gff:=0on %,

The algorithm using the toolbox for solving (3.18)-(3.22) is the following:

Algorithm 1 Stationary convection-diffusion problem in 2D

Tt W N

© 0o N >

11:
12:

: T, < sIMESH(...) > Get mesh
ca— (z,y) — 0.1+ (y —0.5)(y — 0.5)

: B« 0.01 o

: f e (z,y) —> —900e—10((z—0.75)*+y?)

: Lop « LoPERATOR(2, 2, <a 2) ,0, (—10y> ,B)

0 10z

: pde « PDEEgrr(Lop, f)
: bvp « BVP(Ty, pde)

: bvp.seTDIRICHLET(2, 4.0) > Set ’Dirichlet’ condition on I'y
: bvp.seTDiricHLET (4, —4.0) > Set ’Dirichlet’ condition on I'y
: bvp.serDiricaLeT (20, 0.0) > Set ’Dirichlet’ condition on I'yg

bvp.serDiricHLET(21, 0.0) > Set ’Dirichlet?’ condition on I's;

u < bvp.sowvi()
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Numerical solution ( 7, = 9700, n,,, = 18928 ) u

2 Numerical solution ( n, = 9700, n,,, = 18928 )

4.000
3.003

-10

-12

-14

af=Q(x,y) 0.14y.~2;
Vx=Q(x,y) —10xy;Vy=Q(x,y) 10%x;
b=0.01;g2=4;g4=—4;

f=0(x,y) —200.0xexp(—((x—0.75).~24v.~2)/(0.1));
Th=siMesh(meshfile);
Lop=Loperator(Th.dim,Th.d,{af,[[;[],af},[],{ Vx,Vy},b);
pde=PDEelt(Lop,f);

bvp=BVP(Th,pde);

bvp.setDirichlet(2, g2);

bvp.setDirichlet(4, g4);

bvp.setDirichlet(20, 0.);

bvp.setDirichlet(21, 0.)

Al

Listing 3.5: Setting the 2D stationary convection-diffusion BVP and representation of the numerical
solution

The numerical solution for a given mesh is shown on figures of Listing 77?

3.2.2 Stationary convection-diffusion problem in 3D
Let A = (z4,y4) € R? and Cy ([2min, Zmaz]) be the right circular cylinder along z—axis (2 € [2min, Zmaz])

with bases the circles of radius r and center (24, YA, Zmin) and (A, Y4, Zmaz)-
Let € be the cylinder defined by

Q = C{,0) ([0, 3D\{C{g70) (10, 3]) U €. ([0, 3]) L C{i 0.7 (10, 3])}-

We respectively denote by I'1ggo and I'1gg1 the z = 0 and z = 3 bases of (.

I'1, T19, Iy and T'y; are respectively the curved surfaces of cylinders C(lo 0)([0,3]), C?d3o)<[0’3])7

C?d}—0-7)([0’ 3]) and 6?6,10.7)([07 3])-

The domain €2 and its boundaries are represented in Figure ?7.
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Stationary convection-diffusion problem
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Figure 3.3: 3D stationary convection-diffusion BVP

(right)

The 3D problem to solve is the following

9

Usual BVP 4

3D problem : Stationary convection-diffusion Find u € H?(Q) such that

-’

f in Q c R?,

—div(aVu) +{V,Vu) + fu

ou
a—— + azu
on

ag u1 wajqoid uoisnyjip-uoidaAuod Aleuonlels g ¢ s

g20 on I'aq,

ou
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gScalar BVP 7

3D stationary convection-diffusion problem as a scalar BVP Find u € H?(Q) such that

in €,
on I'E.

(u
+ afu :gR

ou
8n£

La10,v, 3, and then the conormal derivative of u is given by

where
o L:

wajqoid uoIsnjjIp-uoi1daAu0d Aieuoneis-g e

ou
=a—.
on

(AV u,ny — (bu,ny

ou
0nL

(and TP = &)

't Tl u Ty U2 UTg00 U oot

o B =
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R _ { 0 onTlyuliyuligo vl

11 on Ty uTo

0 onI't UT'10 U000 Y 001
gR = 005 on Fgl,

—005 on FQO

We give respectively in Listing [11] the corresponding Matlab codes and the numerical solution for a
more refined mesh.

ng=103272, nme=572502

nq=103272, nme=572502

“‘;‘r‘, T N

A S
v, *
R

af=Q(x,y,z) 0.7+ z/10;

beta=0.01;

V:{@(X,y,z) _10*y a@(XaY)Z) 10 a@(X)Y)Z) 10*Z};

f=0(x,y,z) —800%exp(—10%((x—0.65)."2+y."2+(2—0.5).72)) + ...
800xexp(—10%((x+0.65).”2+y.~24+(2—0.5)."2));

Th=siMesh(meshfile);

Lop=Loperator(Th.dim,Th.d,{af,[], [};[l,a£,[[;[],[l.af} [, V,beta);

pde=PDEelt(Lop,f);

bvp=BVP(Th,pde);

bvp.setRobin(20,0.05,1);

bvp.setRobin(21,—0.05,1);

Listing 3.6: Setting the 3D stationary convection-diffusion BVP and representation of the numerical
solution

3.3 2D electrostatic BVPs

In this sample, we shall discuss electrostatic solutions for current flow in resistive media. Consider a
region 2 of contiguous solid and/or liquid conductors. Let j be the current density in A/m?. It’s satisfy

divj =0, in Q. (3.27)
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j=ocE, in Q. (3.28)
where o is the local electrical conductivity and E the local electric field.
The electric field can be written as a gradient of a scalar potential
E=—-Vy, in Q. (3.29)
Combining all these equations leads to Laplace’s equation
div(cVp) =0 (3.30)
In the resistive model, a good conductor has high value of ¢ and a good insulator has 0 < oul.
Material p(Q.m) at 20°C o(S/m) at 20°C
Carbon (graphene) | 1.00 x 1078 1.00 x 108
Gold 2.44 x 1078 4.10 x 108
Drinking water 2.00 x 10" to 2.00 x 103 5.00 x 1074 to 5.00 x 1072
Silicon 6.40 x 102 1.56 x 103
Glass 1.00 x 10! to 1.00 x 10'® | 10715 to 1011
Air 1.30 x 106 t0 3.30 x 106 | 3 x 10715 to 8 x 10715

As example, we use the mesh obtain with gmsh from square4holes6dom.geo file represented in

Figure

Figure 3.4: Mesh from square4holes6dom.geo, domains representation (left) and boundaries (right)

We have two resistive medias
Qa = QIO and Qb = QQO ) QQ \ Q4 () QG v Qs.
In Q, and €2 the local electrical conductivity are respectively given by

[ oa = 10% inQ,
7Y o = 107* inQ,

We solve the following BVP
-\@/— Usual BVP 5 : 2D electrostatic problem

Find ¢ € H(Q) such that
div(c V) =0 in Q, (3.31)
=0 onI's uT7, (3.32)
p =12 onTy UTs, (3.33)
0
Ua—z =0 on I'yp. (3.34)

The problem (3.31)-(3.34) can be equivalently expressed as the scalar BVP (1.2))-(1.4) :
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f!Scalar BVP 8 : 2D electrostatic problem

Find ¢ € H!(Q) such that
L(p)=0 in Q,
o =g" on T2,

0
% +afp=g® on I'E.

where

o L:=Ls10yv 3, and then the conormal derivative of ¢ is given by

_ _ 0y

e I'P =T, U3 uTs uT; and I'® = I'y. The other borders should not be used to specify boundary

conditions: they do not intervene in the variational formulation and in the physical problem!
e gP:=0onTl3uly, and g” :=120onT'; UTs.
o af* = gf:=0onI'F.
To write this problem properly with FC-VFEMP; toolbox, we split in two parts
div(e, V) =0 in Q,
div(e, V) =0 in Q
and we set these PDEs on each domains. This is done in Matlab Listing
Listing 3.7: Setting the 2D electrostatic BVP, Matlab code

Th=siMesh(meshfile,”dim’,2,’format’,’gmsh’);
Lop=Loperator(dim,d,{sigma2,0;0,sigma2},[],[I,[]);
pde=PDEelt(Lop);

bvp=BVP(Th,pde);
Lop=Loperator(dim,d,{sigmal,0;0,sigmal},[],[I,[]);
pde=PDEelt(Lop);

bvp.setPDE(2,10,pde);

bvp.setDirichlet( 1, 12);

bvp.setDirichlet( 3, 0);

bvp.setDirichlet( 5, 12);

bvp.setDirichlet( 7, 0);

We show in Figures [3.5] and [3.6] respectively the potential ¢ and the norm of the electric field E.

potentiel

12

potentiel ¢

10 \\ \‘\\\“

Figure 3.5: Test 1, potential ¢
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Norm of the electric field E

Norm of the electric field E

Figure 3.6: Test 1, norm of the electrical field E
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4.1 Elasticity problem

411 General case (d = 2,3)

We consider here Hooke’s law in linear elasticity, under small strain hypothesis (see for example [3]).
For a sufficiently regular vector field u = (uy, ..., uq) : © — RY, we define the linearized strain tensor
€ by

elw) = 5 (V(w) + V'(w)).

. . . 1 ou; ou;
We set € = (611, €99, 2612)t in 2d and € = (611, €99, €33, 2612, 2623, 2613)t mn 3d, with Eij (‘ll,) =3 (% + Tz)i) .

Then the Hooke’s law writes
o = Ce,

where g is the elastic stress tensor and C the elasticity tensor.
The material is supposed to be isotropic. Thus the elasticity tensor C is only defined by the Lamé
parameters A and p, which satisfy A + ¢ > 0. We also set v =2+ A. For d =2 or d = 3, C is given by

co </\]12 + 2puly o) or Co ()\]lg +2ulz 0 )
0 K/ 3x3 0 m3) 66’

respectively, where 1,4 is a d-by-d matrix of ones, and |; the d-by-d identity matrix.
For dimension d = 2 or d = 3, we have:

Oap(w) = 2pr€ap() + Atrle(w)das Yo B [1,d]

The problem to solve is the following

-
Ny

-@'— Usual vector BVP 2 : Elasticity problem
Find u = H2(Q)¢ such that

—div(e(u)) = f, in QcRY (4.1)
ou)n = 0 onT%,
v = 0 onIP.

Now, with the following lemma, we obtain that this problem can be rewritten as the vector BVP
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defined by to (1.16).
Lemme 4.1

Let H be the d-by-d matrix of the second order linear differential operators defined in ((1.10)) where
HOAﬂ = ‘CAO‘JS,O,O,O? V(Ol,ﬂ) € HladHQa with

(Aa”@)kvl = uéagékl + uékﬁéla + )\51@0451[3» V(k,l) € [[1, dﬂQ. (4.4)
then
H(u) = — divo(u) (4.5)
and, Vo € [[1,d],
ou
oy = (O ) (4.6)

The proof is given in appendix ??. So we obtain

Vector BVP 3 : Elasticity problem with # operator in dimension d = 2
ord=3
Let A be the d-by-d matrix of the second order linear differential operators defined in where
V(O[,,B) € [[1,6“]2, ,H(X’B = EAQ,[€7070’0, with
e for d =2,
11_ (v 0 12 _ (0 A 21 _ (0 22 _ (©n O
A _(0 M>’A _(u 0>’A _(AO’A -~ \0 7
e for d = 3,
v 0 O 0 A O 0 0 X
Abl=10 p 0], A¥2=|px 0 0), A =10 0 0
0 0 u 0O 0 O w0 0
0O p O w0 0 0 0 O
A2t =X 0 O, A22=10 ~ 0], A23=1(0 0 M|,
0 0 O 0 0 wu 0 u O
0 0 u 0 0 O pw 0 0
At =10 0 0, A2 =10 0 ul|, A3=10 u 0].
A0 O 0 X 0 0 0 v
The elasticity problem to can be rewritten as :
Find u = (u1,...,uq) € (H2(Q))? such that
H(u) =f, in Q, (4.7)
Ju R _ 1R
S =0 on T2 = TE Vae[l,d] (4.8)
on I =TP vae[l,d].

412 2D example

For example, in 2d, we want to solve the elasticity problem to where  and its boundaries are
given in Figure 4.1

The material’s properties are given by Young’s modulus F and Poisson’s coefficient v. As we use
plane strain hypothesis, Lame’s coefficients verify

E Fv

S Say AT Oana—zey T AHTA

The material is rubber so that £ = 21.10°Pa and v = 0.45. We also have f = 2 — (0,—1)" and we
choose T =T1 uT2 U T3, TP =T4,
We give in Listing [4.1] the corresponding Matlab codes.
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Figure 4.1: Domain and boundaries

Listing 4.1: 2D elasticity, Matlab code

Th=fc_simesh.HyperCube(dim,[10«N,N],’ trans’,@Q(q) [20xq(1,:);—14+2xq(2,:)]);
gamma=lambda+2+mu;

Hop=Hoperator(dim,dim,dim);
Hop.set(1,1,Loperator(dim,dim,{gamma,|[;[],mu},[],[],]]));
Hop.set(1,2,Loperator(dim,dim,{[],Jambda;mu,[] },[],[I,ID);
Hop.set(2,1,Loperator(dim,dim,{[],mu;lambda,[] },[],[l,ID);
Hop.set(2,2,Loperator(dim,dim,{mu,[[;[],gamma},[],[],]]));
pde=PDEelt(Hop,{0,—1});

bvp=BVP(Th,pde);

bvp.setDirichlet(1,0.,1:2);

U=bvp.solve(’split’,true);

One can also use the Matlab function HorEraTOR.STIFFELAS to build the elasticity operator :
Hop=Hoperator.StiffElas(dim,lambda,mu);

For a given mesh, its displacement scaled by a factor 50 is shown on Figure [.2]

R

ERE
SSNENR

NN

NN
5

1

Figure 4.2: Mesh displacement scaled by a factor 50 for the 2D elasticity problem

4.1.3 3D example

Let Q = [0,5] x [0, 1] x
label : 1 to 6 respectively for faces x1 = 0, 21 = 5, 29 = 0, z2 = 1, z3 = 0 and z3 =
them in Figure

[0,1] = R3. The boundary of 2 is made of six faces and each one has a unique
1. We represent

Aﬂg
rlﬁ??a?g??r:
i ﬂ rV ar
Wa;ﬂa;%ﬂmz

V"" an i
]
7 aw“%wﬂﬂamﬁé???‘“
9
r

aﬂ i
ﬂ ﬂﬁ
‘ﬂ

Figure 4.3: Domain and boundaries

We want to solve the elasticity problem ([£.1) to (.3) with ' = Ty, TV = U?:Q I'sand f =z —

(0,0, —1)%
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2D stationary heat with potential flow - domain Q
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Figure 4.5: Domain and boundaries

We give in Listing [4.2] the corresponding Matlab code using function HOPERATOR.STIFFELAS .

Listing 4.2: 3D elasticity, Matlab code

Th=fc_simesh.HyperCube(dim,[L*N,N,N],’trans’,@(q) [L*q(1,:);a(2,:);a(3,:)]);
Hop=Hoperator();

Hop.opStiffElas(dim,lambda,mu);

pde=PDEelt(Hop,{0,0,—1});

bvp=BVP(Th,pde);

fprintf(’2.b,Solving, 3D elasticity BVP\n’)

The displacement scaled by a factor 2000 for a given mesh is shown on Figure {.4]

-0.5

bs 0.5 1 1.5 2 2.5 3

Figure 4.4: Result for the 3D elasticity problem

4.2 Stationary heat with potential flow in 2D

Let I'y be the unit circle, I'1g be the circle with center point (0,0) and radius 0.3. Let T'yg, I'a1, I'az and T'az
be the circles with radius 0.1 and respectively with center point (0, —0.7), (0,0.7), (=0.7,0) and (0.7,0).
The domain Q = R? is defined as the inner of I'; and the outer of all other circles (see Figure .

The 2D problem to solve is the following
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-\@‘ Usual BVP 6 : 2D problem : stationary heat with potential flow

Find v € H(Q) such that
—div(aVu) +{(V,Vuy+pBu = 0 in QcR? (4.10)
u = 20xxo on gy, (4.11)
u = 0 on FQQ ) Fgg, (412)
0
7” = 0 on Pl ) Fl() ) FQ() (413)
on

where 2 and its boundaries are given in Figure This problem is well posed if a(z) > 0 and
B(z) = 0.

We choose o and S in § as :

alr) = 0.1+22
B(x) = 0.01

The potential flow is the velocity field V' = V ¢ where the scalar function ¢ is the velocity potential
solution of the 2D BVP (4.14))-(4.17)

-\@’- Usual BVP 7 : 2D velocity potential BVP

Find ¢ € H2(2) such that
—A¢ = 0 in Q, (4.14)
¢ = —20 on Iy, (4.15)
¢ = 20 on FQQ, (4]_6)
0
% = 0 on Fl ) F23 ) F22 (417)

Then the potential flow V is solution of (4.18

-\@‘ Usual vector BVP 3 : 2D potential flow
Find V = (V1,V3) € HY(Q) x H(Q) such that

V. = V¢ inQ, (4.18)

For a given mesh, the numerical result for heat u is represented in Figure 77, velocity potential ¢ and
potential flow V' are shown on Figure ?7.
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2D stationary heat with potential flow Velocity potential ¢ ¢
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Now we will present two manners of solving these problems using FC-VFEMP; codes.
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421 Method 1 : split in three parts

The 2D potential velocity problem (4.14)-(4.17) can be equivalently expressed as the scalar BVP ((1.2)-
(1.4) -

gScalar BVP 9 : 2D potential velocity
Find ¢ € H3(2) such that

where

o L:= L1000, and then the conormal derivative of ¢ is given by

26

(3715 '

— AV 6m) — (bo.my = 5.

o f(x):=0
o TP =Ty uTly
o TR =T UT9; U
e gP :=200n Iy, and g” := —20 on I'y;
e g = af := 0 on I'®. (Neumann boundary condition)
The code using the toolbox for solving (4.14)-([4.17) is given in Listing
Listing 4.3: Stationary heat with potential flow in 2D, Matlab code (method 1)

= (d, &{17[];[]71}7[]7[]7[]);
(20205

: (21,-20);

= solve();

Now to compute V', we can write the potential flow problem (4.18)) with H-operators as
Vi ¢
V = =B
(v.) -5 ()

B— (502,02,(1,0)1,1 0 )
0 L0,,05,(0,1)t,0

where

The code using the toolbox for solving this problem is given in Listing

Listing 4.4: Stationary heat with potential flow in 2D, Matlab code (method 1)

= (Th.dim,d,d);
. {171}: ( ) 7[]7[]7{170}7[]);
. {272}: ( ) 7[]7[]7{071}7[]);
=Hop. (Th,{phi,phi});

Obviously, one can compute separately V1 and V.
Finally, the stationary heat BVP (4.10)-(4.13) can be equivalently expressed as the scalar BVP ((1.2))-

() -
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-\@‘ Usual BVP 8 : 2D stationary heat
Find v € H(Q) such that

o L:=L (a O) , and then the conormal derivative of u is given by
0.V.8

ou ou
E = <AV ’U,7n> - <bu,n> = OL%

o I'P =T9 Uy Ul
o TR =Ty UTyp uTy
e gP(x,y) := 20y on I'yy, and gP := 0 on T'yy U I3
e gf":=0and o :=00on '’
The code using the toolbox FC-VFEMP; for solving — is given in Listing

Listing 4.5: Stationary heat with potential flow in 2D, Matlabcode (method 1)
= (( Ao fab[l[],at}[],V,b);

, (21,gD); ,
(22, 0);
(23, 0);

—bvpHeat.solve();

422 Method 2 : have fun with H-operators

We can merged velocity potential BVP (4.14)-(4.17) and potential flow to obtain the new BVP

-@'— Usual vector BVP 4 : Velocity potential and potential flow in 2D
Find ¢ € H3(Q) and V = (V1,V3) € H(Q) x H'(Q2) such that
- <0Y1 + aw) - 0mQ, (4.19)
or oy
o .
Vi—- w = 0 in ©, (4.20)
o .
Va— oy 0 in €, (4.21)
¢ = —20 onTy, (4.22)
Qb = 20 on Fgo, (423)
o9
- = 0 on Fl U Fgg ) FQQ (424)
on

We can also replace (4.19) by —A¢ = 0.

¢
Let w = | V1 |, the previous problem (4.19)-(4.24) can be equivalently expressed as the vector BVP
Vs
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fg Vector BVP 4 : Velocity potential and potential flow in 2D

Find w = (w1, w2, w3) € (H3(Q))? such that
H(w) =f in Q, (4.25)
wo =g on T2 vae[1,3], 4.26)
0
Yo afw, =92 on T2 vae[1,3], (4.27)
anya

where I'? =

'Y = & for all a € {2,3} (no boundary conditions on V; and V) and

e H is the 3-by-3 operator defined by

0 L0,-e1,00 £0,—,0,0
H=|Loo—-e,0 L0001 0
L£0,0,—e5,0 0 L£0,00,1
its conormal derivative are given by
6w1 (9w2 8w3
_— = O, = wang, 3 = w3sny,
ongy, Ongy, 4 ony, o
0 0 0
w1 _ 07 wo _ O, w3 -0
anHZ,l (‘)77/;.(212 anHz,:s
ow ow ow
L o, 2 —0, 2 —o.
an?‘lsg aanz an?'l:s,s
So we obtain s
0 . 0 0
W o Moy gy 92 (4.28)
ﬁnHl a1 6nH1 o on
and 2 2
w w
- :=0. (4.29)
ony,  Ony,

From (4.29)), we cannot impose boundary conditions on components 2 and 3.

4.3.0 Method 2 : have fun with 7{-operators

e f:=0

e I'P =Ty uTy and T =T UT U Uy
. ng := 20 on I'yg, and ng = —20 on I'yg
e gf=aff:=0onI'F

The solution of this vector BVP is obtain by using the Matlab code is given by Listing

Listing 4.6: Stationary heat with potential flow in 2D, Matlab code (method 1)

4. Vector boundary value problems

= (d,d,3);
SEt(sz ( ’ 7[]7{7170}7“7[]));
Set( ( ) ,[],{0,—1},[],[]));
Set( ( ) 7[]7[]7{_1a0}7[]));
Set(272, (GALIL,1));
Set(?’ala ( ) ,[],[],{0,—1},[]));
Set( (L))
(20,20,1);
(21,—-20,1);
(?split?, );
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4.3 Stationary heat with potential flow in 3D

Let Q < R? be the cylinder given in Figure

.,
- Flﬂ
11
kN
- l—‘IODD
- r]DZD
- FlﬂZl

2000

2020
- FZDZJ

15

0.5

Figure 4.6: Stationary heat with potential flow : 3d mesh

The bottom and top faces of the cylinder are respectively I'100p UI'1020 W' 1021 and T'aggg UT'2020 UT'2021 -
The hole surface is I'1g U I'11 U I'3; where I'ig U I'1; is the cylinder part and I'3; the plane part.
The 3D problem to solve is the following

-\@/— Usual BVP 9 : 3D stationary heat with potential flow

-

Find v € H(Q) such that
—div(aVu) +{(V,Vuy+Bu = 0 in Qc R (4.30)
u = 30 on Flggg (o FQOQO, (431)
u = 106\z71|>0.5 on Flo, (432)
0
6_Z = 0 otherwise (4.33)

where Q and its boundaries are given in Figure This problem is well posed if a(z) > 0 and
B(x) = 0.
We choose o« and § in (Q as :

af@) = 1+(z3—-1)%,
Bx) = 0.01

The potential flow is the velocity field V' = V ¢ where the scalar function ¢ is the velocity potential
solution of the 3D BVP (4.34)-(4.37]

—\@’- Usual BVP 10 : 3D velocity potential

Find ¢ € H'(2) such that
—Ap = 0 inQ, (4.34)
¢ = 1 onI'p21 v I'2001, (4.35)
(25 = —1 on F1020UF2020, (436)
0
a—z = 0 otherwise (4.37)

Then the potential flow V' is solution of (4.38])
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-\@‘ Usual vector BVP 5 : 3D potential flow
Find V = (V,V,,V3) e HY(Q) x H(Q) such that

= V¢ inQ,

For a given mesh, the numerical result for heat u is represented in Figure [£.7] velocity potential ¢ and
potential flow V' are shown in Figure 4.8

30

25

120

115

=10

Figure 4.7: Heat solution u
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=110

30

25

Figure 4.8: Velocity potential ® (bottom) and velocity field V = V @ (upper)

Now we will present two manners of solving these problems using FC-VFEMP; codes.

43.1 Method 1 : split in three parts
The 3D potential velocity problem (4.34)-(4.37) can be equivalently expressed as the scalar BVP (1.2))-
(1.4) :

gScalar BVP 10 : 3D potential velocity
Find ¢ € H'(2) such that

where
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o L:=L0,0,0, and then the conormal derivative of ¢ is given by

% _ _ _9%

e f(z):=0

o I'P = T020 U 1021 U T2020 U Do

o ' =T, Ul Ul UTs U000 U 2000

b QD := 1 on I'1g21 U I'yg21, and gD := —1 on I'1g20 U I'2020
e g = af* := 0 on I'®. (Neumann boundary condition)

The code using the toolbox for solving (4.34)-(4.37)) is given in Listing
Listing 4.7: Stationary heat with potential flow in 3D, Matlab code (method 1)

= (clizm, dy {LILI LB
( )i

—bvpFlow.solve();

Now to compute V, we can write the potential flow problem (4.38))

e with H-operators as

v, o}

V=|Vy]|=B|o¢

Vs ¢

where
L£0,,04,(1,0,0)%,1 0 0
B = 0 L0, .,04,(0,1,0)4,0 0
0 0 L0,.05,(0,0,1)%,0
e with L-operators as

Vi L0, ,05,(1,0,0)*,0(¢)
V=1V2]|=Vo=1Lo,0s01,000(®)
Vs L0,.,05,(0,0,1)t,0(9)

The code using FC-VFEMP; toolbox for solving this problem with L-operators is given in Listing
Listing 4.8: Stationary heat with potential flow in 3D, Matlab code (method 1)
= ( ) 7[]3[]a{170:0}7[]);
{1}= (Th,Phi);
- ( ( ) 7[]7[)]:{0:170}7[])5

{2}- Phi);
- (i, L1 £0,0.13. )
{8)=Lop.apply(Th, Phi);

Finally, the stationary heat BVP (4.30)-(??) can be equivalently expressed as the scalar BVP (1.2)-

ek

fgScalar BVP 11 : 3D stationary heat
Find u € HY(Q) such that

where
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o L:=L o 0 0 , and then the conormal derivative of u is given by
(0 o O),O,V,ﬁ

ou ou
Fr (AV u,ny — (bu,ny = ay.

e f:=0
o I'P = Tyg90 U I'yg20 U T'1o
o« ' = I't U1 UT'31 U T 1000 U 1021 U Tagoo L T'2g21
e gP(x,y,2) := 30 on I'jgag U agoo, and g (z,y,2) := 10(]z — 1| > 0.5) on I'yg
e g®:=0and a®:=0o0on I'"
The code using the toolbox for solving —(??) is given in Figure

Listing 4.9: Stationary heat with potential flow in 3D, Matlab code (method 1)

a ( 3V ) 1+( _1)'A2;
= (dim,d, {af,[},[ls[].af,[[].0,28}.11, {V{1},V{2},V{3}},0.01);

=BVP(Th, (Lop));
. (1020,30.);

(2020,30.);
(10, @(x,y,z) 10%(abs(z—1)>0.5));

—bvpHeat.solve();

432 Method 2 : have fun with H-operators

To solve problem (4.30)-(4.33)), we need to compute the velocity field V. For that we can rewrite the
potential flow problem (4.34)-(4.37), by introducing V = (V1,V3,V3) as unknowns :

4.3.2 Method 2 : have fun with 7{-operators

-@'— Usual vector BVP 6 : Velocity potential and velocity field in 3D

(2]
£
2
=
3
=
: 3 S
Find ¢ € H%(Q2) and V € H!(Q)" such that =
>
Vi oV, Vs . Gl
- = Q 4. s
(0x+(7y+6z 0 it (4.39) e
=
vie® _ oma (4.40) S
ox =
Vor® _ 0o (4.41) g
¥ _ : )
2 oy ’ >
Vi— g—f - 0 inQ, (4.42) -
with boundary conditions (4.35) to (4.37).

We can also replace (4.39) by —A¢ = 0.

4.3.Stationary heat with potential flow in 3D

¢
Let w = “;; , the previous PDE can be written as a vector boundary value problem (see section
Vs
where the H-operator is given by
H(w) =0 (4.43)
with
Hi1 =0, Hio = L0o,—e: 0,0 Hiz = L0,—e5,0,0s Hi4 = L0,—e5,0,05 (4.44)
Ho1 = L0,0,—e1,0 Ha2 = Lo0p,1, Hoz =0, Hay =0, (4.45)
H3z1 = L0,0,—e5,05 Hiz2 =0, H3 3 = L0001, Hsza =0, (4.46)
Ha1 = L00,—es,05 Hao =0, Hasz =0, Haa= L0001, (4.47)
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and e; = (1,0,0)¢,

es = (0,1,0)"

The conormal derivatives are given by

, €3 = (Oa 07 1)t

42

w; ow, ow, owy
= = 07 = 07 = 0,
6nH111 07 aTLHQYI aTLHS 1 8n7{4 1
6w2 —Vin éwg -0 é’wg -0 &wz -0
6nH112 1L 6nH2,2 ’ é’nHS 2 ’ 6nH4 2 ’
(3'w3 (}’11)3 (3’11)3 (7’!1)3
= Vano, =0, =0, =0,
anHI,S 22 (9717{2’3 (9717.[3 3 6nH4 3
6w4 (9'w4 (3w4 8w4
= V3n37 =Y =Y =Y
6nH114 6n7{2’4 anq.[3 4 anm 4
So we obtain .
w,
> S Vo = (Vom), (4.48)
a=1 anHl o
and
4 4
ow,, ow,
= =0. 4.49
a1 é‘nﬂm 2 anq.[&a agl 6ny4‘a ( )

From , we cannot impose boundary conditions on components 2 to 4. Thus, with notation of section
[1.2] we have IV =T =TV =T with g}’ = ¢} = g¥ = 0.

To take into account boundary conditions (4.35) to (4.37)), we set I'? = T'1920 U I'1021 U T'2020 U 2021,
ry = F\FlD and ng =dr 0202020 T 5F1021UF20217 g{V = 0.

The operator in is given by Lq10,v,3. The conormal derivative ;T“ is

ou 6u

The code using the toolbox for solving (4.39)-(4.42)) is given in Listing

Listing 4.10: Stationary heat with potential flow in 3D, Matlab code (method 2)
d=3;dim=3;m=4;
Hop=Hoperator(dim,d,m);
Hop.set(1,2,Loperator(dim,d,[],{—1,0,0},[,ID);
Hop.set(1,3,Loperator(dim,d,[],{0,—1,0}[],[1));
Hop.set(1,4,Loperator(dim,d,[],{0,0,—1}[],[1);
Hop.set(2,1,Loperator(dim,d,][],[],{-1,0,0},[]));

( (d

( (di

3, (

Hop.set(2,2,Loperator(dim,d,|[],[],[], 1))
Hop.set(3,1,Loperator(dim,d,]],[],{0,—1,0},[]));
Hop.set(3,3,Loperator(dim,d,][],[],[],1));
Hup.set(4,1,L<>p<1<m>1( hm,d,[] [1,{0,0,—1}.01));
Hop.set(4,4,Loperator(dim,d,|[],[],[],1));
1,)\'1)1510\‘-::B\'l’("l“h,l’DJLOlL(llop));
bvpFlow.setDirichlet(1020,—1,1);
bvpFlow.setDirichlet(1021,1,1);
bvpFlow.setDirichlet(2020,—1,1);
bvpFlow.setDirichlet(2021,1,1);
W=bvpFlow.solve(’split?,true);

af=Q(x,y,z) 14+(z—1)."2;
Lop=Loperator(dim,d,{af,[],[Il;[l,af,[;[],[],at},[I,{ W{2},W{3},W{4} },0.01);
bvpHeat=BVP(Th,PDEelt(Lop));
bvpHeat.setDirichlet(1020,30.);
bvpHeat.setDirichlet(2020,30.);
bvpHeat.setDirichlet(10, @Q(x,y,z) 10x(abs(z—1)>0.5));
U=bvpHeat.solve();
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