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Abstract

The Surface BVP Addon for the rc-vFEMP; Matlab toolbox contains codes which allow to compute
numerically solutions of scalar Boundary Value Problems on regular surfaces. These codes use the FC-
VFEMP; Matlab toolbox and thus a good knowledge of the use of the latter is a prerequisite with the
reading of this report.
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Let I' ¢ R™"! be a regular surface. For all z € T, A(z) = (A4;(x))i j=1,..n+1 be a matrix which
maps the tangent space T,I into itself (i.e. A(z): T,I' — T,T) and let b(z) € T,,T', ¢ : T — R"*! and
ag : I' — RR. We denote by L the second order linear differential operator acting on scalar fields defined,
Vu € H?(T'), by

L(u) = — divp(AVp ) 4 divp (bu) + (Vi u,e) + agu. (1)
The main of the Surface BVP Addon is to solve generic scalar surface BVP given by
Scalar surface BVP 1 : generic problem
Find u € H?(T) such that
L(u) =f inT, (2)
u =g on OI'P, (3)
ai—uﬁ + aftu =g on OT'E, (4)
The conormal derivative of v is defined by
O (A, ) — (b ) Q
ong

Before getting to the heart of the matter, the first chapter rapidly presents the FC-VFEMP; toolbox.
For a more complete For a more complete description one can refers to [|. Thereafter, notations and results
on regular surfaces given in [2] are recalled. Finally some surface BVPs are presented and numericaly
solved by using the Surface BVP Addon for the rC-vFEMP; Matlab toolbox.
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The notations of [3] are employed in this section and extended to the vector case.

1.1 Scalar boundary value problem

Let © be a bounded open subset of R¢, d > 1. The boundary of € is denoted by I
We denote by £, p ., = £ : H*(Q) — L*(Q) the second order linear differential operator acting on

scalar fields defined, Vu € H?(Q), by

def

Lpb e, =—div(AVu) +div (bu) + (Vu,e) + agu (1.1)

where A € (L>=(2))*4 b € (L=(2))%, ¢ € (L>(Q))% and ag € L>=(Q2) are given functions and (-,-) is
the usual scalar product in R?. We use the same notations as in the chapter 6 of [3] and we note that we
can omit either div (bu) or (V u,¢) if b and ¢ are sufficiently regular functions. We keep both terms with b
and ¢ to deal with more boundary conditions. It should be also noted that it is important to preserve the
two terms b and ¢ in the generic formulation to enable a greater flexibility in the choice of the boundary
conditions.

Let I'P, T® be open subsets of I', possibly empty and f € L?*(Q), g € HY3(TP), ¢ € L*(T'F),
af € L>=(I'F) be given data.

A scalar boundary value problem is given by

gScalar BVP 1 : generic problem
Find v € H?(2) such that

L(u) =f in Q, (1.2)
u =g" on TP, (1.3)

du R, __ R R
g +atu=g on I'**. (1.4)

The conormal derivative of v is defined by

U st (AW u,m) — (bu,n) (1.5)

onc

The boundary conditions (|1.3) and (1.4)) are respectively Dirichlet and Robin boundary conditions.
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Scalar BVP 4

Neumann boundary conditions are particular Robin boundary conditions with a® = 0.

To have an outline of the FC-VFEMP; toolbox, a first and simple problem is quickly present. Expla-
nations will be given in next sections.

The problem to solve is the Laplace problem for a condenser.

-

-\@/— Usual BVP 1 : 2D condenser problem
Find u € H?(2) such that

—Au = 0 in Qc R?

0 onTI',

= —12 on Igg,
12 on Iy,

~ A~~~
— = = =
© 00 3 O
o —

-10

Figure 1.1: 2D condenser mesh and boundaries (left) and numerical solution (right)

The problem (1.6)-(1.9) can be equivalently expressed as the scalar BVP (1.2))-(1.4) :

gScalar BVP 2 : 2D condenser problem
Find v € H?(2) such that

L(u

u

f in Q,
gD on FD = Fl @) Fgg U Fgg.

where L := [’I,0,0,0’ f =0, and

gD :=0on Iy, gD = —12 on I'gg, gD := +12 on I'gg

In Listing [T9]a complete code is given to solve this problem.

meshfile=gmsh.buildmesh2d(’ condenser’,10); % generate mesh
Th=siMesh(meshfile); % read mesh
Lop=Loperator(2,2,{1,0;0,1},[L[],[1);
pde=PDEelt(Lop);
bvp=BVP(Th,pde);
bvp.setDirichlet( 1, 0.);
bvp.setDirichlet( 98, 12.);
bvp.setDirichlet( 99, +12.);
U=bvp.solve();

% Graphic parts

figure(1)
Th.plotmesh(’color?,0.7x[1,1,1])
hold on
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Vector boundary value problem 5

(’d’,1,’Linewidth’,2,’legend’, )
axis off,axis image
figure(2)
.plot(U,’edgecolor’,’none’,’ facecolor’,’ interp’)
axis off,axis image;colorbar

Listing 1.1: Complete Matlab code to solve the 2D condenser problem with graphical representations

1.2 Vector boundary value problem

Let m > 1 and H be the m-by-m matrix of second order linear differential operators defined by

Ho (H2(Q)" — (LA™
def (1.10)
u=(u1,...,un) — f=(f1,....fn)=H@)

where .
fo=> Haplus), Yoe[l,m], (1.11)

p=1

with, for all (o, 8) € [1,m]?,

Has "z“LAa,B,ba,%wag,,s (1.12)

and A%P e (L ()44, b*F e (L°(Q))?, e € (L>=(Q))* and a)”’ € L>°(Q) are given functions. We
can also write in matrix form

£A1=1,b1’1,cl~1,a(1)’1 “ee ﬁAlvm,bl’m,Cl’m,a(l))m ul
H(u) = : : - (1.13)
c c

Um

m,m
m,1 Am,m H" " em,m g mem
B ) e

0,1 1 ,ml
AmM, 7b ,ch, a0

We remark that the H operator for m = 1 is equivalent to the £ operator.

For a € [1,m], we define I'2 and T'® as open subsets of T, possibly empty, such that T2 NT'Z = (.
Let f € (L?(Q)™, g2 € HY2(TD), g& € L2(T'), aff € L>°(T'E) be given data.

A wector boundary value problem is given by

ﬁ Vector BVP 1 : generic problem
Find u = (u1,...,u,) € (H3(2))™ such that

H(u) =f in Q, (1.14)

uy =g7 on I'2 Va € [1,m], (1.15)

Ou + afu,, =g% on I'E, Vo € [1,m], (1.16)
Ony,

where the a-th component of the conormal derivative of u is defined by

O wix~ Ous N (pas _ (pet . '
;;1 > (A Vug,n) — (6" ug.n)) (1.17)

ony., Oy, 4 b1

The boundary conditions are the Robin boundary conditions and is the Dirichlet
boundary condition. The Neumann boundary conditions are particular Robin boundary conditions
with aff =

In this problem, we may consider on a given boundary some conditions which can vary depending on

the component. For example we may have a Robin boundary condition satisfying 82’; +aftu; = gF and

1
a Dirichlet one with uy = g2’.
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Vector BVP

To have an outline of the FC-VFEMP; toolbox, a second and simple problem is quickly present.

where ) and its boundaries are given in Figure

such that

—Aug + ug
—Aug + uq
(w1, uz)
(w1, uz)

(u,uz)

-\@’- Usual vector BVP 1 : 2D simple
Find u = (u1,us) € (H2(2))2

0 in Q c R?,
0 in Q C R?,
(0,0) on I'y,
—12.,+12.) on Tyg,
+12.,—12.) on Ty,

vector problem

The problem ([1.18)-(1.22)) can be equivalently expressed as the vector BVP (1.2))-(1.4) :

ﬁ Vector BVP 2 : 2D simple vector problem
Find u = (u1,u2) € (H2(Q))? such that
H(u) =f

ur =g{’

U2 ZgzD
where

Ho— £,000 £00.0.

L0001 L1000

and

>,as7-[

92D :=0on I, ng = —12, gQD := 412 on I'gg, ng = +12, 92D := —12 on Iyg

in €,

on I'P = 'y UTgg U gy,
on I'P = I'y UTgg U gy,

In Listing [21] a complete code is given to solve this problem. Numerical solutions are given in Fig-

ure

= . (’condenser’,10); % generate mesh

); % read mesh
= (2,2,2);
.set([1,2],[1,2],
set([1,2],[2,1],
= (Hop);
- ( ) )§
. (1,0.1:2);
(98, {12,+12},1:2);
(199, {+12,12},1:2);
= . (’split’, );
% Graphic parts
figure(1)
.plot(U{1})
axis image;axis
colorbar
figure(2);
plot(U{2})
axis image;axis
colorbar

;shading

;shading

2.2{L,[01 L)
(2723[13[13[131))5

Listing 1.2: Complete Matlab code to solve the funny 2D vector problem with graphical representations
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Vector BVP

Figure 1.2: Funny vector BVP, u; numerical solution (left) and us numerical solution (right)
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All the notations and results of this chapter are directly obtain from [2].

2.1 Elementary geometric analysis

' Definition 2.1: CF-hypersurface

Let k € NUoo. I' € R**! is called a C*-hypersurface if, for each point zo € T, there exists an open
set U € R"*! containing z and a function ® € C¥(U;R) with the property that V® # 0 on I NU
and such that

'NnU={zeU]| ®(z)=0}. (2.1)

The linear space
T.T = [V &(2)]* (2.2)

is called the tangent space to I" at x € T'.
A vector v(z) € R"*! is called a unit normal vector at x € T if v(x) L T,.T and |[v(z)| = 1. We have

V() V()
o) = W@ * YT Ve 23)

A Cl-hypersurface is called orientable if there exists a continuous vector field v : ' — R™*! such
that v(x) is a unit normal vector to I" for all x € T.

' Definition 2.2: Tangential gradient or surface gradient

Let I' ¢ R"! be a C'-hypersurface and let f : I' — R be differentiable at € I'. we define the
tangential gradient or surface gradient of f at z € ' by

Vr f(@) =V f(z) —(V f(z),v(z)) v(z) = P(2) V f(z), (2.4)

where (P(z))i; = 0i; — vi(z)vjz, V(i,j) € [1,n+1]? Here f is a smooth extension of f to a
neighbourhood U € R™*! of the surface I, so that fir = f.



Elementary geometric analysis 9

We shall use the notation
Vi f(z) = (D, f(x),..., D, 1 f(2))* (2.5)

for the n+1 components of the surface gradient. Note that (Vr f(z),v(z)) = 0 and hence Vr f(z) € T,
We denote by :

e C%(T';R) the set of functions f : I' — R which are continous.

e C}(T;R) the set of functions in C°(TI"; R) which are differentiable at every point z € T and for which
D, € CO(T;R), for all i € [1,n + 1].

e C/(T;R), I € N provide that T is a C*-hypersurface with k > [.

Let g : I' — R"™*! be differentiable at x € T' (g is a vector field) and f : I' — R be twice differentiable
at ¢ € I'. The surface divergence is given by

n+1
divrg(z) = ) Dig;(x) (2.6)
i=1
and, the Laplace-Beltrami operator is given by
n+1
Arf(z) = divr Vp f(z) = Y D,D, f(x) (2.7)
i=1

' Definition 2.3: Extend Weingarten map

Let ' be a C2-hypersurface. The extend Weingarten map is the matrix H € M,,;1(C°(T'; R)) define

N Hi; = Dv;, V(i,j) € [1,n+ 1] (2.8)
The matrix H is symmetric and Hv = 0. The restriction of H to the tangent space is called the Weingarten

map.
The mean curvature of I' at point x € T is the quantity

n+1
H(z) = traceH(z) = Y H; (). (2.9)
i=1

It differs from the common definition by a factor of n.

Lemme 2.4

Let T' be a C2-hypersurface and u € C(I'; R). Then, we have

D;Dju—D;Dyu= (HVru)w; — (HVrw)w;, V(i,j) € [1,n+1]> (2.10)

Theorem 2.5: integration by parts on surfaces

Assume that I is a hypersurface in R"*! with smooth boundary OI' and that f € C}(T; R). Then

/QifdA:/vaid/H—/ fudA, Vi€ [l,n+1] (2.11)
T T or

and so
/Vp fdA = / fHvdA + fudA. (2.12)
Ty Ty ar

Here, p denotes the co-normal vector which is normal to OI' and tangent to I'.
A compact hypersurface I' does not have boundary, OI' = (), and the last term on the right-hand
side vanishes.
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Sobolev space on surface 10

Note that dA in connection with an integral over I" denotes the n-dimensional surface measure, while dA
in connection with an integral over OI' is the n — 1-dimensional surface measure.

2.2 Sobolev space on surface

Let I' be a C2-hypersurface for the following.
For p € [1,00] we let LP(T") denote the space of functions f : I' — R which are measurable with
respect to the surface measure dA and have a finite norm, where the norm is defined by

1oy = ( / Ifl”dA> '

for p < oo, and for p = co we mean the esential supremum norm.
LP(T) is a Banach space and for p = 2 a Hilbert space. For 1 < p < oo the spaces C°(T'; R) and
Cl(T';R) are dense in LP(T).

' Definition 2.6

A function f € LP(T') has the weak derivative v; = D, f € LP(T) if, for every function ¢ € C1(I'; R)
with compact support {z € I' | p(z) # 0} C T', we have the relation

/ fD;pdA = —/ fv,dA+ / foHy;dA.
r T r
The Sobolev space H>?(T) is defined by
H'YP () ={f € L’(T) | D,f € L*(),i € [1,n + 1]} (2.13)

with norm .
1y = (1) + 190 £y ) (2.14)

Theorem 2.7: Poincaré’s inequality

Assume that T is a C3-hypersurface and 1 < p < co. Then there is a constant C' > 0 such that, for
every function f € HVP(T) with Jp ddA = 0, we have the inequality

£l ey < CNVE fll Lo ey - (2.15)

Theorem 2.8: Green’s formula

Let T' be a C%-hypersurface. Then for all f € HYP(T') and g € H??(T") we have

/ (Ve £, Vi g)dA = / fArgdA + / £ (Ve g, ) dA. (2.16)
T T or

A compact hypersurface I' does not have boundary, OI' = (), and the last term on the right-hand
side vanishes.

Proof. Let i € [1,n], we have
D, (fD;(9)) = D,(f)D;(g) + fD,D;(g)

and then

/ D,(f)D,(g)dA = / D, (fDi(g))dA - / fD,D;(g)dA
I N I
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Using integration by parts formula (2.11) with f identify to fD,(g) we obtain

/ D,(f)D,(g)dA = / D) HvidA+ | FD(g)p,dA - / /DD (g)dA
T I N

ar
By summing in ¢, we obtain

/ (V0 £.Vrg)dA = / F(Trgv) HAA+ [ f(Frg.p)dA / FArgdA
I I or I

Since (Vr g,v) = 0, the formula is prooved. O

2.3 Variational formulation of a surface BVP

In this section, the variational formulation of the generic scalar surface BVP (1.2))-(|1.4)) is established by
using previous results.

Lemme 2.9

Let T’ be a C2-hypersurface. Then, for all f,g € H(T") and for all i € [1,n + 1], we have

/F Dy(f)gdA = /F fgHvdA — /F fDi(g)dA + /a famda. (217)

Proof. We have D,(f)g = D;(fg) — fD;(g) and by integration we obtain using ...
[ pitheaa = [ Disgaa— [ roios
- /F foHvidA + /8 JomdA~ /F /D,(g)dA

O
Lemme 2.10
Let T be a C2-hypersurface. Then, for all u € H?(T') and v € H(T'), we have
/ divp(AVru)vdA = —/ (AVru,Vro)ydA + / (AVru,p)dA. (2.18)
T r or
Proof. Using (2.17) with f = A; ;D,(u) and g = v we obtain
/Qz(AZjQ] (u))vdA = / Aj,,ij (U)UHVZdA — / Ai,ij (U)Ql(v)dA
r r r
+/ Ai7ij (U)U[I,ZdA
ar
Summation in ¢ and j give
/ divp(AVpu)vdd = / (AVru,v) HvdA — / (AVru,Vrv)dA
r r r
—|—/ (AVru,u)dA.
or
By hypothesis on A, A(z) Vr u(z) € T,I" and so (A(z) Vru(z),v(x)) = 0. O
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Lemme 2.11
Let I' be a C2-hypersurface. Then, for all u,v € H*(I'), we have
/divr(bu)vdA = —/ (bu,Vrv) dA+/ (bu, p) vd A. (2.19)
T Iy ar

Proof. Using (2.17) with f = b;u and g = v we obtain
/Qi(biu)vdA = / bjuvHyv;dA — / biuD;(v)dA +/ biuvp,dA.
r r r ar
Summation in i give
/ divp(bu)vdA = / (bu,v) Hvd A — / (bu,Vrv)dA
r r r
+/ (bu, p) vd A.
or

By hypothesis, for all z € T, b(z) € T,I" and so (b(z)u(z),v(x)) = u(z) (b(z),v(x)) = 0. O

So we have prooved the following theorem

Theorem 2.12

Let I' € R"™! be a C?-hypersurface. Let ag, b;, ¢;, A;j € L=(T), VY(i,j) = [1,n+ 1]*. We also

assume that for all z € T, b(z) € T,I' and the matrix A(z) = (4; ;(x))i j=1,...n+1 maps the tangent

space T,T into itself (i.e. A(z): T,I' — T,I"). We denote by L the second order linear differential
operator acting on scalar fields defined by

L(u) = — divp(AVr u) + divp (bu) 4+ (Vi u,e) + agu, Vu € H(T).

Then, for all u € H*(T') and v € H(T), we have

/E(u)vdA = /(AVpu,Vp v) dA+/a0uvdA
r r

T

—(/Fu<va,b>dA—/F(Vpu,chA)

f/ (AVru,p) vdA+/ (bu, p) vd A.
or or

Let Dz = Dap.c,qa, be the first order bilinear differential operator acting on scalar fields associated to
the £ operator defined V(u,v) € (HY(I"))? by

De(u,v) = (AVru,Vrv) — ((Vro,b) u— (Vru,e) v) + aguv. (2.20)
The variational formulation associated to the scalar surface BVP — is given by
-@'—Variational formulation of the scalar surface BVP ([1.2)-(1.4)
Find u € Hjp 5rp(T) such that
Az (u,v) = F(v) Yo € Hé,arp ) (2.21)
where
Ag(u,v) = / Dr(u,v)dA +/ aftuvd A (2.22)
r OTR
Flv) = / fvdA —|—/ gfudA (2.23)
r oTR J
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This next section looks first at the construction of surface BVPs where analytic solutions are known by
using Sage (a formal calculation software). Thereafter, some surface BVPs are numerically solved by
using the Fc-vFEMP; Matlab toolbox and solutions compared to exact solutions when we know them.

3.1 Analytical solutions of surface BVPs

3.1.1 Sage computation of Laplace-Beltrami operator on hypersurfaces
Let the hypersurface I' given by a level set function ® : R? — R :
F={zeR’|®x) =0}
For the unit sphere, one can use

Q:xs 2t +ad+ a1,

With FC-VFEMP1, one can easily generated this surface from a sphere mesh made by gmsh and sphere4surf .geo
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1 | meshfile=gmsh.buildmesh3ds(’ sphere4surf.geo’,10,’ geodir’ geodir);
2 | Th=siMesh(meshfile,’dim?,3);

Listing 3.1: Mesh of a sphere with 8 subdomains, I' = Q; U--- U Qs.

More complicated surfaces can be obtained by mapping the unit sphere S? onto I'. we note F : S? —
I the map function. From example 4.8 in [2], we take

1 1.
F(y1,y2,y3) = <2y1,y2, 3Ys (1 +3 Sln(%yl))) el, Vy=(y1,y2,y3) € S° (3.1)

The representation of I' = F(S?) as a hypersurface {z € R? | ¢(z) = 0} follows from 3% + y3 + y3 = 1
with the level set function
4a?

(14 1 sin(mz))?

b(x) = le + 23 + —1. (3.2)

4

With FC-VFEMP1, one can easily generated this surface from a mesh of the sphere made by gmsh and
spheredsurf.geo :
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T
”Ig//ﬂ/,
)

/4

Z,
4 ////;'///1/]

2 | F=0(x,y,2) [2%x;y;0.5%2.%(140.5*sin(2+pixx))]
3 | Th=siMesh(meshfile,’dim’,3,’ trans’ F);

meshfile=gmsh.buildmesh3ds(’ sphere4surf.geo?’,10,’geodir’,geodir);

QU---UQs.

Listing 3.2: Mesh of a sphere with 8 subdomains transform with mapping function F, T =

To compute the Laplace-Beltrami operator apply on a given function over a given surface we use the

Sage software (see [1]) by implementing :
e the surface gradient operator Vr, formula ,
e the surface divergence operator divr, formula ,
e the Laplace-Beltrami operator Ar, formula .

The source code is given in Listing [3.3]
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Listing 3.3: Implementation of Laplace-Beltrami operator, Sage code

# gradient of function Phi
def Gradient(Phi):
return Phi.diff()
# normal to the surface function Phi
def normal(Phi):
G=Gradient(Phi)
return G/G.norm()
# Projection matriz on tangent space
def Pmat(normal):
P=[];dim=len(normal)
for i in range(dim):
Pr=(J;
for j in range(dim):
if i==j:
Pr.append(1normalfi]*normalj])
else:
Pr.append(normal[i]*normal[j])
P.append(Pr)
return matrix(P)
# Surface gradient of u over surface function Phi
def SurfGrad(u,Phi):
P=Pmat(normal(Phi))
gradu=Gradient(u)
return Pxgradu
# Surface divergence of u over surface function Phi
def SurfDiv(V,Phi):
P=Pmat(normal(Phi))
=0
for i in range(len(V)):
g=PxGradient(V[i])
f=f+gli]
return f.simplify full()
# LaplaceBeltrami operator on u over surface function Phi
def LaplaceBeltrami(u,Phi):
return SurfDiv(SurfGrad(u,Phi),Phi).simplify _full()

Under Sage, one can now compute some exact solutions on hypersurfaces :
e sample 1 : I' = 52

load(’../sage/LaplaceBeltrami.sage’)

var(’x,y,z’ ,domain=RR)

Phi(x,y,2z)=x**2+y**x2+z**2 -1

u(x,y,z)=x*y
f(x,y,z)=-LaplaceBeltrami(u,Phi)

So with @ : (z,y,2) — 2?2 +y*+ 2?2 — 1 and u: (7,y,2) — 2y we have

6 xy

= —Aru: J2) P ———————
f ru (xay Z) x2+y2—|—22

e sample 2: I' = 52
load(’../sage/LaplaceBeltrami.sage’)
var(’x,y,z’ ,domain=RR)
Phi(x,y,2z)=x**2+y**x2+z**2 -1
u(x,y,z) =x**2%y**2
f(x,y,z)=-LaplaceBeltrami(u,Phi)

So with @ : (z,y,2) — 22+ 9>+ 2?2 —1and u: (7,y,2) — 2%y* we have

2 (x* — 822y + y* + (22 +¢2)2?)
x? +y? + 22

f:_AFu: (1771172’) = -

Compiled on 2017/01/20 at 09:19:28
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e sample 3 : I' = F(S?) with F given by (3.1) and the level set function ® defined in (3.2)

load(’../sage/LaplaceBeltrami.sage’)

var(’x,y,z’ ,domain=RR)

u(x,y,z)=x*y
Phi(x,y,z)=x**2/4+y**2+(4*z**2) / (1+sin(pi*x)/2)**2 -1
f(x,y,z)=-LaplaceBeltrami(u,Phi)

In this case, the function f = —Aru obtained is to long to be written.
3.2 Numerical samples on closed hypersurfaces

32.1 —Aru+ agu = f with exact solution on S?
We want to solve the surface PDE on a closed hypersurface T :
—Aru+apu=f, onT (3.3)

where f € L*(T') and ag € L>(T) are given with ay > 0. With this last assumption we have existence
and unicity of a u € H3(T).

To solve and compare to exact solution, we choose u(z) = x172, ag(x) = 1 + 2% and we calculate the
right-hand side f as f = —Aru + agu using sage with I' = S2. The complete code using the FC-VFEMP;
Matlab toolbox is given in Listing 3.4 In figure 3.

[, — ul/|lull

L 03 n 5 : 25 ;

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 %10

fprintf(? **#* Building/reading, mesh\n’)
N=50;geofile=">sphere4surf’;
meshfile=gmsh.buildmesh3ds(geofile,N,’geodir’ ,geodir,’meshdir’ ,geodir);
Th=siMesh(meshfile,’dim’,3);
Th.info()
fprintf(’? ***_Setting ;surface BVP\n’)
u=Q(x,y,z) x.*y;
LPu=Q(x,y,z) 6.%x.xy./(x.”2 + y."2 + 2z.72);
a0=Q(x,y,z) 1+x.72;

=Q(x,y,z) LPu(x,y,z)+a0(x,y,z).xu(x,y,z);
Lop=Loperator(3,2,{1,[], [l;[],L,[l;[1.1}:1},11.1],20);
pde=PDEelt(Lop,f);

bvp=BVP(Th,pde);
fprintf(’ **#*_Solving ;surface BVP\n’)
U=bvp.solve();

© 0 N e ;o W N e

e
N U =)

-
3

Listing 3.4: Solving —Aru + apu = f on unit sphere with ag(x,y,2) = 1 + 22, solution (left) and
relative error (right)
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Error

—e— L5 error | ]
—o— H" error| |
- ()(h) _
- ()(hQ)

107 107t 10°

Figure 3.1: Order for surface BVP —Aru + apu = f on unit sphere with ag(x,y,2) = 1 + 22 and exact
solution u(zx,y, z) = xy.

322 —Aru+apu = f on F(S?) with exact solution

To solve and compare to exact solution, we choose u(x) = 2122, ap(x) = 1 + 22 and we calculate with
Sage the right-hand side f as f = —Aru + apu where I' = F(S?) and F given by (3.1).

The complete code using the FC-vFEMP; Matlab toolbox is given in Listing In figure ?7 the
orders for the L? and H' norms are represented.
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12

13

14

15

16

Figure 3.2: Order for surface BVP —Arpu+agu = f on unit sphere mapping by function (3.1]) :

[un = ul/|[ull

u=Qfc_vfempl.addon.surface.samples.uxyz03;
LBu=@fc_vfempl.addon.surface.samples.fxyz03;
Fmap=Qfc vfempl.addon.surface.samples.Fmapxyz03;
a0=Q(x,y,z) 1+x.72;

f=Q(x,y,z) LBu(x,y,z)+a0(x,y,z).*u(x,y,z);

fprintf(’ **#*_Building/reading mesh\n’)
N=50;geofile="’spheredsurf’;
meshfile=gmsh.buildmesh3ds(geofile,N,’ geodir?,geodir, ’meshdir? geodir);
Th=siMesh(meshfile,’dim’,3,’ trans’,Fmap);

Th.info()

fprintf(’ **#* Setting ;surface BVP\n’)
Lop=Loperator(3,2,{1,[], [;;[],L,[l;[1.0}:1},11.1],20);
pde=PDEelt(Lop,f);

bvp=BVP(Th,pde);

fprintf(’ **#*_Solving ;surface BVP\n’)

U=Dbvp.solve();

Listing 3.5: Solving —Aru+apu = f on F(S?) with ag(x,y, 2) = 1+ 22, solution (left) and relative
error (right)

10 ¢ ‘ — 1
[ —e— L, error ]
—o— H' error| |
-._*..-.O(h)
—o-0(h?)
1072 F 1
g 103 F e
w
w0tk |
10'5 L L L L L |
107 10! 10°

C+ xy.

u(z,y,z) =
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323 —Aru+agu= f on F(S5?) without explicit solution

We want to solve the surface PDE

—Aru+apu=f, onT = F(S?) (3.4)

with ag(z,y,2) =1+ 09cos(z+y+2), f=1

© 0 N G s W N e

[
S}

Up,
B 2 ‘
0.7 0.75 0.8 0.85 0.9

N=30;

=ik

a0=Q(x,y,z) 1+0.9xcos(x+y+2);

Fmap=0Q(x,y,z) [ 2.%x; v;(1/2)%2.%((1/2)*sin(2.xpi.xx) + 1)];
meshfile=gmsh.buildmesh3ds(’ sphere4surf.geo’,N,’geodir’ geodir,’meshdir’ geodir);
Th=siMesh(meshfile,’dim’,3,’ trans’ ,Fmap);
Lop=Loperator(3,2,{L,[],[I;[l,LIL1]0,1}.11,1],20);

pde=PDEelt(Lop,f);

bvp=BVP(Th,pde);

u=bvp.solve();

Listing 3.6: Solution of —Aru + 4aou = f PDE on unit sphere mapping by function (3.1 with
ap(z,y,2) =14 0.9cos(z +y+ z) and f = 1. Matlab code

324 —Aru+ (Vru,e)+ apu = f on F(S?) with exact solution

We want to solve the surface PDE on a closed hypersurface T" :

—Aru+ (Vru,e) +apu=f, onT (3.5)

where f € L*(T), ¢ € (L*°(I"))? and ag € L>(T) are given with ag > 0.

For this example we choose I' as the surface obtained by mapping the unit sphere by the function

defined in

To solve and compare to exact solution, we choose
u(x) = 122, ap(x) =1+ 27 and c(x) = (cos(z1),sin(za),2 + x12273)°

With Sage, we compute —Aru and Vr u. The results are saved in FC-VFEMP; toolbox respectively in

+fc_vfempl/+addon/+surface/+samples/fxyz04.m
+fc_vfempl/+addon/+surface/+samples/gradSuxyz04.m

as well as corresponding v and map function (3.1 respectively in

+fc_vfempl/+addon/+surface/+samples/uxyz04.m
+fc_vfempl/+addon/+surface/+samples/Fmapxyz04.m

Compiled on 2017/01/20 at 09:19:28
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The order of the P;-lagrange finite element method used in the FC-VFEMP; toolbox is given in Figure 3.3

© W N e ;o W N e

L o v
0w N ;oA W N O

[
©

We give in Listing [3.7] the complet Matlab code to solve [3.5] with

cos(z1)
ap:x— 1+23 and c:x— sin(xz)
2+ x12973

[un — ul/|ull

gradS=@fc_vfempl.addon.surface.samples.gradSuxyz04;
f=@fc_vfempl.addon.surface.samples.fxyz04; % Beltrami(u)
uex=@fc_vfempl.addon.surface.samples.uxyz04;
Fmap=@fc_vfempl.addon.surface.samples.Fmapxyz04;

fprintf(’ **#*_Building/reading mesh\n’);

N=50;

meshfile=gmsh.buildmesh3ds(’ sphere4surf.geo’,N,’geodir’,geodir,’meshdir?,geodir);
Th=siMesh(meshfile,’dim’,3,’ trans’ ,Fmap);

fprintf(? ***_Setting surface BVP\n’);

c={Q(x1,x2,x3) cos(x1), @Q(x1,x2,x3) sin(x2), @(x1,x2,x3) 2+x1.%x2.%x3};
a0=0(x1,x2,x3) 14+x1.~2;

cgradSu=0(x,y,7) sum(gradS (x,y,2) e {1} (53,250 {2} ox,y,2)se {3} oy, AL L
% RHS function :

RHSfun=Q(x,y,z) f(x,y,z)+cgradSu(x,y,z)+a0(x,y,z).xuex(x,y,z);
Lop=Loperator(3,2,{1L,], [, L,[:[1,[],1}.[],¢,20);

pde=PDEelt(Lop,RHSfun);

bvp=BVP(Th,pde);

fprintf(? ***_Solving ,surface BVP\n’);

u=bvp.solve();

Listing 3.7: Solution of surface BVP —Aru+(Vr u,¢)+apu = f on unit sphere mapping by function
(3.1). Matlab code
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100 T ]
—a— L5 error | ]
—o— H! error |
el 1
—e-0(h?)
10 | ]
5
£ 10°F g
w
107 ¢ 1
107* —
1072 10 10°

Figure 3.3: Order for the surface BVP —Aru + (Vru,¢) + apu = f on unit sphere mapping by function

B0

325 —Aru+ (Vru,e) + apu = f on F(S?%) without exact solution
From previous sample, just differs the f function given by

f(x) = 5cos(bry — bxo + Tx3)
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Up,
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3

N=50;

Fmap=0Q(x,y,2) [ 2.%x; v;(1/2)%2.%((1/2)*sin(2.xpi.xx) + 1)];
c={Q(x1,x2,x3) cos(x1), @Q(x1,x2,x3) sin(x2), @(x1,x2,x3) 2+x1.%x2.%x3};
a0=Q(x1,x2,x3) 14+x1.72;

f=@(x1,%x2,%3) 5xcos(Hkx15kx2+Txx3);

meshfile=gmsh.buildmesh3ds(’ sphere4surf.geo’,N,’geodir’, geodir,’meshdir?,geodir);
Th=siMesh(meshfile,’dim’,3,’ trans’ ,Fmap);
Lop=Loperator(3,2,{1,[,[;[I,L,I;1],1},[],¢,20);

pde=PDEkelt(Lop,f);

bvp=BVP(Th,pde);

u=bvp.solve();

© W N e ;s W N e

[
o

-
=

Listing 3.8: Solution of surface PDE —Aru+(Vr u,¢)+apu = f on unit sphere mapping by function
(3.1) without exact solution. Matlab code

3.2.6 3D surface Laplace-Beltrami BVP on closed hypersurface

On closed and regular hypersurface there is no boundary. The surface Laplace-Beltrami BVP is the
following

g.S'calar surface BVP 2 : Laplace-Beltrami
Let T' be a regular and closed hypersurface. Find v € H'(T") such that

—Aru = f inT (3.6)

/ udq 0.
r

From [2], (Therorem 3.3, page 302 and Therorem 4.9, page 319) we obtain

Theorem 3.1
Suppose that f € L*(T Wlth qu 0. There exists a unique solution u € H?(T) of the Laplace-
Beltrami surface BVP -(3.7]

Let uy be the P;- Lagrange FEM solution of the discrete Laplace-Beltrami surface BVP then

lu—unlmr,) < Cih and  |u—un|z2r,) < Coh?. (3.8)

To have uniqueness of the solution we fix the free constant with (3.7).This can be done by replacing
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one line of the linear system Auj, = b obtain from [3.6] by

n

> (Mup); =0 (3.9)

=1

This can be done using FC-VFEMP; by

% Set surface BVP problem
Lop=Loperator(3:2,{1 LI LI LHIL00);
pde=PDEelt(Lop,f);

bvp=BVP(Th,pde);

% Assembly of the linear system
[A,b]=bvp.Assembly(’local?, true);

% Compute Surface Mass matriz : M
bvpMass=BVP(Th,PDEelt(Loperator(3,2,[],[l,[],1)));
10 [M, ]=bvpMass.Assembly(’local’,true);

11 % Change last line

12 A(end,:)=sum(M,1);

© W N e ;o W N e

13 b(end)=0;
14 % Solve linear system
15 u=A\b;

The constant C' is computed so that fF udA = 0.
By construction, we necessarily have fF fdA = 0. Indeed for all ¢ € H*(I') we have

—/ApucpdA:/fcpdA
r r

By using Green formula, we obtain
/<V1"U,VF p)dA = / fpdA
r r
Taking ¢ =1 gives [ fdA =0.

On the unit sphere I' = 52, exact solution uc(z,y,2) = C + xy

With Sage, one can compute f = —Aru : (z,y,2) — ﬂfy% where u : (z,y,2) — zy. Furthermore,
we have [, udq =0 and so the constant C'is equal to zero.

[, — ul/[full

‘
L. 03 : s 2 25 >

Figure 3.4: Numerical solution for 3D surface Laplace-Beltrami BVP on unit sphere (left) and error where
exact solution is u(z,y, z) = zy (right)
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Error

—e— L5 error | ]
—o— H" error| |
- O(h) _
J -~ O(h‘z)

Figure 3.5: Order for 3D surface Laplace-Beltrami BVP on unit sphere : u(x,y, z) = xy.

On the unit sphere I' = S?, exact solution u.(z,y, z) = C + 2%y>
With u : (2,y,2) — 22y? we obtain from Sage

2 (2t = 82%y? + y' + (27 +4?)2?)

f=-Aru:(z,y,2) = — R

Furthermore, we have |, g2 udq # 0 and so the constant C' is not equal to zero.
To compute the contant C' we use (??) and

4
/ Uexdq = C’dq+/ udq =47C + — 7 =0.
5’2 5’2 SZ 15

So we obtain )

[ — ul/[|ull

L
i | 1 2 3 4 5 6 7 8
-0.05 0 0.05 0.1 0.15 %104

Figure 3.6: Numerical solution for 3D surface Laplace-Beltrami BVP on unit sphere (left) and error where
exact solution is u(w,y, z) = 2%y? + C (right)
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Error

—e— L5 error | ]
—o— H" error| |
- O(h)

J -~ O(hz)

Figure 3.7: Order for 3D surface Laplace-Beltrami BVP on unit sphere : u(z,y, 2) = 2%y* + C.

On the unit sphere, exact solution u(z,y,z) = C + cos(2rzy) sin(272)

[ — ul/[|ull

0.4 0.6 0.8 %1073

Figure 3.8: Numerical solution for 3D surface Laplace-Beltrami BVP on unit sphere (left) and error where
exact solution is u(z,y, z) = C' + cos(2mxy) sin(27z) (right)
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Error

—e— L5 error | ]
—o— H" error| |
- O(h) _
J -~ O(hz) 1

Figure 3.9: Order for 3D surface Laplace-Beltrami BVP on unit sphere : w(z,y,2) = C +
cos(2mxy) sin(27z).

On the unit sphere mapping by a function F, exact solution u(z,y,z) = C + zy

The mapping function is given in (3.1).

[y, — ul/[ful|

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 %104

Figure 3.10: Numerical solution for 3D surface Laplace-Beltrami BVP on unit sphere mapping by function
(3.1) (left) and error where exact solution is u(z,y, z) = C + zy (right)
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1071 T ]
—a— L5 error | ]
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Figure 3.11: Order for 3D surface Laplace-Beltrami BVP on unit sphere mapping by function (3.1)) :
u(z,y,z) = C+ay.

On the unit sphere mapping by a function F, exact solution u(z,y, z) = C'+cos(2nz)+sin(27z)+
TYz

The mapping function is given in (3.1).

[un = ul/[[ull

2 -1.5 -1 -0.5 0 0.5 1 1.5 2 0.005 0.01 0.015 0.02 0.025 0.03

Figure 3.12: Numerical solution for 3D surface Laplace-Beltrami BVP on unit sphere mapping by function
(3.1)(left) and error where exact solution is u(z,y, z) = C' + cos(2mzx) + sin(27z) + zyz (right)
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100 T ]
—a— L5 error | ]
—o— H! error |
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Figure 3.13: Order for 3D surface Laplace-Beltrami BVP on unit sphere mapping by function (3.1)) :
u(z,y,z) = C + cos(2mx) + sin(27z) + zyz.

On the unit sphere mapping by a function F, exact solution C + zy

The hypersurface was constructed by mapping a discretization of the unit sphere S? onto the surface T
by

1 1
F(y) = <y17y2ay3 20+ 23 + 52/3) . Y= (y1,y2.y3) € S*. (3.10)

The representation of I' = F(S?) as a hypersurface {z € R? | ¢(z) = 0} follows from 3% + y3 + y3 = 1

with the level set function )

T

o(z) :x2+x§+—3 -1 (3.11)
' 50 T 2U% + 33

[ — ul/[|ull

. L
A i | 0.5 1 15 2.5 3
0.3 0.4 %104

N)

Figure 3.14: Numerical solution for 3D surface Laplace-Beltrami BVP on unit sphere mapping by function
(3.10) (left) and error where exact solution is u(z,y, z) = C' + zy (right)
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1071 T
1072 2 i
5
£ 1031 E
w L
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[ —e— L5 error
—6— H' error| |
-+-O(h)
_..9._.()(;1?)
107 P
1072 10°

Figure 3.15: Order for 3D surface Laplace-Beltrami BVP on unit sphere mapping by function (3.10) :
u(z,y,2) = C +zy.

3.3 Numerical samples on non-closed hypersurfaces

Let T" be a non-closed hypersurfaces and JOI' be its none empty boundary. We want to solve the scalar

BVP (-3

331 —Aru+ (Vru,e) + apu = f with Dirichlet boundary conditions on an half-
sphere

We represente in Listing [3.9] the unit demi-sphere z > 0. As we can remark, the physical boundaries are
labeled from 1 to 4 : the label 5 to 8 only serves us for graphic representation purposes.

-
B
e
— B

SANE e
SSNENN
NN
SVAVAVAY,NAVAViY,
ARV

Y
SRS
NS
T DOSEOR

n KRR

1 | meshfile=gmsh.buildmesh3ds(’halfspheredsurf.geo’,10,’geodir’ geodir,’meshdir’,geodir);
2 | Th=siMesh(meshfile,’dim?,3);

Listing 3.9: Mesh of a demi-sphere with 4 subdomains, I' = 4 U --- U Q4 (left) and boundaries
or' = Fl y---u F4 (rlght)

We want to solve the

Compiled on 2017/01/20 at 09:19:28

3. scalar surface BVP

3.3.1 —Aru + (Vru,e) + apu = f with Dirichlet boundary conditions on

e I - L o

3.3.Numerical samples on non-closed hypersurfaces



Numerical samples on non-closed hypersurfaces 31

Scalar surface BVP 3 : non-closed surface, sample 1
Find v € HY(T') such that

—Aru+ (Vru,e)+apu = f, inT
u = g, ondl.

With exact solution u(x,y, z) = cos(2mxy) sin(27z), we compute —Aru and Vr u with Sage and store

the results as Matlab functions in FC-VFEMP;toolbox respectively in file +fc_vfempl/+addon/+surface/+samples/fxyz0:
and +fc_vfempl/+addon/+surface/+samples/gradSuxyz02.m.
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We give in Listing [3.7] the complet Matlab code to solve [3.5] with

cos(x1)
ap:x— 1+2? and c:x— sin(z)
24+ T1T2X3

[un = ul/[|u]l 0

U
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N=100;

gradSu=@fc_vfempl.addon.surface.samples.gradSuxyz02;
mBu=@fc_vfempl.addon.surface.samples.fxyz(02;
uex=@fc_vfempl.addon.surface.samples.uxyz02;
meshfile=gmsh.buildmesh3ds(*halfsphere4surf.geo’,N,’geodir’ geodir, ’meshdir’ geodir);
Th=siMesh(meshfile,’dim?,3);

c={Q(x1,x2,x3) cos(x1), @Q(x1,x2,x3) sin(x2), @(x1,x2,x3) 2+x1.%x2.%x3};
a0=Q(x1,x2,x3) 14+x1.72;

cgradSu=Q(x,y,z) sum(gradSu(x,y,z).x[c{1}(x,y,z);c{2}(x,y,2);c{3}(x,y,2)],1);
% RHS function :

RHSfun=Q(x,y,z) mBu(x,y,z)+cgradSu(x,y,z)+a0(x,y,z).*uex(x,y,s);
LO}":LOP(T&LOT(372:{1:”:”;”:17[];[]7[]71}7[]7‘?73‘0)5

pde=PDEelt(Lop,RHSfun);

bvp=BVP(Th,pde);

for lab=1:4, bvp.setDirichlet(lab,uex);end

u=bvp.solve();

Listing 3.10: Solution of —Aru 4+ (Vru,¢) + apu = f with Dirichlet boundary condition

Compiled on 2017/01/20 at 09:19:28
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3.3.1 —Aru + (Vru,e) + apu = f with Dirichlet boundary conditions on
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Figure 3.16: Order for 3Ds BVP —Aru + (Vru,¢) + apu = f with Dirichlet boundary condition on unit
half-sphere

332 —Aru+(Vru,c)+agu = f with mixed boundary conditions on an half-sphere

We want to solve the

Scalar surface BVP 4 : non-closed surface, sample 2

Find u € HY(T') such that
—Aru+ (Vru,e) +apu = f, inT (3.14)
u = ¢gp, On 8FD. (315)
(Vrg,p) = gn, ondly. (3.16)
(Vrg,m)+ou = ggr, on dlg. (3.17)

On the half-sphere (z > 0), we have p = (0,0, —l)t on OI'.

With exact solution u(x,y, z) = cos(2mzy) sin(27z), we compute —Aru and V u with Sage and store
the results as a Matlab functions in FC-VFEMP; toolbox respectively in files +fc_vfemp1/+addon/+surface/+samples/fxy
and +fc_vfempl/+addon/+surface/+samples/gradSuxyz02.m.

We also have to set gy and gr functions. We obtain them with the following Matlab code

= . .surface. . ;
= . .surface. . :

(36,y,2) 1 (x,y,2);

We give in Listing [3.7] the complet Matlab code to solve (3.14)-(3.17) with
O'p=T1UTls, d'y=Ty, OI'gr=TIy4

and
cos(z1)
sin(za)
24 x1x973

ap x> 1423, ciz— and a:z+— 1+3

Compiled on 2017/01/20 at 09:19:28

3.3.2 —Aru + (Vru,e) + apu = f with mixed boundary conditions on an
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[un = ul/||u]l s
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N=100;

gradSu=@fc_vfempl.addon.surface.samples.gradSuxyz02;
mBu=@fc_vfempl.addon.surface.samples.fxyz02;
uex=@fc_vfempl.addon.surface.samples.uxyz02;
meshfile=gmsh.buildmesh3ds(*halfspheredsurf.geo’,N,’geodir?’ geodir, ’meshdir’ geodir);
Th=siMesh(meshfile,’dim’,3);

c={Q(x1,x2,x3) cos(x1), @Q(x1,x2,x3) sin(x2), @(x1,x2,x3) 2+x1.¥x2.¥x3};
a0=Q(x1,x2,x3) 14+x1.~2;

cgradSu=Q(x,y,z) sum(gradSu(x,y,z).*[c{1}(x,y,z);c{2}(x,y,2);c{3}(x,y,2)],1);
alpha=Q(x,y,z) 14+z.72;

% RHS function :

RHSfun=Q(x,y,z) mBu(x,y,z)+cgradSu(x,y,z)+a0(x,y,z).*uex(x,y,s);
Lop=Loperator(3.2, (LI L0 0
pde=PDEelt(Lop,RHSfun);

bvp=BVP(Th,pde);

for lab=[1,3], bvp.setDirichlet(lab,uex);end

subindex = Q(A,r) A(r,:);

gN=@Q(x,y,z) subindex(gradSu(x,y,z),3);

gR=Q(x,y,z) subindex(gradSu(x,y,z),3)+alpha(x,y,z).xuex(x,y,z);
bvp.setRobin(2,gN,[]);

bvp.setRobin(4,gR,alpha);

u=bvp.solve();

Listing 3.11: Solution of —Aru + (Vru,¢) + agu = f with mixed boundary condition

Compiled on 2017/01/20 at 09:19:28
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Figure 3.17: Order for 3Ds BVP —Aru + (Vru,¢) + apu = f with mixed boundary condition on unit
half-sphere
3.3.3 Mixed boundary conditions on an half-sphere mapping by a function

We represente in Listing [3.9] the unit demi-sphere z > 0. As we can remark, the physical boundaries are
labeled from 1 to 4 : the label 5 to 8 only serves us for graphic representation purposes.

2 | meshfile=gmsh.buildmesh3ds(’halfspheredsurf.geo’,10,’geodir’ geodir,’meshdir’,geodir);

3 | Th=siMesh(meshfile,’dim’,3,’ trans’ F);

Listing 3.12: Mesh of a demi-sphere with 4 subdomains, I' = Q; U --- U Q4 (left) and boundaries
6F2F1U~-~UF4 (rlght)

)t on JT.

On this mesh, we also have g = (0,0, —1
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N=100;

uex=@fc_vfempl.addon.surface.samples.uxyz04;

f=@fc_vfempl.addon.surface.samples.txyz04;

Fmap=Qfc vfempl.addon.surface.samples. Fmapxyz04;
gradSu=@fc_vfempl.addon.surface.samples.gradSuxyz04;

c={Q(x1,x2,x3) cos(x1), @Q(x1,x2,x3) sin(x2), @(x1,x2,x3) 2+x1.¥x2.%x3};

a0=Q(x1,x2,x3) 14+x1.72;

options={’u’,uex,’f’ f,’Fmap’ ,Fmap,’gradS’,gradSu,’a0’,a0,’c’,c};

[bvp,info]=fc_ vfempl.addon.surface.samples.setBVP05halfsphereMap3Dsex(N,’verbose?,0,options{:});
u=bvp.solve();

Listing 3.13: Solution of the surface BVP —Aru+ (Vr u,¢) + apu = f on unit half-sphere mapping
by function (3.1) with mixed boundary conditions
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Figure 3.18: Order for the surface BVP —Aru + (Vru,¢) + apu = f with mixed boundary condition on
unit half-sphere mapping by function (3.1).
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