3 % Computation of the maximal value of edge lengths
6 % q: Array of vertices coordinates, `2\times\nq` array (
double). <br/>
8 % `\il`-th coordinate of the `j`-th vertex, `\il\in\{1,2\}` and
10 % me: Connectivity array, `3\times\nme` array (
'int32'). <br/>
11 % `\me(\jl,
k)` is the storage index of the
12 % `\jl`-th vertex of the `
k`-th triangle in the array `\q` of vertices coordinates, `\jl\in\{1,2,3\}` and
13 % `k\in{\ENS{1}{\nme}}`.
16 % h: maximal length of an edge in the mesh
20 L{1}=q(:,me(1,:))-q(:,me(2,:));
21 L{2}=q(:,me(1,:))-q(:,me(3,:));
22 L{3}=q(:,me(1,:))-q(:,me(4,:));
23 L{4}=q(:,me(2,:))-q(:,me(3,:));
24 L{5}=q(:,me(2,:))-q(:,me(4,:));
25 L{6}=q(:,me(3,:))-q(:,me(4,:));
27 h=max(sum(L{1}.^2,1));
29 h=max(h,max(sum(L{i}.^2,1)));