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1 Description of the generic problems

The notations of [2] are employed in this section and extended to the vector
case.

1.1 Scalar boundary value problem

Let Ω be a bounded open subset of Rd, d ě 1. The boundary of Ω is denoted
by Γ.

We denote by LA,bbb,ccc,a0 “ L : H2pΩq ÝÑ L2pΩq the second order linear
di�erential operator acting on scalar �elds de�ned, @u P H2pΩq, by

LA,bbb,ccc,a0puq
def

“ ´ div pA∇uq ` div pbbbuq ` x∇u,cccy ` a0u (1.1)
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1.2 Vector boundary value problem1 DESCRIPTION OF THE GENERIC PROBLEMS

where we suppose that A, bbb, ccc and a0 are su�ciently regular functions. x¨, ¨y
is the usual scalar product in Rd. We use the same notations as in the chapter
6 of [2] . It should be also noted that it is important to preserve the two terms
bbb and ccc in the generic formulation to allow a greater �exibility in the choice of
the boundary conditions.

Let ΓD, ΓR be open subsets of Γ, possibly empty and f P L2pΩq, gD P

H1{2pΓDq, gR P L2pΓRq, aR P L8pΓRq be given data.
A scalar boundary value problem is given by

Scalar BVP

Find u P H2pΩq such that

Lpuq “f in Ω, (1.2)

u “gD on ΓD, (1.3)

Bu

BnL
` aRu “gR on ΓR. (1.4)

The conormal derivative of u is de�ned by

Bu

BnL
“ xA∇u,nnny ´ xbbbu,nnny (1.5)

The boundary conditions (1.3) and (1.4) are respectively Dirichlet and
Robin boundary conditions. Neumann boundary conditions are particular
Robin boundary conditions with aR ” 0.

1.2 Vector boundary value problem

Let m ě 1 and H be the m-by-m matrix of second order linear di�erential
operators de�ned by

"

H :
`

H2pΩq
˘m

ÝÑ
`

L2pΩq
˘m

uuu “ puuu1, . . . ,uuumq ÞÝÑ fff “ pfff1, . . . , fffmq
def

“ Hpuuuq
(1.6)

where

fffα “
m
ÿ

β“1

Hα,βpuuuβq, @α P v1,mw, (1.7)

with, for all pα, βq P v1,mw2,

Hα,β
def

“ LAα,β ,bbbα,β ,cccα,β ,aα,β0
(1.8)

and Aα,β P pL8pΩqqdˆd, bbbα,β P pL8pΩqqd, cccα,β P pL8pΩqqd and aα,β0 P L8pΩq
are given functions. We can also write in matrix form

Hpuuuq “

¨

˚

˝

LA1,1,bbb1,1,ccc1,1,a1,10
. . . LA1,m,bbb1,m,ccc1,m,a1,m0

...
. . .

...
LAm,1,bbbm,1,cccm,1,am,10

. . . LAm,m,bbbm,m,cccm,m,am,m0

˛

‹

‚

¨

˚

˝

uuu1

...
uuum

˛

‹

‚

. (1.9)

We remark that the H operator for m “ 1 is equivalent to the L operator.
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2 EXAMPLES

For α P v1,mw, we de�ne ΓDα and ΓRα as open subsets of Γ, possibly empty.
Let fff P pL2pΩqqm, gDα P H1{2pΓDα q, g

R
α P L

2pΓRα q, a
R
α P L

8pΓRα q be given data.
A vector boundary value problem is given by

Vector BVP

Find uuu “ puuu1, . . . ,uuumq P pH
2pΩqqm such that

Hpuuuq “fff in Ω, (1.10)

uuuα “g
D
α on ΓDα , @α P v1,mw, (1.11)

Buuu

BnHα

` aRαuuuα “g
R
α on ΓRα , @α P v1,mw, (1.12)

where the α-th component of the conormal derivative of uuu is de�ned
by

Buuu

BnHα

def

“

m
ÿ

β“1

Buuuβ
BnHα,β

“

m
ÿ

β“1

`@

Aα,β ∇uuuβ ,nnn
D

´
@

bbbα,βuuuβ ,nnn
D˘

. (1.13)

The boundary conditions (1.12) are the Robin boundary conditions and
(1.11) is the Dirichlet boundary condition. The Neumann boundary condi-
tions are particular Robin boundary conditions with aRα ” 0.

In the following of the report we will solve by a P1-Lagrange �nite element
method scalar BVP (1.2) to (1.4) and vector BVP (1.10) to (1.12) without
additional restrictive assumption.

2 Examples

2.1 First level functions or commonly used functions

We brie�y describe the main functions that will be used in the sequel.

Th Ð getMeshpFileNameq : to de�ne the mesh Th by reading a 2d or 3d mesh
from the �le FileName.

Th Ð HyperCubepd,N,ă trans “ Φ ąq : to de�ne the mesh Th as the unit
hypercube r0, 1sd. There are Npiq (or N if N is a scalar) points in each

direction and the mesh of the hypercube contains
śd
i“1Npiq points.

Optionnal parameter trans set the displacement vector of mesh transfor-
mation Φpqq “ rΦ1pqq, . . . ,Φdpqqs.

LopÐ Loperatorpd,A, bbb, ccc, a0q : to initialize the operator L in dimension d
given by (1.1) : LopÐ LA,bbb,ccc,a0 .

HopÐ Hoperatorpd,mq : to initialize the operator H given by (1.6) veri-
fying Hα,β “ 0, @pα, βq P v1,mw2. Each operator Hα,β corresponds to
Hop.Hpα, βq and can be initialized by the function Loperator

PDE Ð initPDEpOp, Thq : to initialize a PDE structure fron an operator (ei-
ther L-operator or H-operator) and a mesh. Default boundary conditions
are homogeneous generalized Neumann.
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2.2 Scalar case 2 EXAMPLES

PDE Ð setBC_PDEpPDE, label, comps, type, g, arq : to de�ne or modify the
boundary conditions on the boundary Γlabel on the mesh PDE.Th for com-
ponents of index comps (in the scalar case comps ” 1). For a scalar PDE,
we have for example

‚ Dirichlet condition : uuu2 “ g on Γ11, then
PDE Ð setBC_PDEpPDE, 11, 2, 'Dirichlet', g,Hq

‚ generalized Neumann condition : Buuu
BnH3

“ g on Γ12, then

PDE Ð setBC_PDEpPDE, 12, 3, 'Neumann', g,Hq

‚ generalized Robin condition : Buuu
BnH2

` aR2 uuu2 “ g on Γ13, then

PDE Ð setBC_PDEpPDE, 13, 2, 'Robin', g, aR2 q

xxxÐ SolvePDEpPDEq : to solve by P1 Lagrange �nite elements the partial
di�erential equation de�ned by the structure PDE. This function returns
the solution xxx ()

2.2 Scalar case

2.2.1 2D condenser problem

The problem to solve is the Laplace problem for a condenser.

2D condenser problem

Find u P H2pΩq such that

´∆u “ 0 in Ω Ă R2, (2.1)

u “ 0 on Γ1, (2.2)

u “ ´1 on Γ98, (2.3)

u “ 1 on Γ99, (2.4)

where Ω and its boundaries are given in Figure 1a.
The operator in (2.1) is the Sti�ness operator given by LI,000,000,0 and the

conormal derivative Bu
BnL

is

Bu

BnL
:“ xA∇u,nnny ´ xbbbu,nnny “

Bu

Bn
.

The algorithm using the toolbox for solving (2.1)-(2.4) is the following:

Algorithm 2.1 2D condenser

1: Th Ð getMeshp...q Ź Load FreeFEM++ mesh

2: DopÐ LoperatorpI,000,000, 0q Ź Sti�ness operator

3: PDE Ð initPDEpDop, Thq
4: PDE Ð setBCLabelpPDE, 'Dirichlet', 1, 1, 0.q Ź u “ 0 on Γ1

5: PDE Ð setBCLabelpPDE, 'Dirichlet', 99, 1, 1.q Ź u “ 1 on Γ99

6: PDE Ð setBCLabelpPDE, 'Dirichlet', 98, 1,´1.q Ź u “ ´1 on Γ98

7: xxxÐ SolvePDEpPDEq

The solution for a given mesh is shown on Figure 1b
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2.2 Scalar case 2 EXAMPLES

Ω Γ1

Γ98 Γ99

‚
p´2;´3q

‚
p´1; 3q

‚

‚

‚
p1;´3q

‚
p2; 3q

‚

‚

p5; 0q

(a) Domain for the condenser problem (b) Result for the 2D condenser problem

Figure 1: Condenser problem

2.2.2 Poisson PDE with mixed boundary conditions in 2D (2)

We �rst consider the classical 2D Poisson problem with various boundary con-
ditions. The problem to solve is the following

2D Poisson problem

Find u P H2pΩq such that

´∆u “ f in Ω Ă R2, (2.5)

u “ 0 on Γ1, (2.6)

u “ 1 on Γ2, (2.7)

Bu

Bn
` aR u “ ´0.5 on Γ3, (2.8)

Bu

Bn
“ 0.5 on Γ4 (2.9)

where Ω is the unit hypercube transformed by functionΦΦΦpx, yq “ p20x, 2p2y´
1` cosp2πxqq and its boundaries are given in Figure 2a.
f and aR satisfy:

fpxxxq “ cospxxx1 ` xxx2q @xxx P Ω

aRpxxxq “ 1` xxx2
1 ` xxx

2
2 @xxx P Ω

The operator in (2.5) is the Sti�ness operator : LI,000,000,0.
The conormal derivative Bu

BnL
is

Bu

BnL
:“ xA∇u,nnny ´ xbbbu,nnny “

Bu

Bn
.

The algorithm using the toolbox for solving (2.5)-(2.9) is given in Algo-
rithm 2.2. The corresponding Matlab/Octave and Python codes are given in
Listing 1.
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2.3 Vector case 2 EXAMPLES

Γ1

Γ2

Γ3

Γ4

(a) Domain and boundaries

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2

(b) Result

Figure 2: Laplace2d01 problem

Algorithm 2.2 2D Poisson problem

1: Th Ð HyperCubep2, 50q Ź Build unit square mesh

2: DopÐ Loperatorp2, I,000,000, 0q Ź Sti�ness operator

3: PDE Ð initPDEpDop, Thq
4: PDE Ð setBC_PDEpPDE, 1, 1, 'Dirichlet', 0.,Hq Ź u “ 0 on Γ1

5: PDE Ð setBC_PDEpPDE, 2, 1, 'Dirichlet', 1.,Hq Ź u “ 1 on Γ2

6: PDE Ð setBC_PDEpPDE, 3, 1, 'Robin',´0.5,xxxÑ 1` xxx21 ` xxx
2
2q Ź

Bu
Bn ` aR u “ ´0.5 on Γ3

7: PDE Ð setBC_PDEpPDE, 4, 1, 'Neumann', 0.5,Hq Ź Bu
Bn
“ 0.5 on Γ4

8: PDE.f Ð pxxx1,xxx2q ÞÑ cospxxx1 ` xxx2q
9: uuuh Ð SolvePDEpPDEq

A numerical solution for a given mesh is shown on Figure 2b

1 Th=HyperCube( 2 , 5 0 ) ;
2 LOp=Loperator ( 2 , { 1 , 0 ; 0 , 1 } , [ ] , [ ] , [ ] ) ;
3 PDE=initPDE(LOp,Th ) ;
4 PDE=setBC_PDE(PDE,1 , 1 , 'Dirichlet' , 0 ) ;
5 PDE=setBC_PDE(PDE,2 , 1 , 'Dirichlet' , 1 ) ;
6 PDE=setBC_PDE(PDE,3 , 1 , 'Robin' ,´0.5 , . . .
7 @(x1 , x2 ) 1+x1.^2+x2 .^2 ) ;
8 PDE=setBC_PDE(PDE,4 , 1 , 'Neumann' , 0 . 5 ) ;
9 PDE. f=@(x , y ) cos ( x+y) ;

10 uh=solvePDE(PDE) ;

(a) Matlab/Octave

1 from pyVecFEMP1Light . mesh import ∗
2 from pyVecFEMP1Light . pde import ∗
3 from pyVecFEMP1Light . ope ra to r s import ∗
4 Th=HyperCube(2 , 50 )
5 LOp=Loperator ( 2 , [ [ 1 , 0 ] , [ 0 , 1 ] ] , None , None , None )
6 pde=initPDE(LOp,Th)
7 pde=setBC_PDE( pde , 1 , 0 , 'Dirichlet' , 0 . , None )
8 pde=setBC_PDE( pde , 2 , 0 , 'Dirichlet' , 1 . , None )
9 pde=setBC_PDE( pde , 3 , 0 , 'Robin' ,´0.5 ,

10 lambda x , y : 1+x∗∗2+y∗∗2)
11 pde=setBC_PDE( pde , 4 , 0 , 'Neumann' , 0 . 5 , None )
12 pde . f=lambda x , y : cos ( x+y)
13 uh=solvePDE( pde )

(b) Python

Listing 1: Poisson ...

2.3 Vector case

2.3.1 Elasticity problem

General case (d “ 2, 3)
We consider here Hooke's law in linear elasticity, under small strain hypothesis

(see for example [1]).
For a su�ciently regular vector �eld uuu “ pu1, . . . , udq : Ω Ñ Rd, we de�ne
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2.3 Vector case 2 EXAMPLES

the linearized strain tensor εεε by

εεεpuuuq “
1

2

`

∇∇∇puuuq `∇∇∇tpuuuq
˘

.

We set εεε “ pε11, ε22, 2ε12q
t in 2d and εεε “ pε11, ε22, ε33, 2ε12, 2ε23, 2ε13q

t in 3d,

with εijpuuuq “
1
2

´

Bui
Bxj

`
Buj
Bxi

¯

. Then the Hooke's law writes

σσσ “ Cεεε,

where σσσ is the elastic stress tensor and C the elasticity tensor.
The material is supposed to be isotropic. Thus the elasticity tensor C is only

de�ned by the Lamé parameters λ and µ, which satisfy λ` µ ą 0. We also set
γ “ 2µ` λ. For d “ 2 or d “ 3, C is given by

C “
ˆ

λ12 ` 2µI2 0
0 µ

˙

3ˆ3

or C “
ˆ

λ13 ` 2µI3 0
0 µI3

˙

6ˆ6

,

respectively, where 1d is a d-by-d matrix of ones, and Id the d-by-d identity
matrix.

For dimension d “ 2 or d “ 3, we have:

σσσαβpuuuq “ 2µεεεαβpuuuq ` λ trpεεεpuuuqqδαβ @α, β P v1, dw

The problem to solve is the following

Elasticity problem

Find uuu “ H2pΩq
d
such that

´ divpσσσpuuuqq “ fff, in Ω Ă Rd, (2.10)

σσσpuuuq.nnn “ 000 on ΓN , (2.11)

uuu “ 000 on ΓD. (2.12)

Now, with the following lemma, we obtain that this problem can be rewritten
as the vector BVP de�ned by (1.10) to (1.12).

Lemma 1. Let H be the d-by-d matrix of the second order linear di�erential

operators de�ned in (1.6) where Hα,β “ LAα,β ,000,000,0, @pα, βq P v1, dw
2, with

pAα,βqk,l “ µδαβδkl ` µδkβδlα ` λδkαδlβ , @pk, lq P v1, dw
2. (2.13)

then

Hpuuuq “ ´divσσσpuuuq (2.14)

and, @α P v1, dw,
Buuu

BnHα

“ pσσσpuuuq.nnnqα. (2.15)

The proof is given in appendix ??. So we obtain
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2.3 Vector case 2 EXAMPLES

Elasticity problem with H operator in dimension d “ 2
or d “ 3
Let H be the d-by-d matrix of the second order linear di�erential opera-
tors de�ned in (1.6) where @pα, βq P v1, dw2, Hα,β “ LAα,β ,000,000,0, with

• for d “ 2,

A1,1 “

ˆ

γ 0
0 µ

˙

, A1,2 “

ˆ

0 λ
µ 0

˙

, A2,1 “

ˆ

0 µ
λ 0

˙

, A2,2 “

ˆ

µ 0
0 γ

˙

• for d “ 3,

A1,1 “

¨

˝

γ 0 0
0 µ 0
0 0 µ

˛

‚, A1,2 “

¨

˝

0 λ 0
µ 0 0
0 0 0

˛

‚, A1,3 “

¨

˝

0 0 λ
0 0 0
µ 0 0

˛

‚

A2,1 “

¨

˝

0 µ 0
λ 0 0
0 0 0

˛

‚, A2,2 “

¨

˝

µ 0 0
0 γ 0
0 0 µ

˛

‚, A2,3 “

¨

˝

0 0 0
0 0 λ
0 µ 0

˛

‚,

A3,1 “

¨

˝

0 0 µ
0 0 0
λ 0 0

˛

‚, A3,2 “

¨

˝

0 0 0
0 0 µ
0 λ 0

˛

‚, A3,3 “

¨

˝

µ 0 0
0 µ 0
0 0 γ

˛

‚.

The elasticity problem (2.10) to (2.12) can be rewritten as :
Find uuu “ puuu1, . . . ,uuudq P pH

2pΩqqd such that

Hpuuuq “fff, in Ω, (2.16)

Buuu

BnHα

“0, on ΓNα “ ΓN , @α P v1, dw (2.17)

uuuα “0, on ΓDα “ ΓD, @α P v1, dw. (2.18)

2D example
For example, in 2d, we want to solve the elasticity problem (2.10) to (2.12)

where Ω and its boundaries are given in Figure 3. We have ΓN “ Γ1YΓ2YΓ3,
ΓD “ Γ4.

The material's properties are given by Young's modulus E and Poisson's
coe�cient ν. As we use plane strain hypothesis, Lame's coe�cients verify

µ “
E

2 p1` νq
, λ “

E ν

p1` νq p1´ 2 νq
, γ “ 2µ` λ

The material is rubber so that E “ 21 .105Pa and ν “ 0.45. We also have
fff “ xxx ÞÑ p0,´1qt.

Ω
‚

p0;´1q

‚
p0; 1q

‚
p20;´1q

‚
p20; 1q

Γ4 Γ2

Γ1

Γ3

Figure 3: Domain for the 2D elasticity problem

Using ?? the operator in (2.10) is the Elastic Sti�ness operator. Its conormal
derivative corresponds to the stress vector.

Page 8 Compiled on 2015/05/22 at 07:33:53



2.3 Vector case 2 EXAMPLES

The algorithm using the toolbox for solving (2.10)-(2.12) is the following:

Algorithm 2.3 2D elasticity

1: Th Ð getMeshp...q Ź Load FreeFEM++ mesh

2: λÐ Eν
p1`νqp1´2νq

3: µÐ E
2p1`νq

4: HopÐ InitHoperatorp2, 2q
5: Hopp1, 1q Ð Loperatorp2, r2µ` λ, 0; 0, µs,000,000, 0q
6: Hopp2, 1q Ð Loperatorp2, r0, λ;µ, 0s,000,000, 0q
7: Hopp1, 2q Ð Loperatorp2, r0, µ;λ, 0s,000,000, 0q
8: Hopp2, 2q Ð Loperatorp2, rµ, 0; 0, 2µ` λs,000,000, 0q
9: PDE Ð initPDEpHop, Thq
10: PDE Ð setBC_PDEpPDE, 4, 1 : 2, 'Dirichlet',xxxÑ 000q
11: PDE.f Ð xxxÑ r0,´1s
12: xxxÐ SolvePDEpPDEq

Figure 4: Result for the 2D elasticity problem

The solution for a given mesh is shown on Figure 4

2.3.2 Stationary heat with potential �ow in 2D

Let Γ1 be the unit circle, Γ10 be the circle with center point p0, 0q and radius
0.3. Let Γ20, Γ21, Γ22 and Γ23 be the circles with radius 0.1 and respectively
with center point p0,´0.7q, p0, 0.7q, p´0.7, 0q and p0.7, 0q. The domain Ω Ă R2

is de�ned as the inner of Γ1 and the outer of all other circles (see Figure 5).
The 2D problem to solve is the following
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2.3 Vector case 2 EXAMPLES

Ω

Γ
1

Γ
10

Γ
20

Γ
21

Γ
22

Γ
23

Figure 5: Domain and boundaries

2D problem : stationary heat with potential �ow

Find u P H2pΩq such that

´ divpα∇uq ` xVVV ,∇uy ` βu “ 0 in Ω Ă R2, (2.19)

u “ 20 ˚ y on Γ21, (2.20)

u “ 0 on Γ22 Y Γ23, (2.21)

Bu

Bn
“ 0 on Γ1 Y Γ10 Y Γ21 (2.22)

where Ω and its boundaries are given in Figure 5. This problem is well posed
if αpxxxq ą 0 and βpxxxq ě 0.
We choose α and β in Ω as :

αpxxxq “ 0.1` x2
2,

βpxxxq “ 0.01

The potential �ow is the velocity �eld VVV “ ∇φ where the scalar function φ is
the velocity potential solution of the PDE

Velocity potential in 2d

Find φ P H2pΩq such that

´∆φ “ 0 in Ω, (2.23)

φ “ ´20 on Γ21, (2.24)

φ “ 20 on Γ20, (2.25)

Bφ

Bn
“ 0 on Γ1 Y Γ23 Y Γ22 (2.26)

To solve problem (2.19)-(2.22), we need to compute the velocity �eld VVV .
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2.3 Vector case 2 EXAMPLES

Method 1 : have fun with H-operators
To compute the velocity �eld VVV we can rewrite the potential �ow problem

(2.23)-(2.26), by introducing VVV “ pVVV 1,VVV 2q as unknowns :

Velocity potential and velocity �eld in 2d

Find φ P H2pΩq and VVV P H1pΩq ˆH1pΩq such that

´

ˆ

BVVV 1

Bx
`
BVVV 2

By

˙

“ 0 in Ω, (2.27)

VVV 1 ´
Bφ

Bx
“ 0 in Ω, (2.28)

VVV 2 ´
Bφ

By
“ 0 in Ω, (2.29)

with boundary conditions (2.24) to (2.26).

We can also replace (2.27) by ´∆φ “ 0.

Let www “

¨

˝

φ
VVV 1

VVV 2

˛

‚, the previous PDE can be written as a vector boundary

value problem (see Section 1.2) where the H-operator is given by

Hpwwwq “ 0 (2.30)

with

H1,1 “ 0, H1,2 “ LO,´eee1,000,0, H1,3 “ LO,´eee2,000,0 (2.31)

H2,1 “ LO,000,´eee1,0, H2,2 “ LO,000,000,1, H2,3 “ 0, (2.32)

H3,1 “ LO,000,´eee2,0, H3,2 “ 0, H3,3 “ LO,000,000,1, (2.33)

and eee1 “ p1, 0q
t, eee2 “ p0, 1q

t.
The conormal derivatives are given by

Bwww1

BnH1,1

“ 0,
Bwww1

BnH2,1

“ 0,
Bwww1

BnH3,1

“ 0,

Bwww2

BnH1,2

“ VVV 1nnn1,
Bwww2

BnH2,2

“ 0,
Bwww2

BnH3,2

“ 0,

Bwww3

BnH1,3

“ VVV 2nnn2,
Bwww3

BnH2,3

“ 0,
Bwww3

BnH3,3

“ 0.

So we obtain
3
ÿ

α“1

Bwwwα
BnH1,α

“ xVVV ,nnny “ x∇φ,nnny , (2.34)

and
3
ÿ

α“1

Bwwwα
BnH2,α

“

3
ÿ

α“1

Bwwwα
BnH3,α

“ 0. (2.35)

From (2.35), we cannot impose boundary conditions on components 2 and 3.
Thus, with notations of Section 1.2, we have ΓN2 “ ΓN3 “ Γ with gN2 “ gN3 “ 0.
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2.3 Vector case 2 EXAMPLES

To take into account boundary conditions (2.24) to (2.26), we set ΓD1 “

Γ20 Y Γ21, ΓN1 “ Γ1 Y Γ10 Y Γ22 Y Γ23 and gD1 “ 20δΓ20
´ 20δΓ21

, gN1 “ 0.
The resolution of this vector BVP is given on lines 3 to 13 of Algorithm 2.4.

A representation of the velocity potential φ and potential �ow VVV is given in
Figure 6.

(a) Velocity potential (b) Potential �ow

Figure 6: Stationary heat with potential �ow in 2D

The operator in (2.19) is given by LαI,000,VVV ,β . The conormal derivative Bu
BnL

is

Bu

BnL
:“ xA∇u,nnny ´ xbbbu,nnny “ α

Bu

Bn
.

The algorithm using the toolbox for solving (2.23)-(2.26) is the following:
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2.3 Vector case 2 EXAMPLES

Algorithm 2.4 Stationary heat with potential velocity problem

1: Th Ð getMeshp...q Ź Load FreeFEM++ mesh

2: eee1 Ð

ˆ

1
0

˙

, eee2 Ð

ˆ

0
1

˙

3: HopÐ Hoperatorp2, 3q
4: Hop.Hp1, 2q Ð LoperatorpO2,´eee1,000, 0q
5: Hop.Hp1, 3q Ð LoperatorpO2,´eee2,000, 0q
6: Hop.Hp2, 1q Ð LoperatorpO2,000,´eee1, 0q
7: Hop.Hp2, 2q Ð LoperatorpO2,000,000, 1q
8: Hop.Hp3, 1q Ð LoperatorpO2,000,´eee2, 0q
9: Hop.Hp3, 3q Ð LoperatorpO2,000,000, 1q
10: PDEflow Ð initPDEpHop, Thq
11: PDEflow Ð setBC_PDEpPDEflow, 20, 1, 'Dirichlet', 20.,Hq
12: PDEflow Ð setBC_PDEpPDEflow, 21, 1, 'Dirichlet',´20.,Hq
13: rφφφ,VVV 1,VVV 2s Ð SolvePDEpPDEfluxq
14: αÐ px, yq ÞÝÑ 0.1` y2

15: g21 Ð px, yq ÞÝÑ 20y
16: β Ð 0.01

17: DopÐ Loperatorp

ˆ

α 0
0 α

˙

,000,

ˆ

VVV 1

VVV 2

˙

, βq

18: PDE Ð initPDEpDop, Thq Ź Set homogeneous 'Neumann' condition on all boundaries

19: PDE Ð setBC_PDEpPDE, 21, 1, 'Dirichlet', g21,Hq Ź u “ 4 on Γ2

20: PDE Ð setBC_PDEpPDE, 22, 1, 'Dirichlet', 0,Hq Ź u “ ´4 on Γ4

21: PDE Ð setBC_PDEpPDE, 23, 1, 'Dirichlet', 0,H Ź u “ 0 on Γ20

22: uuuÐ SolvePDEpPDEq

The numerical solution for a given mesh is shown on Figure 7

Figure 7: u
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2.3 Vector case 2 EXAMPLES

Method 2 :

2.3.3 Stationary heat with potential �ow in 3D

Let Ω Ă R3 be the cylinder given in Figure 8.

(a) Bottom face (b) Top face

Figure 8: Stationary heat with potential �ow : 3d mesh

The bottom and top faces of the cylinder are respectively Γ1000YΓ1020YΓ1021

and Γ2000 Y Γ2020 Y Γ2021. The hole surface is Γ10 Y Γ11 Y Γ31 where Γ10 Y Γ11

is the cylinder part and Γ31 the plane part.
The 3D problem to solve is the following

3D problem : stationary heat with potential �ow

Find u P H2pΩq such that

´divpα∇uq ` xVVV ,∇uy ` βu “ 0 in Ω Ă R3, (2.36)

u “ 30 on Γ1020 Y Γ2020, (2.37)

u “ 10δ|z´1|ą0.5 on Γ10, (2.38)

Bu

Bn
“ 0 otherwise (2.39)

where Ω and its boundaries are given in Figure 8. This problem is well posed
if αpxxxq ą 0 and βpxxxq ě 0.
We choose α and β in Ω as :

αpxxxq “ 1,

βpxxxq “ 0.01

The potential �ow is the velocity �eld VVV “ ∇φ where the scalar function φ is
the velocity potential solution of the PDE :
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2.3 Vector case 2 EXAMPLES

Velocity potential in 3d

Find φ P H2pΩq such that

´∆φ “ 0 in Ω, (2.40)

φ “ 1 on Γ1021 Y Γ2021, (2.41)

φ “ ´1 on Γ1020 Y Γ2020, (2.42)

Bφ

Bn
“ 0 otherwise (2.43)

To solve problem (2.36)-(2.39), we need to compute the velocity �eld VVV . For
that we can rewrite the potential �ow problem (2.40)-(2.43), by introducing
VVV “ pVVV 1,VVV 2,VVV 3q as unknowns :

Velocity potential and velocity �eld in 3d

Find φ P H2pΩq and VVV P H1pΩq
3
such that

´

ˆ

BVVV 1

Bx
`
BVVV 2

By
`
BVVV 3

Bz

˙

“ 0 in Ω, (2.44)

VVV 1 ´
Bφ

Bx
“ 0 in Ω, (2.45)

VVV 2 ´
Bφ

By
“ 0 in Ω, (2.46)

VVV 3 ´
Bφ

Bz
“ 0 in Ω, (2.47)

with boundary conditions (2.41) to (2.43).

We can also replace (2.44) by ´∆φ “ 0.

Let www “

¨

˚

˚

˝

φ
VVV 1

VVV 2

VVV 3

˛

‹

‹

‚

, the previous PDE can be written as a vector boundary

value problem (see section 1.2) where the H-operator is given by

Hpwwwq “ 0 (2.48)

with

H1,1 “ 0, H1,2 “ LO,´eee1,000,0, H1,3 “ LO,´eee2,000,0, H1,4 “ LO,´eee3,000,0,
(2.49)

H2,1 “ LO,000,´eee1,0, H2,2 “ LO,000,000,1, H2,3 “ 0, H2,4 “ 0, (2.50)

H3,1 “ LO,000,´eee2,0, H3,2 “ 0, H3,3 “ LO,000,000,1, H3,4 “ 0, (2.51)

H4,1 “ LO,000,´eee3,0, H4,2 “ 0, H4,3 “ 0, H4,4 “ LO,000,000,1,
(2.52)

and eee1 “ p1, 0, 0q
t, eee2 “ p0, 1, 0q

t, eee3 “ p0, 0, 1q
t.
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2.3 Vector case 2 EXAMPLES

The conormal derivatives are given by

Bwww1

BnH1,1

“ 0,
Bwww1

BnH2,1

“ 0,
Bwww1

BnH3,1

“ 0,
Bwww1

BnH4,1

“ 0,

Bwww2

BnH1,2

“ VVV 1nnn1,
Bwww2

BnH2,2

“ 0,
Bwww2

BnH3,2

“ 0,
Bwww2

BnH4,2

“ 0,

Bwww3

BnH1,3

“ VVV 2nnn2,
Bwww3

BnH2,3

“ 0,
Bwww3

BnH3,3

“ 0,
Bwww3

BnH4,3

“ 0,

Bwww4

BnH1,4

“ VVV 3nnn3,
Bwww4

BnH2,4

“ 0,
Bwww4

BnH3,4

“ 0,
Bwww4

BnH4,4

“ 0,

So we obtain
4
ÿ

α“1

Bwwwα
BnH1,α

“ xVVV ,nnny “ x∇φ,nnny , (2.53)

and
4
ÿ

α“1

Bwwwα
BnH2,α

“

4
ÿ

α“1

Bwwwα
BnH3,α

“

4
ÿ

α“1

Bwwwα
BnH4,α

“ 0. (2.54)

From (2.54), we cannot impose boundary conditions on components 2 to 4.
Thus, with notation of section 1.2, we have ΓN2 “ ΓN3 “ ΓN4 “ Γ with gN2 “

gN3 “ gN4 “ 0.
To take into account boundary conditions (2.41) to (2.43), we set ΓD1 “

Γ1020 Y Γ1021 Y Γ2020 Y Γ2021, ΓN1 “ ΓzΓD1 and gD1 “ δΓ1020YΓ2020 ´ δΓ1021YΓ2021 ,
gN1 “ 0.

The solution of this vector boundary value problem is given in lines 3 to 13
of Algorithm 2.5. A representation of velocity potential φ and potential �ow VVV
is given in Figure 9.

(a) φ and VVV : �rst view (b) φ and VVV : second view

Figure 9: HeatAndFlowVelocity3d01 problem

The operator in (2.36) is given by LαI,000,VVV ,β . The conormal derivative Bu
BnL

is

Bu

BnL
:“ xA∇u,nnny ´ xbbbu,nnny “ α

Bu

Bn
.
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2.4 Eigenvalues 3 EIGENVALUE PROBLEMS

The algorithm using the toolbox for solving (2.44)-(2.47) is the following:

Algorithm 2.5 Stationary heat with potential velocity problem

1: Th Ð getMeshp...q Ź Load FreeFEM++ mesh

2: eee1 Ð

¨

˝

1
0
0

˛

‚, eee2 Ð

¨

˝

0
1
0

˛

‚, eee3 Ð

¨

˝

0
0
1

˛

‚

3: HopÐ Hoperatorp3, 4q
4: Hop.Hp1, 2q Ð LoperatorpO3,´eee1,000, 0q
5: Hop.Hp1, 3q Ð LoperatorpO3,´eee2,000, 0q
6: Hop.Hp1, 4q Ð LoperatorpO3,´eee3,000, 0q
7: Hop.Hp2, 1q Ð LoperatorpO3,000,´eee1, 0q, Hop.Hp2, 2q Ð LoperatorpO3,000,000, 1q
8: Hop.Hp3, 1q Ð LoperatorpO3,000,´eee2, 0q, Hop.Hp3, 3q Ð LoperatorpO3,000,000, 1q
9: Hop.Hp4, 1q Ð LoperatorpO3,000,´eee3, 0q, Hop.Hp4, 4q Ð LoperatorpO3,000,000, 1q
10: PDEflow Ð initPDEpHop, Thq
11: PDEflow Ð setBC_PDEpPDEflow, 20, 1, 'Dirichlet', 20.,Hq
12: PDEflow Ð setBC_PDEpPDEflow, 21, 1, 'Dirichlet',´20.,Hq
13: rφφφ,VVV 1,VVV 2,VVV 3s Ð SolvePDEpPDEflowq
14: αÐ px, y, zq ÞÝÑ 1
15: g20 Ð px, y, zq ÞÝÑ 30, g10 Ð px, y, zq ÞÝÑ 10 ˚ p|z ´ 1| ą 0.5q
16: β Ð 0.01

17: DopÐ Loperatorp

¨

˝

α 0 0
0 α 0
0 0 α

˛

‚,000,

¨

˝

VVV 1

VVV 2

VVV 3

˛

‚, βq

18: PDE Ð initPDEpDop, Thq Ź Set homogeneous 'Neumann' condition on all boundaries

19: PDE Ð setBC_PDEpPDE, 1020, 1, 'Dirichlet', g20,Hq
20: PDE Ð setBC_PDEpPDE, 2022, 1, 'Dirichlet', g20,Hq
21: PDE Ð setBC_PDEpPDE, 10, 1, 'Dirichlet', g10,Hq
22: uuuÐ SolvePDEpPDEq

The numerical solution for a given mesh is shown on Figure 10

2.4 Eigenvalues

3 Eigenvalue problems

We want to solve eigenvalue problems coming from scalar or vector BVP's.

3.1 Scalar case

The eigenvalue problems associated with scalar BVP (1.2)-(1.4) can be written
as
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3.1 Scalar case 3 EIGENVALUE PROBLEMS

(a) us solution with streamline : �rst view
(b) us solution with streamline : second
view

Figure 10: HeatAndFlowVelocity3d01 problem

Scalar eigenvalue problem

Find pλ, uq P KˆH2pΩq such that

Lpuq “λBpuq in Ω, (3.1)

u “0 on ΓD, (3.2)

Bu

BnL
` aRu “0 on ΓR. (3.3)

where B “ LOdˆd,000d,c̃cc,ã0 .

A variational formulation of this problem is given by

Variational formulation

Find λ P K and u P H1
0,ΓD pΩq such that

ż

Ω

DLpu, vqdq`

ż

ΓR
aRuvdσ “ λ

ż

Ω

DBpu, vqdq @v P H1
0,ΓD pΩq (3.4)

As seen in section ??, the discretization of this variational formulation by
P1-Lagrange �nite element method leads to the linear system

Linear system from the discrete variational formula-
tion (3.4)
Find uuu P Rnq such that

ÿ

jPIcD

AhLpϕj , ϕiquuuj “
ÿ

jPIcD

AhBpϕj , ϕiquuuj @i P IcD, (3.5)

uuui “ 0 @i P ID. (3.6)
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3.1 Scalar case 3 EIGENVALUE PROBLEMS

and we have
uh “

ÿ

jPIcD

uuujϕj .

Let AB be the matrix associated with B operator. With notations of section ??
and

ALpIcD, IcDqvvv “ λABpIcD, IcDqvvv (3.7)

Algorithm 3.1 function EigsPDE : solve scalar or vector eigenvalue problems

Input :
pde : a PDE structure
Bop : operator structure associated with B
Ne : computes the Ne �rst eigenvalues and eigenvectors.
σ : start value for eigs function
Output :
λλλ : 1d-array of dimension Ne. Contains Ne-th �rst eigenvalues
UUU : pde.Th.nq-by-Ne array, UUUp:, iq is the i-th eigenvector

associated with the λλλpiq eigenvalue.
1: Function rUUU,λλλs Ð EigsPDE(pde, Bop, Ne, σ)
2: ndof Ð pde.mˆ pde.Th.nq

3: AÐ AssemblyP1_OptV3ppde.Th, pde.Opq
4: rMR,FFFRs Ð RobinBCppdeq
5: AÐ A`MR

6: BÐ AssemblyP1_OptV3ppde.Th,Bopq
7: rRRRD, IIID, III

c
Ds Ð DirichletBCppdeq

8: UUU Ð Ondof ,Ne

9: rUUUpIIIcD, :q,λλλs Ð EigspApIIIcD, IIIcDq,BpIIIcD, IIIcDq, Ne, σqq
10: end Function
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3.2 Vector case

The eigenvalue problems associated with vector BVP (1.10)-(1.12) can be writ-
ten as
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Vector eigenvalue problems

Find λ P K and uuu “ puuu1, . . . ,uuumq P pH
2pΩqqm such that

Hpuuuq “λBpuuuq in Ω, (3.8)

uuuα “0 on ΓDα , @α P v1,mw, (3.9)

Buuu

BnHα

` aRαuuuα “0 on ΓRα , @α P v1,mw, (3.10)

where B is a given H-operator.

[]
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