A generic way to solve partial differential equations with P1-finite elements in vector languages : User guide

François Cuvelier Gilles Scarella

2015/05/22

Contents

1	\mathbf{Des}	cription of the generic problems	1
	1.1	Scalar boundary value problem	1
	1.2	Vector boundary value problem	2
2	Exa	mples	3
	2.1	First level functions or commonly used functions	3
	2.2	Scalar case	4
		2.2.1 2D condenser problem	4
		2.2.2 Poisson PDE with mixed boundary conditions in 2D (2).	5
	2.3	Vector case	6
		2.3.1 Elasticity problem	6
		2.3.2 Stationary heat with potential flow in 2D	9
		2.3.3 Stationary heat with potential flow in 3D	14
	2.4	Eigenvalues	17
3	Eige	envalue problems	17
	3.1	Scalar case	17
	3.2	Vector case	20

1 Description of the generic problems

The notations of [2] are employed in this section and extended to the vector case.

1.1 Scalar boundary value problem

Let Ω be a bounded open subset of \mathbb{R}^d , $d \ge 1$. The boundary of Ω is denoted by Γ .

We denote by $\mathcal{L}_{\mathbb{A},\boldsymbol{b},\boldsymbol{c},a_0} = \mathcal{L} : \mathrm{H}^2(\Omega) \longrightarrow L^2(\Omega)$ the second order linear differential operator acting on *scalar fields* defined, $\forall u \in \mathrm{H}^2(\Omega)$, by

$$\mathcal{L}_{\mathbb{A},\boldsymbol{b},\boldsymbol{c},a_0}(u) \stackrel{\text{\tiny def}}{=} -\operatorname{div}\left(\mathbb{A}\nabla u\right) + \operatorname{div}\left(\boldsymbol{b}u\right) + \left\langle\nabla u,\boldsymbol{c}\right\rangle + a_0 u \tag{1.1}$$

where we suppose that \mathbb{A} , \boldsymbol{b} , \boldsymbol{c} and a_0 are sufficiently regular functions. $\langle \cdot, \cdot \rangle$ is the usual scalar product in \mathbb{R}^d . We use the same notations as in the chapter 6 of [2]. It should be also noted that it is important to preserve the two terms \boldsymbol{b} and \boldsymbol{c} in the generic formulation to allow a greater flexibility in the choice of the boundary conditions.

Let Γ^D , Γ^R be open subsets of Γ , possibly empty and $f \in L^2(\Omega)$, $g^D \in \mathrm{H}^{1/2}(\Gamma^D)$, $g^R \in L^2(\Gamma^R)$, $a^R \in L^{\infty}(\Gamma^R)$ be given data.

A *scalar* boundary value problem is given by

Scalar BVP Find $u \in H^{2}(\Omega)$ such that $\mathcal{L}(u) = f$ in Ω , (1.2) $u = g^{D}$ on Γ^{D} , (1.3) $\frac{\partial u}{\partial u} + a^{R}u = a^{R}$ on Γ^{R} (1.4)

$$\frac{\partial u}{\partial n_{\mathcal{L}}} + a^R u = g^R \qquad \text{on } \Gamma^R. \tag{1.4}$$

The **conormal derivative** of u is defined by

$$\frac{\partial u}{\partial n_{\mathcal{L}}} = \langle \mathbb{A} \nabla u, \boldsymbol{n} \rangle - \langle \boldsymbol{b} u, \boldsymbol{n} \rangle$$
(1.5)

The boundary conditions (1.3) and (1.4) are respectively **Dirichlet** and **Robin** boundary conditions. **Neumann** boundary conditions are particular Robin boundary conditions with $a^R \equiv 0$.

1.2 Vector boundary value problem

Let $m \ge 1$ and \mathcal{H} be the *m*-by-*m* matrix of second order linear differential operators defined by

$$\begin{cases} \mathcal{H} : (\mathrm{H}^{2}(\Omega))^{m} \longrightarrow (L^{2}(\Omega))^{m} \\ \mathbf{u} = (\mathbf{u}_{1}, \dots, \mathbf{u}_{m}) \longmapsto \mathbf{f} = (\mathbf{f}_{1}, \dots, \mathbf{f}_{m}) \stackrel{\mathrm{def}}{=} \mathcal{H}(\mathbf{u}) \end{cases}$$
(1.6)

where

$$\boldsymbol{f}_{\alpha} = \sum_{\beta=1}^{m} \mathcal{H}_{\alpha,\beta}(\boldsymbol{u}_{\beta}), \quad \forall \alpha \in [\![1,m]\!],$$
(1.7)

with, for all $(\alpha, \beta) \in [\![1, m]\!]^2$,

$$\mathcal{H}_{\alpha,\beta} \stackrel{\text{def}}{=} \mathcal{L}_{\mathbb{A}^{\alpha,\beta},\boldsymbol{b}^{\alpha,\beta},\boldsymbol{c}^{\alpha,\beta},\boldsymbol{a}_{0}^{\alpha,\beta}} \tag{1.8}$$

and $\mathbb{A}^{\alpha,\beta} \in (L^{\infty}(\Omega))^{d \times d}$, $\boldsymbol{b}^{\alpha,\beta} \in (L^{\infty}(\Omega))^d$, $\boldsymbol{c}^{\alpha,\beta} \in (L^{\infty}(\Omega))^d$ and $a_0^{\alpha,\beta} \in L^{\infty}(\Omega)$ are given functions. We can also write in matrix form

$$\mathcal{H}(\boldsymbol{u}) = \begin{pmatrix} \mathcal{L}_{\mathbb{A}^{1,1},\boldsymbol{b}^{1,1},\boldsymbol{c}^{1,1},a_0^{1,1}} & \dots & \mathcal{L}_{\mathbb{A}^{1,m},\boldsymbol{b}^{1,m},\boldsymbol{c}^{1,m},a_0^{1,m}} \\ \vdots & \ddots & \vdots \\ \mathcal{L}_{\mathbb{A}^{m,1},\boldsymbol{b}^{m,1},\boldsymbol{c}^{m,1},a_0^{m,1}} & \dots & \mathcal{L}_{\mathbb{A}^{m,m},\boldsymbol{b}^{m,m},\boldsymbol{c}^{m,m},a_0^{m,m}} \end{pmatrix} \begin{pmatrix} \boldsymbol{u}_1 \\ \vdots \\ \boldsymbol{u}_m \end{pmatrix}.$$
(1.9)

We remark that the \mathcal{H} operator for m = 1 is equivalent to the \mathcal{L} operator.

Compiled on 2015/05/22 at 07:33:53

For $\alpha \in \llbracket 1, m \rrbracket$, we define Γ^D_{α} and Γ^R_{α} as open subsets of Γ , possibly empty. Let $\boldsymbol{f} \in (L^2(\Omega))^m$, $g^D_{\alpha} \in \mathrm{H}^{1/2}(\Gamma^D_{\alpha})$, $g^R_{\alpha} \in L^2(\Gamma^R_{\alpha})$, $a^R_{\alpha} \in L^{\infty}(\Gamma^R_{\alpha})$ be given data. A vector boundary value problem is given by

SVector BVP

 $\mathcal{H}(\boldsymbol{\imath})$

Find $\boldsymbol{u} = (\boldsymbol{u}_1, \dots, \boldsymbol{u}_m) \in (\mathrm{H}^2(\Omega))^m$ such that

$$\boldsymbol{\iota}) = \boldsymbol{f} \qquad \qquad \text{in } \Omega, \qquad (1.10)$$

$$\boldsymbol{u}_{\alpha} = g_{\alpha}^{D} \qquad \text{on } \Gamma_{\alpha}^{D}, \ \forall \alpha \in [\![1,m]\!], \qquad (1.11)$$

$$\frac{\partial \boldsymbol{u}}{\partial n_{\mathcal{H}_{\alpha}}} + a_{\alpha}^{R} \boldsymbol{u}_{\alpha} = g_{\alpha}^{R} \qquad \text{on } \Gamma_{\alpha}^{R}, \ \forall \alpha \in [\![1,m]\!], \qquad (1.12)$$

where the α -th component of the **conormal derivative** of **u** is defined by

$$\frac{\partial \boldsymbol{u}}{\partial n_{\mathcal{H}_{\alpha}}} \stackrel{\text{def}}{=} \sum_{\beta=1}^{m} \frac{\partial \boldsymbol{u}_{\beta}}{\partial n_{\mathcal{H}_{\alpha,\beta}}} = \sum_{\beta=1}^{m} \left(\left\langle \mathbb{A}^{\alpha,\beta} \nabla \boldsymbol{u}_{\beta}, \boldsymbol{n} \right\rangle - \left\langle \boldsymbol{b}^{\alpha,\beta} \boldsymbol{u}_{\beta}, \boldsymbol{n} \right\rangle \right).$$
(1.13)

The boundary conditions (1.12) are the **Robin** boundary conditions and (1.11) is the **Dirichlet** boundary condition. The **Neumann** boundary conditions are particular Robin boundary conditions with $a_{\alpha}^{R} \equiv 0$.

In the following of the report we will solve by a P_1 -Lagrange finite element method *scalar* BVP (1.2) to (1.4) and *vector* BVP (1.10) to (1.12) without additional restrictive assumption.

2 Examples

2.1 First level functions or commonly used functions

We briefly describe the main functions that will be used in the sequel.

- $\mathcal{T}_h \leftarrow \text{getMesh}(\text{FileName})$: to define the mesh \mathcal{T}_h by reading a 2d or 3d mesh from the file FileName.
- $\mathcal{T}_h \leftarrow \mathbf{HyperCUBE}(d, N, < trans = \Phi >)$: to define the mesh \mathcal{T}_h as the unit hypercube $[0, 1]^d$. There are N(i) (or N if N is a scalar) points in each direction and the mesh of the hypercube contains $\prod_{i=1}^d N(i)$ points. Optionnal parameter **trans** set the displacement vector of mesh transformation $\Phi(\mathbf{q}) = [\Phi_1(\mathbf{q}), \dots, \Phi_d(\mathbf{q})].$
- LOP \leftarrow LOPERATOR $(d, \mathbb{A}, \boldsymbol{b}, \boldsymbol{c}, a_0)$: to initialize the operator \mathcal{L} in dimension d given by (1.1): LOP $\leftarrow \mathcal{L}_{\mathbb{A}, \boldsymbol{b}, \boldsymbol{c}, a_0}$.
- Hop \leftarrow **HOPERATOR**(d, m): to initialize the operator \mathcal{H} given by (1.6) verifying $\mathcal{H}_{\alpha,\beta} = 0$, $\forall (\alpha,\beta) \in [\![1,m]\!]^2$. Each operator $\mathcal{H}_{\alpha,\beta}$ corresponds to Hop.H (α,β) and can be initialized by the function LOPERATOR
- $PDE \leftarrow INITPDE(Op, \mathcal{T}_h)$: to initialize a PDE structure from an operator (either \mathcal{L} -operator or \mathcal{H} -operator) and a mesh. Default boundary conditions are homogeneous generalized Neumann.

- PDE \leftarrow **SETBC_PDE**(PDE, **label**, **comps**, **type**, **g**, **ar**) : to define or modify the boundary conditions on the boundary Γ_{label} on the mesh PDE. \mathcal{T}_h for components of index comps (in the scalar case comps $\equiv 1$). For a scalar PDE, we have for example
 - Dirichlet condition : $u_2 = g$ on Γ_{11} , then PDE \leftarrow setBC_PDE(PDE, 11, 2, 'Dirichlet', g, \emptyset)
 - generalized Neumann condition : $\frac{\partial u}{\partial n_{\mathcal{H}_3}} = g$ on Γ_{12} , then PDE \leftarrow setBC_PDE(PDE, 12, 3, 'Neumann', g, \emptyset)
 - generalized Robin condition : $\frac{\partial \boldsymbol{u}}{\partial n_{\mathcal{H}_2}} + a_2^R \boldsymbol{u}_2 = g \text{ on } \Gamma_{13}$, then PDE $\leftarrow \text{setBC}_{PDE}(\text{PDE}, 13, 2, \text{'Robin'}, g, a_2^R)$
- $\boldsymbol{x} \leftarrow \textbf{SolvePDE}(PDE)$: to solve by P_1 Lagrange finite elements the partial differential equation defined by the structure PDE. This function returns the solution \boldsymbol{x} ()

2.2 Scalar case

2.2.1 2D condenser problem

The problem to solve is the Laplace problem for a condenser.

-ˈo͡͡²2D condenser problem						
Ī	Find $u \in \mathrm{H}^2(\Omega)$ such that					
	$-\Delta u$	=	$0 \ \text{ in } \Omega \subset \mathbb{R}^2,$	(2.1)		
	u	=	0 on Γ_1 ,	(2.2)		
	u	=	-1 on Γ_{98} ,	(2.3)		
	u	=	1 on Γ_{99} ,	(2.4)		

where Ω and its boundaries are given in Figure 1a.

The operator in (2.1) is the *Stiffness* operator given by $\mathcal{L}_{\mathbb{I},\mathbf{0},\mathbf{0},0}$ and the conormal derivative $\frac{\partial u}{\partial n_{\mathcal{L}}}$ is

$$\frac{\partial u}{\partial n_{\mathcal{L}}} := \langle \mathbb{A} \nabla u, \boldsymbol{n} \rangle - \langle \boldsymbol{b} u, \boldsymbol{n} \rangle = \frac{\partial u}{\partial n}.$$

The algorithm using the toolbox for solving (2.1)-(2.4) is the following:

Algorithm 2.1 2D condenser	
1: $\mathcal{T}_h \leftarrow \text{getMesh}()$	ightarrow Load FreeFEM++ mesh
2: $Dop \leftarrow Loperator(\mathbb{I}, 0, 0, 0)$	ightarrow Stiffness operator
3: PDE \leftarrow initPDE(Dop, \mathcal{T}_h)	
4: PDE \leftarrow setBCLabel(PDE, 'Dirichlet', 1, 1, 0.)	$ ightarrow u = 0 ext{ on } \Gamma_1$
5: PDE \leftarrow setBCLabel(PDE, 'Dirichlet', 99, 1, 1.)	$\rhd u = 1$ on Γ_{99}
6: PDE \leftarrow setBCLabel(PDE, 'Dirichlet', 98, 1, -1.)	$ ightarrow u = -1$ on Γ_{98}
7: $\boldsymbol{x} \leftarrow \text{SolvePDE}(\text{PDE})$	

The solution for a given mesh is shown on Figure 1b

Compiled on 2015/05/22 at 07:33:53

(a) Domain for the condenser problem (b) Result for the 2D condenser problem

Figure 1: Condenser problem

2.2.2 Poisson PDE with mixed boundary conditions in 2D (2)

We first consider the classical 2D Poisson problem with various boundary conditions. The problem to solve is the following

-ˈo͡͡²2D Poisson problem							
Find $u \in \mathrm{H}^2(\Omega)$ such that							
$-\Delta u$	=	$f \text{ in } \Omega \subset \mathbb{R}^2,$	(2.5)				
u	=	0 on Γ_1 ,	(2.6)				
u	=	1 on Γ_2 ,	(2.7)				
$\frac{\partial u}{\partial n} + a_R u$	=	-0.5 on Γ_3 ,	(2.8)				
$\frac{\partial u}{\partial n}$	-	0.5 on Γ_4	(2.9)				

where Ω is the unit hypercube transformed by function $\Phi(x, y) = (20x, 2(2y-1 + \cos(2\pi x)))$ and its boundaries are given in Figure 2a. f and a_R satisfy:

$$f(\boldsymbol{x}) = \cos(\boldsymbol{x}_1 + \boldsymbol{x}_2) \quad \forall \boldsymbol{x} \in \Omega$$
$$a_R(\boldsymbol{x}) = 1 + \boldsymbol{x}_1^2 + \boldsymbol{x}_2^2 \quad \forall \boldsymbol{x} \in \Omega$$

The operator in (2.5) is the *Stiffness* operator : $\mathcal{L}_{\mathbb{I},\mathbf{0},\mathbf{0},0}$. The conormal derivative $\frac{\partial u}{\partial n_{\mathcal{L}}}$ is

$$\frac{\partial u}{\partial n_{\mathcal{L}}} := \langle \mathbb{A} \, \nabla \, u, \boldsymbol{n} \rangle - \langle \boldsymbol{b} u, \boldsymbol{n} \rangle = \frac{\partial u}{\partial n}$$

The algorithm using the toolbox for solving (2.5)-(2.9) is given in Algorithm 2.2. The corresponding Matlab/Octave and Python codes are given in Listing 1.

Compiled on 2015/05/22 at 07:33:53

Figure 2: Laplace2d01 problem

Algorithm 2.2 2D Poisson problem

1: $\mathcal{T}_h \leftarrow \text{HyperCube}(2, 50)$ ightarrow Build unit square mesh 2: $Dop \leftarrow Loperator(2, \mathbb{I}, \mathbf{0}, \mathbf{0}, 0)$ ⊳ Stiffness operator 3: PDE \leftarrow INITPDE(Dop, \mathcal{T}_h) 4: PDE \leftarrow setBC_PDE(PDE, 1, 1, 'Dirichlet', 0., \emptyset) $\succ u = 0$ on Γ_1 5: $PDE \leftarrow setBC_PDE(PDE, 2, 1, 'Dirichlet', 1., \emptyset)$ $\rhd u = 1$ on Γ_2 6: PDE \leftarrow setBC_PDE(PDE, 3, 1, 'Robin', $-0.5, \boldsymbol{x} \rightarrow 1 + \boldsymbol{x}_1^2 + \boldsymbol{x}_2^2)$ $\frac{\partial u}{\partial n} + a_R u = -0.5$ on Γ_3 7: PDE \leftarrow setBC_PDE(PDE, 4, 1, 'Neumann', 0.5, \emptyset) $\triangleright \frac{\partial u}{\partial n} = 0.5 \text{ on } \Gamma_4$ 8: PDE. $f \leftarrow (\boldsymbol{x}_1, \boldsymbol{x}_2) \mapsto \cos(\boldsymbol{x}_1 + \boldsymbol{x}_2)$ 9: $\boldsymbol{u}_h \leftarrow \text{SolvePDE}(\text{PDE})$

A numerical solution for a given mesh is shown on Figure 2b

Listing 1: Poisson ...

2.3 Vector case

2.3.1 Elasticity problem

General case (d = 2, 3)

We consider here Hooke's law in linear elasticity, under small strain hypothesis (see for example [1]).

For a sufficiently regular vector field $\boldsymbol{u} = (u_1, \ldots, u_d) : \Omega \to \mathbb{R}^d$, we define

Compiled on 2015/05/22 at 07:33:53

the linearized strain tensor $\underline{\boldsymbol{\epsilon}}$ by

$$\underline{oldsymbol{\epsilon}}(oldsymbol{u}) = rac{1}{2} \left(oldsymbol{
abla}(oldsymbol{u}) + oldsymbol{
abla}^t(oldsymbol{u})
ight).$$

We set $\boldsymbol{\epsilon} = (\epsilon_{11}, \epsilon_{22}, 2\epsilon_{12})^t$ in 2d and $\boldsymbol{\epsilon} = (\epsilon_{11}, \epsilon_{22}, \epsilon_{33}, 2\epsilon_{12}, 2\epsilon_{23}, 2\epsilon_{13})^t$ in 3d, with $\epsilon_{ij}(\boldsymbol{u}) = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)$. Then the Hooke's law writes

$$\underline{\boldsymbol{\sigma}} = \mathbb{C}\underline{\boldsymbol{\epsilon}},$$

where $\underline{\sigma}$ is the elastic stress tensor and \mathbb{C} the elasticity tensor.

The material is supposed to be isotropic. Thus the elasticity tensor \mathbb{C} is only defined by the Lamé parameters λ and μ , which satisfy $\lambda + \mu > 0$. We also set $\gamma = 2 \mu + \lambda$. For d = 2 or d = 3, \mathbb{C} is given by

$$\mathbb{C} = \begin{pmatrix} \lambda \mathbb{1}_2 + 2\mu \mathbb{I}_2 & 0\\ 0 & \mu \end{pmatrix}_{3\times 3} \quad \text{or} \quad \mathbb{C} = \begin{pmatrix} \lambda \mathbb{1}_3 + 2\mu \mathbb{I}_3 & 0\\ 0 & \mu \mathbb{I}_3 \end{pmatrix}_{6\times 6},$$

respectively, where $\mathbb{1}_d$ is a *d*-by-*d* matrix of ones, and \mathbb{I}_d the *d*-by-*d* identity matrix.

For dimension d = 2 or d = 3, we have:

$$\boldsymbol{\sigma}_{\alpha\beta}(\boldsymbol{u}) = 2\,\mu\,\boldsymbol{\epsilon}_{\alpha\beta}(\boldsymbol{u}) + \lambda\,\mathrm{tr}(\boldsymbol{\epsilon}(\boldsymbol{u}))\delta_{\alpha\beta} \quad \forall \alpha,\beta \in \llbracket 1,d \rrbracket$$

The problem to solve is the following

-` <mark>`</mark>	Elasticity problem			
	Find $\boldsymbol{u} = \mathrm{H}^2(\Omega)^d$ such that			
	$-\operatorname{div}(\pmb{\sigma}(\pmb{u}))$	=	$\boldsymbol{f}, \text{ in } \Omega \subset \mathbb{R}^d,$	(2.10)
	$\sigma(u).n$	=	$0 \text{on } \Gamma^N,$	(2.11)
	\boldsymbol{u}	=	0 on Γ^D .	(2.12)

Now, with the following lemma, we obtain that this problem can be rewritten as the vector BVP defined by (1.10) to (1.12).

Lemma 1. Let \mathcal{H} be the d-by-d matrix of the second order linear differential operators defined in (1.6) where $\mathcal{H}_{\alpha,\beta} = \mathcal{L}_{\mathbb{A}^{\alpha,\beta},\mathbf{0},\mathbf{0},0}, \forall (\alpha,\beta) \in [\![1,d]\!]^2$, with

$$(\mathbb{A}^{\alpha,\beta})_{k,l} = \mu \delta_{\alpha\beta} \delta_{kl} + \mu \delta_{k\beta} \delta_{l\alpha} + \lambda \delta_{k\alpha} \delta_{l\beta}, \ \forall (k,l) \in [\![1,d]\!]^2.$$
(2.13)

then

$$\mathcal{H}(\boldsymbol{u}) = -\operatorname{div}\boldsymbol{\sigma}(\boldsymbol{u}) \tag{2.14}$$

and, $\forall \alpha \in \llbracket 1, d \rrbracket$,

$$\frac{\partial \boldsymbol{u}}{\partial n_{\mathcal{H}_{\alpha}}} = (\boldsymbol{\sigma}(\boldsymbol{u}).\boldsymbol{n})_{\alpha}.$$
(2.15)

The proof is given in appendix ??. So we obtain

Compiled on 2015/05/22 at 07:33:53

Elasticity problem with \mathcal{H} operator in dimension d=2**or** d = 3Let \mathcal{H} be the *d*-by-*d* matrix of the second order linear differential operators defined in (1.6) where $\forall (\alpha, \beta) \in [\![1, d]\!]^2$, $\mathcal{H}_{\alpha, \beta} = \mathcal{L}_{\mathbb{A}^{\alpha, \beta}, \mathbf{0}, \mathbf{0}, \mathbf{0}}$, with • for d = 2, $\mathbb{A}^{1,1} = \begin{pmatrix} \gamma & 0\\ 0 & \mu \end{pmatrix}$, $\mathbb{A}^{1,2} = \begin{pmatrix} 0 & \lambda\\ \mu & 0 \end{pmatrix}$, $\mathbb{A}^{2,1} = \begin{pmatrix} 0 & \mu\\ \lambda & 0 \end{pmatrix}$, $\mathbb{A}^{2,2} = \begin{pmatrix} \mu & 0\\ 0 & \gamma \end{pmatrix}$
$$\begin{split} & \mathbb{A}^{1,1} = \begin{pmatrix} \gamma & 0 & 0 \\ 0 & \mu & 0 \\ 0 & 0 & \mu \end{pmatrix}, \quad \mathbb{A}^{1,2} = \begin{pmatrix} 0 & \lambda & 0 \\ \mu & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \mathbb{A}^{1,3} = \begin{pmatrix} 0 & 0 & \lambda \\ 0 & 0 & 0 \\ \mu & 0 & 0 \end{pmatrix} \\ & \mathbb{A}^{2,1} = \begin{pmatrix} 0 & \mu & 0 \\ \lambda & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \mathbb{A}^{2,2} = \begin{pmatrix} 0 & \lambda & 0 \\ \mu & 0 & 0 \\ 0 & \gamma & 0 \\ 0 & 0 & \mu \end{pmatrix}, \quad \mathbb{A}^{2,3} = \begin{pmatrix} 0 & 0 & \lambda \\ 0 & 0 & 0 \\ 0 & 0 & \lambda \\ 0 & \mu & 0 \end{pmatrix} \\ & \mathbb{A}^{3,1} = \begin{pmatrix} 0 & 0 & \mu \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \mathbb{A}^{3,2} = \begin{pmatrix} 0 & 0 & \lambda \\ 0 & \gamma & 0 \\ 0 & 0 & \mu \end{pmatrix}, \quad \mathbb{A}^{3,3} = \begin{pmatrix} 0 & 0 & \lambda \\ 0 & 0 & 0 \\ 0 & \mu & 0 \end{pmatrix} . \end{split}$$
The elasticity problem (2.10) to (2.12) can be rewritten as : Find $\boldsymbol{u} = (\boldsymbol{u}_1, \dots, \boldsymbol{u}_d) \in (\mathrm{H}^2(\Omega))^d$ such that $\mathcal{H}(\boldsymbol{u}) = \boldsymbol{f},$ in Ω , (2.16) $\frac{\partial \boldsymbol{u}}{\partial n_{\mathcal{H}_{\alpha}}} = 0, \qquad \qquad \text{on } \Gamma_{\alpha}^{N} = \Gamma^{N}, \ \forall \alpha \in [\![1,d]\!]$ (2.17)on $\Gamma^D_{\alpha} = \Gamma^D$, $\forall \alpha \in [\![1,d]\!]$. $\boldsymbol{u}_{\alpha}=0,$ (2.18)

2D example

For example, in 2d, we want to solve the elasticity problem (2.10) to (2.12) where Ω and its boundaries are given in Figure 3. We have $\Gamma^N = \Gamma^1 \cup \Gamma^2 \cup \Gamma^3$, $\Gamma^D = \Gamma^4$.

The material's properties are given by Young's modulus E and Poisson's coefficient ν . As we use plane strain hypothesis, Lame's coefficients verify

$$\mu = \frac{E}{2\left(1+\nu\right)}, \quad \lambda = \frac{E\nu}{\left(1+\nu\right)\left(1-2\nu\right)}, \quad \gamma = 2\mu + \lambda$$

The material is rubber so that $E = 21.10^5$ Pa and $\nu = 0.45$. We also have $\boldsymbol{f} = \boldsymbol{x} \mapsto (0, -1)^t$.

Figure 3: Domain for the 2D elasticity problem

Using ?? the operator in (2.10) is the *Elastic Stiffness* operator. Its conormal derivative corresponds to the stress vector.

Compiled on 2015/05/22 at 07:33:53

The algorithm using the toolbox for solving (2.10)-(2.12) is the following:

Algorithm 2.3 2D elasticity

1: $\mathcal{T}_h \leftarrow \text{GETMESH}(...)$ \triangleright Load FreeFEM++ mesh 2: $\lambda \leftarrow \frac{E\nu}{(1+\nu)(1-2\nu)}$ 3: $\mu \leftarrow \frac{E}{2(1+\nu)}$ 4: Hop \leftarrow INITHOPERATOR(2, 2) 5: Hop(1, 1) \leftarrow LOPERATOR(2, $[2\mu + \lambda, 0; 0, \mu], \mathbf{0}, \mathbf{0}, 0)$ 6: Hop(2, 1) \leftarrow LOPERATOR(2, $[0, \lambda; \mu, 0], \mathbf{0}, \mathbf{0}, 0)$ 7: Hop(1, 2) \leftarrow LOPERATOR(2, $[0, \mu; \lambda, 0], \mathbf{0}, \mathbf{0}, 0)$ 8: Hop(2, 2) \leftarrow LOPERATOR(2, $[\mu, 0; 0, 2\mu + \lambda], \mathbf{0}, \mathbf{0}, 0)$ 9: PDE \leftarrow INITPDE(Hop, \mathcal{T}_h) 10: PDE \leftarrow SETBC_PDE(PDE, 4, 1 : 2, 'Dirichlet', $\mathbf{x} \rightarrow \mathbf{0}$) 11: PDE. $f \leftarrow \mathbf{x} \rightarrow [0, -1]$ 12: $\mathbf{x} \leftarrow$ SolvePDE(PDE)

Figure 4: Result for the 2D elasticity problem

The solution for a given mesh is shown on Figure 4

2.3.2 Stationary heat with potential flow in 2D

Let Γ_1 be the unit circle, Γ_{10} be the circle with center point (0,0) and radius 0.3. Let Γ_{20} , Γ_{21} , Γ_{22} and Γ_{23} be the circles with radius 0.1 and respectively with center point (0, -0.7), (0, 0.7), (-0.7, 0) and (0.7, 0). The domain $\Omega \subset \mathbb{R}^2$ is defined as the inner of Γ_1 and the outer of all other circles (see Figure 5).

The 2D problem to solve is the following

Figure 5: Domain and boundaries

-`{	-2D problem : stationary heat with potential flow						
	Find $u \in \mathrm{H}^2(\Omega)$ such that						
	$-\operatorname{div}(\alpha \nabla u) + \langle \boldsymbol{V}, \nabla u \rangle + \beta u$	=	$0 \text{in } \Omega \subset \mathbb{R}^2,$	(2.19)			
	u	=	$20 * y$ on Γ_{21} ,	(2.20)			
	u	=	0 on $\Gamma_{22} \cup \Gamma_{23}$,	(2.21)			
	$rac{\partial u}{\partial n}$	=	$0 \ \ \mathrm{on} \ \Gamma_1 \cup \Gamma_{10} \cup \Gamma_{21}$	(2.22)			

where Ω and its boundaries are given in Figure 5. This problem is well posed if $\alpha(\boldsymbol{x}) > 0$ and $\beta(\boldsymbol{x}) \ge 0$.

We choose α and β in Ω as :

$$\alpha(\mathbf{x}) = 0.1 + x_2^2,$$

 $\beta(\mathbf{x}) = 0.01$

The potential flow is the velocity field $\pmb{V}=\nabla\phi$ where the scalar function ϕ is the velocity potential solution of the PDE

-ˈ Velocity potential in 2d							
	Find $\phi \in \mathrm{H}^2(\Omega)$ such that						
	$-\Delta\phi$	=	$0 \text{ in } \Omega,$	(2.23)			
	ϕ	=	-20 on Γ_{21} ,	(2.24)			
	ϕ	=	20 on Γ_{20} ,	(2.25)			
	$rac{\partial \phi}{\partial n}$	=	$0 \ \ \text{on} \ \Gamma_1 \cup \Gamma_{23} \cup \Gamma_{22}$	(2.26)			

To solve problem (2.19)-(2.22), we need to compute the velocity field V.

Page 10

Compiled on 2015/05/22 at $07{:}33{:}53$

Method 1 : have fun with \mathcal{H} -operators

To compute the velocity field V we can rewrite the potential flow problem (2.23)-(2.26), by introducing $V = (V_1, V_2)$ as unknowns :

Find $\phi \in \mathrm{H}^{2}(\Omega)$ and $\mathbf{V} \in \mathrm{H}^{1}(\Omega) \times \mathrm{H}^{1}(\Omega)$ such that $-\left(\frac{\partial \mathbf{V}_{1}}{\partial x} + \frac{\partial \mathbf{V}_{2}}{\partial y}\right) = 0 \text{ in } \Omega, \qquad (2.27)$ $\mathbf{V}_{1} - \frac{\partial \phi}{\partial x} = 0 \text{ in } \Omega, \qquad (2.28)$

$$\boldsymbol{V}_2 - \frac{\partial \phi}{\partial y} = 0 \quad \text{in } \Omega, \qquad (2.29)$$

with boundary conditions (2.24) to (2.26).

We can also replace (2.27) by $-\Delta\phi = 0$. Let $\boldsymbol{w} = \begin{pmatrix} \phi \\ \boldsymbol{V}_1 \\ \boldsymbol{V}_2 \end{pmatrix}$, the previous PDE can be written as a vector boundary

value problem (see Section 1.2) where the \mathcal{H} -operator is given by

$$\mathcal{H}(\boldsymbol{w}) = 0 \tag{2.30}$$

with

$$\mathcal{H}_{1,1} = 0, \qquad \qquad \mathcal{H}_{1,2} = \mathcal{L}_{\mathbb{O},-\boldsymbol{e}_1,\boldsymbol{0},0}, \qquad \mathcal{H}_{1,3} = \mathcal{L}_{\mathbb{O},-\boldsymbol{e}_2,\boldsymbol{0},0} \qquad (2.31)$$

$$\mathcal{H}_{2,1} = \mathcal{L}_{\mathbb{O},\mathbf{0},-\boldsymbol{e}_1,0}, \qquad \mathcal{H}_{2,2} = \mathcal{L}_{\mathbb{O},\mathbf{0},\mathbf{0},1}, \qquad \mathcal{H}_{2,3} = 0,$$
 (2.32)

$$\mathcal{H}_{3,1} = \mathcal{L}_{\mathbb{O},\mathbf{0},-\boldsymbol{e}_2,0}, \qquad \mathcal{H}_{3,2} = 0, \qquad \qquad \mathcal{H}_{3,3} = \mathcal{L}_{\mathbb{O},\mathbf{0},\mathbf{0},1}, \qquad (2.33)$$

and $e_1 = (1,0)^t$, $e_2 = (0,1)^t$.

The conormal derivatives are given by

$$\begin{aligned} \frac{\partial \boldsymbol{w}_1}{\partial n_{\mathcal{H}_{1,1}}} &= 0, & \frac{\partial \boldsymbol{w}_1}{\partial n_{\mathcal{H}_{2,1}}} &= 0, & \frac{\partial \boldsymbol{w}_1}{\partial n_{\mathcal{H}_{3,1}}} &= 0, \\ \frac{\partial \boldsymbol{w}_2}{\partial n_{\mathcal{H}_{1,2}}} &= \boldsymbol{V}_1 \boldsymbol{n}_1, & \frac{\partial \boldsymbol{w}_2}{\partial n_{\mathcal{H}_{2,2}}} &= 0, & \frac{\partial \boldsymbol{w}_2}{\partial n_{\mathcal{H}_{3,2}}} &= 0, \\ \frac{\partial \boldsymbol{w}_3}{\partial n_{\mathcal{H}_{1,3}}} &= \boldsymbol{V}_2 \boldsymbol{n}_2, & \frac{\partial \boldsymbol{w}_3}{\partial n_{\mathcal{H}_{2,3}}} &= 0, & \frac{\partial \boldsymbol{w}_3}{\partial n_{\mathcal{H}_{3,3}}} &= 0. \end{aligned}$$

So we obtain

$$\sum_{\alpha=1}^{3} \frac{\partial \boldsymbol{w}_{\alpha}}{\partial n_{\mathcal{H}_{1,\alpha}}} = \langle \boldsymbol{V}, \boldsymbol{n} \rangle = \langle \nabla \phi, \boldsymbol{n} \rangle, \qquad (2.34)$$

 and

$$\sum_{\alpha=1}^{3} \frac{\partial \boldsymbol{w}_{\alpha}}{\partial n_{\mathcal{H}_{2,\alpha}}} = \sum_{\alpha=1}^{3} \frac{\partial \boldsymbol{w}_{\alpha}}{\partial n_{\mathcal{H}_{3,\alpha}}} = 0.$$
(2.35)

From (2.35), we cannot impose boundary conditions on components 2 and 3. Thus, with notations of Section 1.2, we have $\Gamma_2^N = \Gamma_3^N = \Gamma$ with $g_2^N = g_3^N = 0$.

Compiled on 2015/05/22 at 07:33:53

To take into account boundary conditions (2.24) to (2.26), we set $\Gamma_1^D = \Gamma_{20} \cup \Gamma_{21}, \Gamma_1^N = \Gamma_1 \cup \Gamma_{10} \cup \Gamma_{22} \cup \Gamma_{23}$ and $g_1^D = 20\delta_{\Gamma_{20}} - 20\delta_{\Gamma_{21}}, g_1^N = 0$. The resolution of this vector BVP is given on lines 3 to 13 of Algorithm 2.4.

The resolution of this vector BVP is given on lines 3 to 13 of Algorithm 2.4. A representation of the velocity potential ϕ and potential flow \boldsymbol{V} is given in Figure 6.

Figure 6: Stationary heat with potential flow in 2D

The operator in (2.19) is given by $\mathcal{L}_{\alpha \mathbb{I}, \mathbf{0}, \mathbf{V}, \beta}$. The conormal derivative $\frac{\partial u}{\partial n_{\mathcal{L}}}$ is

$$\frac{\partial u}{\partial n_{\mathcal{L}}} := \langle \mathbb{A} \nabla u, \boldsymbol{n} \rangle - \langle \boldsymbol{b} u, \boldsymbol{n} \rangle = \alpha \frac{\partial u}{\partial n}.$$

The algorithm using the toolbox for solving (2.23)-(2.26) is the following:

Algorithm 2.4 Stationary heat with potential velocity problem

1: $\mathcal{T}_h \leftarrow \text{getMesh}(...)$ ightarrow Load FreeFEM++ mesh 2: $\boldsymbol{e}_1 \leftarrow \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad \boldsymbol{e}_2 \leftarrow \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ 3: Hop \leftarrow Hoperator(2,3)4: $\operatorname{Hop}.H(1,2) \leftarrow \operatorname{Loperator}(\mathbb{O}_2, -\boldsymbol{e}_1, \boldsymbol{0}, 0)$ 5: $\operatorname{Hop}.H(1,3) \leftarrow \operatorname{Loperator}(\mathbb{O}_2, -\boldsymbol{e}_2, \boldsymbol{0}, 0)$ 6: $\operatorname{Hop}.\operatorname{H}(2,1) \leftarrow \operatorname{Loperator}(\mathbb{O}_2, 0, -e_1, 0)$ 7: $\operatorname{Hop}.H(2,2) \leftarrow \operatorname{Loperator}(\mathbb{O}_2,\mathbf{0},\mathbf{0},1)$ 8: $\operatorname{Hop}.H(3,1) \leftarrow \operatorname{Loperator}(\mathbb{O}_2, 0, -e_2, 0)$ 9: Hop.H(3,3) \leftarrow Loperator($\mathbb{O}_2, \mathbf{0}, \mathbf{0}, 1$) 10: PDEflow \leftarrow INITPDE(Hop, \mathcal{T}_h) 11: PDEflow \leftarrow setBC PDE(PDEflow, 20, 1, 'Dirichlet', 20., \emptyset) 12: PDEflow \leftarrow setBC PDE(PDEflow, 21, 1, 'Dirichlet', -20., \varnothing) 13: $[\boldsymbol{\phi}, \boldsymbol{V}_1, \boldsymbol{V}_2] \leftarrow \text{SolvePDE}(\text{PDEflux})$ 14: $\alpha \leftarrow (x, y) \longmapsto 0.1 + y^2$ 15: $g_{21} \leftarrow (x, y) \longmapsto 20y$ 16: $\beta \leftarrow 0.01$ 17: Dop \leftarrow LOPERATOR $\begin{pmatrix} \alpha & 0 \\ 0 & \alpha \end{pmatrix}, 0, \begin{pmatrix} V_1 \\ V_2 \end{pmatrix}, \beta$ 18: PDE \leftarrow INITPDE $(Dop, \mathcal{T}_h) \succ$ Set homogeneous 'Neumann' condition on all boundaries 19: PDE \leftarrow setBC_PDE(PDE, 21, 1, 'Dirichlet', g_{21}, \emptyset) 20: PDE \leftarrow setBC_PDE(PDE, 22, 1, 'Dirichlet', $0, \emptyset$) 21: PDE \leftarrow setBC_PDE(PDE, 23, 1, 'Dirichlet', $0, \emptyset$) $ightarrow u = 4 \text{ on } \Gamma_2$ ightarrow u = -4 on Γ_4 $rac{} u = 0 \text{ on } \Gamma_{20}$ 22: $\boldsymbol{u} \leftarrow \text{SolvePDE}(\text{PDE})$

The numerical solution for a given mesh is shown on Figure 7

Figure 7: u

Method 2:

2.3.3 Stationary heat with potential flow in 3D

Let $\Omega \subset \mathbb{R}^3$ be the cylinder given in Figure 8.

Figure 8: Stationary heat with potential flow : 3d mesh

The bottom and top faces of the cylinder are respectively $\Gamma_{1000} \cup \Gamma_{1020} \cup \Gamma_{1021}$ and $\Gamma_{2000} \cup \Gamma_{2020} \cup \Gamma_{2021}$. The hole surface is $\Gamma_{10} \cup \Gamma_{11} \cup \Gamma_{31}$ where $\Gamma_{10} \cup \Gamma_{11}$ is the cylinder part and Γ_{31} the plane part.

The 3D problem to solve is the following

 $\begin{array}{c|c} \overset{\frown}{\mathbf{\partial}}^{-3}\mathbf{D} \text{ problem : stationary heat with potential flow} \\ \hline & \text{Find } u \in \mathrm{H}^{2}(\Omega) \text{ such that} \\ & -\operatorname{div}(\alpha \,\nabla \, u) + \langle \boldsymbol{V}, \nabla \, u \rangle + \beta u &= 0 \text{ in } \Omega \subset \mathbb{R}^{3}, \qquad (2.36) \\ & u &= 30 \text{ on } \Gamma_{1020} \cup \Gamma_{2020}, \qquad (2.37) \\ & u &= 10\delta_{|z-1|>0.5} \text{ on } \Gamma_{10}, \qquad (2.38) \\ & \frac{\partial u}{\partial n} &= 0 \text{ otherwise} \qquad (2.39) \end{array}$

where Ω and its boundaries are given in Figure 8. This problem is well posed if $\alpha(\boldsymbol{x}) > 0$ and $\beta(\boldsymbol{x}) \ge 0$. We choose α and β in Ω as :

$$\begin{array}{rcl} \alpha(\boldsymbol{x}) &=& 1, \\ \beta(\boldsymbol{x}) &=& 0.01 \end{array}$$

The potential flow is the velocity field $\mathbf{V} = \nabla \phi$ where the scalar function ϕ is the velocity potential solution of the PDE :

To solve problem (2.36)-(2.39), we need to compute the velocity field V. For that we can rewrite the potential flow problem (2.40)-(2.43), by introducing $V = (V_1, V_2, V_3)$ as unknowns :

-`	Velocity potential and velocity field in 3d						
Ī	Find $\phi \in \mathrm{H}^2(\Omega)$ and $\boldsymbol{V} \in \mathrm{H}^1(\Omega)^3$ such that						
	$-\left(rac{\partial oldsymbol{V}_1}{\partial x}+rac{\partial oldsymbol{V}_2}{\partial y}+rac{\partial oldsymbol{V}_3}{\partial z} ight)$ =	=	$0 \text{ in } \Omega,$	(2.44)			
	$oldsymbol{V}_1 - rac{\partial \phi}{\partial x}$ =	=	$0 \text{ in } \Omega,$	(2.45)			
	$oldsymbol{V}_2 - rac{\partial \phi}{\partial y}$ =	=	$0 \ {\rm in} \ \Omega,$	(2.46)			
	$oldsymbol{V}_3 - rac{\partial \phi}{\partial z}$ =	=	$0 \ {\rm in} \ \Omega,$	(2.47)			
	with boundary conditions (2.41) to (2.43) .						

We can also replace (2.44) by $-\Delta \phi = 0$.

Let $\boldsymbol{w} = \begin{pmatrix} \phi \\ \boldsymbol{V}_1 \\ \boldsymbol{V}_2 \\ \boldsymbol{V}_3 \end{pmatrix}$, the previous PDE can be written as a vector boundary

value problem (see section 1.2) where the \mathcal{H} -operator is given by

$$\mathcal{H}(\boldsymbol{w}) = 0 \tag{2.48}$$

 with

$$\mathcal{H}_{1,1} = 0, \qquad \mathcal{H}_{1,2} = \mathcal{L}_{\mathbb{O},-\boldsymbol{e}_1,\mathbf{0},0}, \qquad \mathcal{H}_{1,3} = \mathcal{L}_{\mathbb{O},-\boldsymbol{e}_2,\mathbf{0},0}, \qquad \mathcal{H}_{1,4} = \mathcal{L}_{\mathbb{O},-\boldsymbol{e}_3,\mathbf{0},0}, \\ (2.49) \qquad (2.49) \qquad (2.49) \qquad (2.49) \qquad (2.49) \qquad (2.49) \qquad (2.50) \qquad (2.51) \qquad (2.51) \qquad (2.51) \qquad (2.51) \qquad (2.51) \qquad (2.51) \qquad (2.52) \qquad (2.52)$$

and $\boldsymbol{e}_1 = (1, 0, 0)^t$, $\boldsymbol{e}_2 = (0, 1, 0)^t$, $\boldsymbol{e}_3 = (0, 0, 1)^t$.

Compiled on 2015/05/22 at 07:33:53

The conormal derivatives are given by

$$\frac{\partial \boldsymbol{w}_{1}}{\partial n_{\mathcal{H}_{1,1}}} = 0, \qquad \frac{\partial \boldsymbol{w}_{1}}{\partial n_{\mathcal{H}_{2,1}}} = 0, \qquad \frac{\partial \boldsymbol{w}_{1}}{\partial n_{\mathcal{H}_{3,1}}} = 0, \qquad \frac{\partial \boldsymbol{w}_{1}}{\partial n_{\mathcal{H}_{4,1}}} = 0,$$
$$\frac{\partial \boldsymbol{w}_{2}}{\partial n_{\mathcal{H}_{1,2}}} = \boldsymbol{V}_{1}\boldsymbol{n}_{1}, \qquad \frac{\partial \boldsymbol{w}_{2}}{\partial n_{\mathcal{H}_{2,2}}} = 0, \qquad \frac{\partial \boldsymbol{w}_{2}}{\partial n_{\mathcal{H}_{3,2}}} = 0, \qquad \frac{\partial \boldsymbol{w}_{2}}{\partial n_{\mathcal{H}_{4,2}}} = 0,$$
$$\frac{\partial \boldsymbol{w}_{3}}{\partial n_{\mathcal{H}_{1,3}}} = \boldsymbol{V}_{2}\boldsymbol{n}_{2}, \qquad \frac{\partial \boldsymbol{w}_{3}}{\partial n_{\mathcal{H}_{2,3}}} = 0, \qquad \frac{\partial \boldsymbol{w}_{3}}{\partial n_{\mathcal{H}_{3,3}}} = 0, \qquad \frac{\partial \boldsymbol{w}_{3}}{\partial n_{\mathcal{H}_{4,3}}} = 0,$$
$$\frac{\partial \boldsymbol{w}_{4}}{\partial n_{\mathcal{H}_{1,4}}} = \boldsymbol{V}_{3}\boldsymbol{n}_{3}, \qquad \frac{\partial \boldsymbol{w}_{4}}{\partial n_{\mathcal{H}_{2,4}}} = 0, \qquad \frac{\partial \boldsymbol{w}_{4}}{\partial n_{\mathcal{H}_{3,4}}} = 0, \qquad \frac{\partial \boldsymbol{w}_{4}}{\partial n_{\mathcal{H}_{4,4}}} = 0,$$

So we obtain

$$\sum_{\alpha=1}^{4} \frac{\partial \boldsymbol{w}_{\alpha}}{\partial n_{\mathcal{H}_{1,\alpha}}} = \langle \boldsymbol{V}, \boldsymbol{n} \rangle = \langle \nabla \phi, \boldsymbol{n} \rangle, \qquad (2.53)$$

and

$$\sum_{\alpha=1}^{4} \frac{\partial \boldsymbol{w}_{\alpha}}{\partial n_{\mathcal{H}_{2,\alpha}}} = \sum_{\alpha=1}^{4} \frac{\partial \boldsymbol{w}_{\alpha}}{\partial n_{\mathcal{H}_{3,\alpha}}} = \sum_{\alpha=1}^{4} \frac{\partial \boldsymbol{w}_{\alpha}}{\partial n_{\mathcal{H}_{4,\alpha}}} = 0.$$
(2.54)

From (2.54), we cannot impose boundary conditions on components 2 to 4. Thus, with notation of section 1.2, we have $\Gamma_2^N = \Gamma_3^N = \Gamma_4^N = \Gamma$ with $g_2^N =$

Thus, with notation of bector $\Gamma_{2,2}$, $\Gamma_{2,2}$, $G_{3,2}^{N} = g_{4,2}^{N} = 0$. To take into account boundary conditions (2.41) to (2.43), we set $\Gamma_{1}^{D} = \Gamma_{1020} \cup \Gamma_{1021} \cup \Gamma_{2020} \cup \Gamma_{2021}, \Gamma_{1}^{N} = \Gamma \setminus \Gamma_{1}^{D}$ and $g_{1}^{D} = \delta_{\Gamma_{1020} \cup \Gamma_{2020}} - \delta_{\Gamma_{1021} \cup \Gamma_{2021}},$ $g_1^N = 0.$

The solution of this vector boundary value problem is given in lines 3 to 13 of Algorithm 2.5. A representation of velocity potential ϕ and potential flow Vis given in Figure 9.

(a) ϕ and \boldsymbol{V} : first view

(b) ϕ and V: second view

Figure 9: HeatAndFlowVelocity3d01 problem

The operator in (2.36) is given by $\mathcal{L}_{\alpha \mathbb{I}, \mathbf{0}, \mathbf{V}, \beta}$. The conormal derivative $\frac{\partial u}{\partial n_{\mathcal{L}}}$ is

$$\frac{\partial u}{\partial n_{\mathcal{L}}} := \langle \mathbb{A} \nabla u, \boldsymbol{n} \rangle - \langle \boldsymbol{b} u, \boldsymbol{n} \rangle = \alpha \frac{\partial u}{\partial n}.$$

Compiled on 2015/05/22 at 07:33:53

The algorithm using the toolbox for solving (2.44)-(2.47) is the following:

Algorithm 2.5 Stationary heat with potential velocity problem

1: $\mathcal{T}_h \leftarrow \text{getMesh}(...)$ ightarrow Load FreeFEM++ mesh 2: $\boldsymbol{e}_1 \leftarrow \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \quad \boldsymbol{e}_2 \leftarrow \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \quad \boldsymbol{e}_3 \leftarrow \begin{pmatrix} 0\\0\\1 \end{pmatrix}$ 3: Hop \leftarrow Hoperator(3, 4)4: Hop.H(1,2) \leftarrow Loperator($\mathbb{O}_3, -\boldsymbol{e}_1, \boldsymbol{0}, 0$) 5: $\operatorname{Hop}.H(1,3) \leftarrow \operatorname{Loperator}(\mathbb{O}_3, -\boldsymbol{e}_2, \boldsymbol{0}, 0)$ 6: Hop.H(1,4) \leftarrow Loperator($\mathbb{O}_3, -\boldsymbol{e}_3, \boldsymbol{0}, 0$) 7: $\operatorname{Hop}.\operatorname{H}(2,1) \leftarrow \operatorname{Loperator}(\mathbb{O}_3, \mathbf{0}, -\boldsymbol{e}_1, 0), \quad \operatorname{Hop}.\operatorname{H}(2,2) \leftarrow \operatorname{Loperator}(\mathbb{O}_3, \mathbf{0}, \mathbf{0}, 1)$ 8: $\operatorname{Hop}.H(3,1) \leftarrow \operatorname{Loperator}(\mathbb{O}_3, \mathbf{0}, -\boldsymbol{e}_2, 0), \quad \operatorname{Hop}.H(3,3) \leftarrow \operatorname{Loperator}(\mathbb{O}_3, \mathbf{0}, \mathbf{0}, 1)$ 9: $\operatorname{Hop}.\operatorname{H}(4,1) \leftarrow \operatorname{Loperator}(\mathbb{O}_3, \mathbf{0}, -\boldsymbol{e}_3, 0), \quad \operatorname{Hop}.\operatorname{H}(4,4) \leftarrow \operatorname{Loperator}(\mathbb{O}_3, \mathbf{0}, \mathbf{0}, 1)$ 10: PDEflow \leftarrow INITPDE(Hop, \mathcal{T}_h) 11: PDEflow \leftarrow setBC_PDE(PDEflow, 20, 1, 'Dirichlet', 20., \emptyset) 12: PDEflow \leftarrow setBC_PDE(PDEflow, 21, 1, 'Dirichlet', -20., \emptyset) 13: $[\boldsymbol{\phi}, \boldsymbol{V}_1, \boldsymbol{V}_2, \boldsymbol{V}_3] \leftarrow \text{SolvePDE}(\text{PDEflow})$ 14: $\alpha \leftarrow (x, y, z) \longmapsto 1$ 15: $g_{20} \leftarrow (x, y, z) \longmapsto 30, \quad g_{10} \leftarrow (x, y, z) \longmapsto 10 * (|z - 1| > 0.5)$ 16: $\beta \leftarrow 0.01$ 17: $\mathtt{Dop} \leftarrow \mathtt{Loperator}(\begin{pmatrix} \alpha & 0 & 0 \\ 0 & \alpha & 0 \\ 0 & 0 & \alpha \end{pmatrix}, \mathbf{0}, \begin{pmatrix} \mathbf{V}_1 \\ \mathbf{V}_2 \\ \mathbf{V}_3 \end{pmatrix}, \beta)$ 18: PDE \leftarrow INITPDE(Dop, $\mathcal{T}_h) \mathrel{\vartriangleright}$ Set homogeneous 'Neumann' condition on all boundaries 19: PDE \leftarrow setBC PDE(PDE, 1020, 1, 'Dirichlet', g_{20}, \emptyset) 20: PDE \leftarrow setBC_PDE(PDE, 2022, 1, 'Dirichlet', g_{20}, \emptyset) 21: PDE \leftarrow setBC PDE(PDE, 10, 1, 'Dirichlet', g_{10}, \emptyset) 22: $\boldsymbol{u} \leftarrow \text{SolvePDE}(\text{PDE})$

The numerical solution for a given mesh is shown on Figure 10

2.4 Eigenvalues

3 Eigenvalue problems

We want to solve eigenvalue problems coming from scalar or vector BVP's.

3.1 Scalar case

The eigenvalue problems associated with scalar BVP (1.2)-(1.4) can be written as

(b) us solution with streamline : second (a) us solution with streamline : first viewview

Figure 10:	HeatAndFlow	Velocity3d01	problem
		•/	1

£	Scalar eigenvalue problem Find $(\lambda, u) \in \mathbb{K} \times H^2(\Omega)$ such that						
	$\mathcal{L}(u) = \lambda \mathcal{B}(u)$	in Ω ,	(3.1)				
	$\begin{aligned} u &= 0 \\ \frac{\partial u}{\partial n_{\ell}} + a^{R} u &= 0 \end{aligned}$	on Γ^{R} .	(3.2) (3.3)				
	where $\mathcal{B} = \mathcal{L}_{\mathbb{O}_{d \times d}, 0_{d}, \tilde{\mathbf{c}}, \tilde{a_{0}}}$.						

A variational formulation of this problem is given by

 $\begin{array}{c} & & \\ & &$

As seen in section ??, the discretization of this variational formulation by P_1 -Lagrange finite element method leads to the linear system

Compiled on 2015/05/22 at 07:33:53

and we have

$$u_h = \sum_{j \in \mathcal{I}_D^c} \boldsymbol{u}_j \varphi_j.$$

Let $\mathbb{A}^{\mathcal{B}}$ be the matrix associated with \mathcal{B} operator. With notations of section ?? and

$$\mathbb{A}^{\mathcal{L}}(\mathcal{I}_{D}^{c},\mathcal{I}_{D}^{c})\boldsymbol{v} = \lambda\mathbb{A}^{\mathcal{B}}(\mathcal{I}_{D}^{c},\mathcal{I}_{D}^{c})\boldsymbol{v}$$
(3.7)

Algorithm 3.1 function **EIGSPDE** : solve scalar or vector eigenvalue problems Input : pde : a PDE structure Bop : operator structure associated with \mathcal{B} N_e computes the N_e first eigenvalues and eigenvectors. 1 start value for \underline{EIGS} function σ : **Output** : $\boldsymbol{\lambda}$: 1d-array of dimension N_e . Contains N_e -th first eigenvalues U : pde. $\mathcal{T}_{h.n_q}$ -by- N_e array, $\boldsymbol{U}(:,i)$ is the *i*-th eigenvector associated with the $\lambda(i)$ eigenvalue. 1: Function $[\boldsymbol{U}, \boldsymbol{\lambda}] \leftarrow \text{EigsPDE}(\text{pde, Bop}, N_e, \sigma)$ $\mathbf{n}_{\mathrm{dof}} \leftarrow \mathrm{pde.m} \times \mathrm{pde.}\mathcal{T}_h.\mathbf{n}_{\mathrm{q}}$ 2: $\mathbb{A} \leftarrow \text{AssemblyP1}_OptV3(pde.\mathcal{T}_h, pde.Op)$ 3: $[\mathbb{M}^{R}, \mathbf{F}^{R}] \leftarrow \operatorname{Robin} \operatorname{BC}(\operatorname{pde})$ 4: $\mathbb{A} \leftarrow \mathbb{A} + \mathbb{M}^R$ 5: $\mathbb{B} \leftarrow \text{AssemblyP1}_OptV3(pde.\mathcal{T}_h, Bop)$ 6: $[\boldsymbol{R}^{D}, \boldsymbol{I}_{D}, \boldsymbol{I}_{D}^{c}] \leftarrow \text{DirichletBC(pde)}$ 7: $\begin{array}{l} \boldsymbol{U} \leftarrow \mathbb{O}_{\mathrm{n_{dof}},N_e} \\ [\boldsymbol{U}(\boldsymbol{I}_D^c,:),\boldsymbol{\lambda}] \leftarrow \mathbb{E}_{\mathrm{IGS}}(\mathbb{A}(\boldsymbol{I}_D^c,\boldsymbol{I}_D^c),\mathbb{B}(\boldsymbol{I}_D^c,\boldsymbol{I}_D^c),N_e,\sigma)) \end{array}$ 8: 9: 10: end Function

3.2 Vector case

The eigenvalue problems associated with vector BVP (1.10)-(1.12) can be written as

3	Find $\lambda \in \mathbb{K}$ and $\boldsymbol{u} = (\boldsymbol{u}_1, \dots, \boldsymbol{u}_m) \in (\mathrm{H}^2(\Omega))^m$ such that						
	$\mathcal{H}(\boldsymbol{u}) = \lambda \mathcal{B}(\boldsymbol{u}) \qquad \text{in } \Omega, \qquad (3.8)$						
	$oldsymbol{u}_{lpha}=0$	on $\Gamma^D_{\alpha}, \ \forall \alpha \in [\![1,m]\!],$	(3.9)				
	$\frac{\partial \boldsymbol{u}}{\partial n_{\mathcal{H}_{\alpha}}} + a_{\alpha}^{R} \boldsymbol{u}_{\alpha} = 0$	on $\Gamma^R_{\alpha}, \ \forall \alpha \in [\![1,m]\!],$	(3.10)				
	where \mathcal{B} is a given \mathcal{H} -operator.						

References

- [1] G. Dhatt, E. Lefrançois, and G. Touzot. *Finite Element Method*. Wiley, 2012.
- [2] A. Quarteroni and A. Valli. Numerical Approximation of Partial Differential Equations. Springer, 2008.