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1 Description of the generic problems

The notations of [2] are employed in this section and extended to the vector
case.

1.1 Scalar boundary value problem

Let Q be a bounded open subset of R?, d > 1. The boundary of  is denoted
by T.

We denote by Lapea, = £ : H*(Q) — L?(2) the second order linear
differential operator acting on scalar fields defined, Yu € H?(Q), by

Lapear(u) = —div(AvVu)+ div (bu) +{Vu,e) + apu (1.1)
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where we suppose that A, b, ¢ and aq are sufficiently regular functions. (-, -)
is the usual scalar product in R%. We use the same notations as in the chapter
6 of [2] . It should be also noted that it is important to preserve the two terms
b and c in the generic formulation to allow a greater flexibility in the choice of
the boundary conditions.

Let I'?, T'® be open subsets of T, possibly empty and f € L?(Q), g” €
HY2(I'P), g% € L>(T'R), a® € L®(T'F) be given data.

A scalar boundary value problem is given by

55 Scalar BVP
Find u € H%(2) such that

L(u) =f in Q, (1.2)
u =g on I'P, (1.3)
% + afu =gf on I'E, (1.4)

The conormal derivative of u is defined by

aai = (AVu,ny— (bu,n) (1.5)
nc

The boundary conditions (1.3) and (1.4) are respectively Dirichlet and
Robin boundary conditions. Neumann boundary conditions are particular
Robin boundary conditions with a* = 0.

1.2 Vector boundary value problem

Let m > 1 and H be the m-by-m matrix of second order linear differential
operators defined by

{ Mo (H(@)" — (L2)" (1.6)
’u,=('u,1,...,um) [ f:(flaafm)d;fH(u)
where .
fo =) Haplus), Yae[l,m], (1.7)
B=1
with, for all (a, 3) € [1,m]?,
Ha,ﬂ = £Aa,[i’ba,/i’ca,ﬁ’agvﬁ (1-8)

and AP e (L*?(Q))4, b0 e (L2(Q))?, ¢ € (LP(Q))? and af’ € L*(Q)
are given functions. We can also write in matrix form

‘CAl*l,blvl,cl’l,a(l)’l e EAI,"”,bl,’HL.’cl.’nL,a(l)f'n U
H(u) = : : . )

EAm,,l’bm,l7c7n,17a6n,1 e £A7n,7n ,b”’””",ﬂ"’“"n7[16”’"" Um

We remark that the H operator for m = 1 is equivalent to the £ operator.
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For a € [1,m], we define T2 and I'Z as open subsets of I, possibly empty.
Let f e (L2(Q)™, g2 e HY2(T'D), g% e L2(TE), aff € L*(T'E) be given data.
A wvector boundary value problem is given by
g Vector BVP
Find u = (u1,...,u;,) € (H2(Q))™ such that

H(u) =f in €, (1.10)
u, =g7 on T2 Va e [1,m], (1.11)
G,
%+ afu, =g on I'E, Va e [1,m], (1.12)
ons,

where the a-th component of the conormal derivative of u is defined

The boundary conditions are the Robin boundary conditions and
(1.11) is the Dirichlet boundary condition. The Neumann boundary condi-
tions are particular Robin boundary conditions with aff =

In the following of the report we will solve by a P;-Lagrange finite element

method scalar BVP (L.2) to (1.4) and wvector BVP (1.10) to (1.12) without

additional restrictive assumption.

2 Examples

2.1 First level functions or commonly used functions

We briefly describe the main functions that will be used in the sequel.

Tn < cerMesu(FileName) : to define the mesh 73 by reading a 2d or 3d mesh
from the file FileName.

Tr, — HyperCusr(d, N, < trans = ® >) : to define the mesh 7, as the unit
hypercube [0,1]¢. There are N(i) (or N if N is a scalar) points in each
direction and the mesh of the hypercube contains Hle N (i) points.
Optionnal parameter trans set the displacement vector of mesh transfor-
mation ®(q) = [®1(q),. .., Pa(q)].

Lop < Loperaror(d, A, b,¢,ap) : to initialize the operator £ in dimension d

given by (L1) : Lop < L4 p.ca,-

Hop < Hoprraror(d,m) : to initialize the operator H given by (1.6) veri-
fying Ho s = 0, VY(a, B3) € [1,m]*. Each operator H, g corresponds to
Hop.H(«, 8) and can be initialized by the function Loperaror

PDE « wnitPDE(0Op, 71,) : to initialize a PDE structure fron an operator (ei-
ther L-operator or H-operator) and a mesh. Default boundary conditions
are homogeneous generalized Neumann.
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PDE « serBC_PDE(PDE, label, comps, type, g,ar) : to define or modify the
boundary conditions on the boundary I'yzpe1 on the mesh PDE.7}, for com-
ponents of index comps (in the scalar case comps = 1). For a scalar PDE,
we have for example

e Dirichlet condition : us = g on I'yp, then
PDE « serBC_PDE(PDE, 11,2, ’Dirichlet’, g, &)

e generalized Neumann condition : 2%
onyg

PDE « serBC PDE(PDE, 12, 3, )Neumann’, g, )

u
ona,

PDE « serBC_PDE(PDE, 13,2, ’Robin’, g, a¥)

=g on I'19, then

e generalized Robin condition : + afus = g on T3, then

z «— SowvePDE(PDE) : to solve by P; Lagrange finite elements the partial
differential equation defined by the structure PDE. This function returns
the solution z ()

2.2 Scalar case
2.2.1 2D condenser problem

The problem to solve is the Laplace problem for a condenser.

-\@/-2D condenser problem
Find u € H%() such that

—Au

0 in Q c R?
0 on Iy,
= —1 on Fgg,

N SN SN /S
N I N
NN NGNS

= 1 on Fgg,

where 2 and its boundaries are given in Figure
The operator in (2.1) is the Stiffness operator given by Lrpo,o and the

conormal derivative a{;u,; is

ou

ang

= (AVu,ny—<bu,n)y = Z—Z

The algorithm using the toolbox for solving (2.1)-(2.4) is the following:

Algorithm 2.1 2D condenser

1: Tp < aeTMesH(...) > Load FreeFEM-++ mesh
2: Dop « Lorrraror(L,0,0,0) > Stiffness operator
3: PDE «— mnitPDE(Dop, T1)

4: PDE « serBCLaBeL(PDE, *Dirichlet’,1,1,0.) >u=0o0nTI"
5: PDE « serBCLaBeL(PDE, *Dirichlet?,99,1,1.) >u =1 on Igg
6: PDE « serBCLaBEL(PDE, *Dirichlet?, 98,1, —1.) >u = —1 on I'og
7: & « SowePDE(PDE)

The solution for a given mesh is shown on Figure
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(=1;3) (2;3)

1798 199 (5

(25 —3) (1; =3)

(a) Domain for the condenser problem (b) Result for the 2D condenser problem

Figure 1: Condenser problem

2.2.2 Poisson PDE with mixed boundary conditions in 2D (2)

We first consider the classical 2D Poisson problem with various boundary con-
ditions. The problem to solve is the following

-@’-2D Poisson problem
Find u € H%() such that
—~Au = f in QcR? (2.5)
v = 0 onTy, (2.6)
u = 1 on Dy, (2.7)
0

a% +aru = —0.5 on Iy, (28)

ou
ain = 0.5 on F4 (29)

where ) is the unit hypercube transformed by function ®(z,y) = (20, 2(2y—
1 + cos(27x)) and its boundaries are given in Figure
f and ap satisfy:

fl) = cos(xi+x2) Y €Q
ar(z) = 1423 +25 vV €Q

The operator in (2.5) is the Stiffness operator : Ly0,0,0-

The conormal derivative a(% is

ou ou

— :=(A —<b = —.

S = AV um) — bum) = 5
The algorithm using the toolbox for solving (2.5)-(2.9) is given in Algo-
rithm The corresponding Matlab/Octave and Python codes are given in

Listing
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(a) Domain and boundaries (b) Result

Figure 2: Laplace2d01 problem

Algorithm 2.2 2D Poisson problem

1: Tp < HyperCuege(2, 50) = Build unit square mesh
2: Dop < Loperator(2,1,0,0,0) o Stiffness operator
3: PDE «— initPDE(Dop, T1)

4: PDE « serBC_PDE(PDE, 1,1, ’Dirichlet’, 0., &) >u=0o0nTy
5: PDE « serBC_PDE(PDE, 2,1, *Dirichlet’, 1., &) >u=1onTI5
6: PDE «— serBC_PDE(PDE, 3,1, *Robin’, —0.5,2 — 1 + 27 + 22) =

% +arpu=—0.50nTI4g
7: PDE « serBC_PDE(PDE, 4, 1, *’Neumann’, 0.5, () o> % =0.50nI'y

8: PDEf «— (21,1‘2) — COS(z‘l + 2)2)
9: up < SowePDE(PDE)

A numerical solution for a given mesh is shown on Figure [2b]

1 from pyVecFEMPI1Light.mesh import s

2 from pyVecFEMPI1Light.pde import x
from pyVecFEMPI1Light.operators import *
Th—HyperCube(2,50)
LOp=Loperator (2 ,[[1,0] ,[0,1]],None, None, None)

Th-=HyperCube (2 ,50);
3

4

5

s+ pde—initPDE (LOp, Th)

7

s

9

LOp=Loperator (2,{1,0;0,1},[],[],[1);

PDE-initPDE (LOp, Th) ;

PDE-setBC_PDE(PDE, 1,1, *Dirichlet’ ,0);

PDE-setBC_PDE(PDE, 2,1, Dirichlet’ ,1);

PDE-setBC_PDE(PDE, 3,1, ’Robin’,—0.5 , ...
@(x1,x2) 1+x1.72+x2.°2 );

PDE-setBC_PDE(PDE, 4,1, * Neumann’ ,0.5);

PDE. f=Q(x,y) cos(xty) ;

uh=solvePDE (PDE) ;

(a) Matlab/Octave

pde=setBC_PDE(pde,1,0, Dirichlet’,0.,None)
s pde=setBC_PDE(pde,2,0,’Dirichlet’ ,1.,None)
pde-setBC_PDE(pde 3,0, *Robin? , 0.5,
10 lambda x,y: 1+x##k2+4y*x2)
11 pde=setBC_PDE(pde,4,0,’Neumann’ ,0.5,None)
12 pde.f=lambda x,y: cos(xty)
15 uh—solvePDE (pde)

(b) Python

Listing 1: Poisson ...

2.3 Vector case
2.3.1 Elasticity problem

General case (d = 2,3)
We consider here Hooke’s law in linear elasticity, under small strain hypothesis
(see for example [1]).
For a sufficiently regular vector field u = (u1,...,uq) :  — R%, we define
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the linearized strain tensor € by

(V(u) + V().

[5.
—
S
=

I
N =

¢ ¢
= (e11,€22,2€12)" in 2d and € = (€11, €22, €33, 2€12, 2€23, 2€13)" in 3d,

We set € €1
with €;;(u) = 3 Sf:] + gzz ) Then the Hooke’s law writes

a = Ce,

where ¢ is the elastic stress tensor and C the elasticity tensor.

The material is supposed to be isotropic. Thus the elasticity tensor C is only
defined by the Lamé parameters A\ and p, which satisfy A + 4 > 0. We also set
y=2pu+ A For d=2or d=3, Cis given by

C- <)\]12 + 2uly 0> or C— <)\]13 +2ul; 0 ) 7
0 H/ 3x3 0 13/ 66

respectively, where 14 is a d-by-d matrix of ones, and I; the d-by-d identity
matrix.
For dimension d = 2 or d = 3, we have:

oap(u) = 2peqpu) +Atr(e(u))dap Vo, e [1,d]

The problem to solve is the following

-\@’-Elasticity problem
Find u = H? (Q)d such that

Now, with the following lemma, we obtain that this problem can be rewritten

as the vector BVP defined by (1.10) to (1.12).

Lemma 1. Let ‘H be the d-by-d matriz of the second order linear differential
operators defined in (1.6) where Ho3 = Lpas 000, V(a, ) € [1,d]?, with

(AP) 1 = pbaplii + pralia + Akadip, V(k,1) € [1,d]*. (2.13)
then
H(u) = —divo(u) (2.14)
and, Yo € [1,d],
ou
B = (o(u)n),. (2.15)

The proof is given in appendix ??. So we obtain
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-\@/-Elasticity problem with H operator in dimension d = 2
ord=3

Let ‘H be the d-by-d matrix of the second order linear differential opera-
tors defined in (L.6) where Y(a, 8) € [1,d]?, Ha,g = Lpa6,00,0, With

e for d =2,

11_ (7 O 12_ (0 A o1 _ (0 p 20 _ (kO
e _<0u)’A _(u()’A _)\0’A “\0 v

e for d = 3,

v 0 0 0 X 0 0 0 X
At =10 p 0], AM2=1|px 0 0|, A =10 0 0

0 0 n 0 0 O uw 0 0

0 pu O w0 0 0 0 O
Al =X 0 0, A22=[0 ~ 0], AZ3=10 0 )|,

0 0 0 0 0 p 0 p O

0 0 p 0 0 0 w0 0
A1 =10 0 0, A>2={0 0 wu|, A®3=(0 u 0].

A0 O 0 A 0 0 0 «v

The elasticity problem (2.10) to (2.12) can be rewritten as :
Find u = (u1,...,u4) € (H3(Q))? such that

H(u) =f, in ©Q, (2.16)
o, on TN =TV, Vae [1,d] (2.17)
6nya

on T2 =TP Vae[1,d]. (2.18)

2D example
For example, in 2d, we want to solve the elasticity problem (2.10) to (2.12)

where  and its boundaries are given in Figure |3} We have TN =Tt uT? uT?,
b =14
The material’s properties are given by Young’s modulus £ and Poisson’s
coefficient v. As we use plane strain hypothesis, Lame’s coefficients verify
E Ev
=S > A= 1 N1 9.\
2(1+v) 1+v)(1-2v)
The material is rubber so that E = 21.10°Pa and v = 0.45. We also have
f=z~(0,-1)

v=2u+ A

(0;1) 3 (20;1)
4 0 T2
e
(0 —1) r! (20; =1)

Figure 3: Domain for the 2D elasticity problem

Using ?? the operator in (2.10) is the Elastic Stiffness operator. Its conormal
derivative corresponds to the stress vector.
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The algorithm using the toolbox for solving (2.10)-(2.12) is the following;:

Algorithm 2.3 2D elasticity

: Tn < GETMESH(...) = Load FreeFEM-++ mesh

Ev
A A+v)(1—20)

E
e Te e
Hop « IniTHoPERATOR(2, 2)
Hop(1,1) « Loreraror(2, [2u + A, 0;0, 1], 0,0,0)
Hop(2, 1) < Loperaror(2, [0, A; i, 0],0,0,0)
Hop(1 (2,[0, u; A, 0],0,0,0)
: Hop(2,2) « Loperaror(2,[u,0;0,2u + A],0,0,0)
PDE « mirPDE(Hop, Tr)
PDE « serBC PDE(PDE, 4,1 :2,’Dirichlet’,z — 0)
11: PDE.f « z — [0, —1]
: ¢ «— SowePDE(PDE)

1)
,2) < LOPERATOR
)

’

—_ =
HRee Xl w e

—_
[\

2D elasticity - norm of the solution

Figure 4: Result for the 2D elasticity problem

The solution for a given mesh is shown on Figure [

2.3.2 Stationary heat with potential flow in 2D

Let Ty be the unit circle, T';g be the circle with center point (0,0) and radius

0.3. Let I'yg, I'a1, I'ao and I'ez be the circles with radius 0.1 and respectively

with center point (0,—0.7), (0,0.7), (—0.7,0) and (0.7,0). The domain < R?

is defined as the inner of I'y and the outer of all other circles (see Figure [5)).
The 2D problem to solve is the following
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Figure 5: Domain and boundaries

-\@’-2D problem : stationary heat with potential flow

Find u € H3() such that
—div(avu) +{V,Vuy+Bu = 0 in QcR? (2.19)
u = 20=% Yy on F217 (220)
u = 0 on P22 \ P23, (221)
0
l = 0 on F] U FlO U Fgl (222)
on

where Q and its boundaries are given in Figure[5] This problem is well posed
if a(z) > 0 and B(z) = 0.
We choose o and § in Q as :

alz) = 0.1+ 23
Bz) = 0.01

The potential flow is the velocity field V = V¥ ¢ where the scalar function ¢ is
the velocity potential solution of the PDE

-\@/-Velocity potential in 2d

Find ¢ € H?(2) such that
—A¢ = 0 in Q, (2.23)
¢ = —20 on Iy, (2.24)
¢ = 20 on Iy, (2.25)
¢
= 0 on Fl ) F23 ) FQQ (226)
on

To solve problem ([2.19)-(2.22), we need to compute the velocity field V.
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Method 1 : have fun with H-operators
To compute the velocity field V' we can rewrite the potential flow problem
(2.23)-(2.26), by introducing V' = (V1,V3) as unknowns :

-\@/-Velocity potential and velocity field in 2d
Find ¢ € H2(Q2) and V € HY(Q2) x H'(Q) such that

vy e\

- (a(ﬂ + (}y> = 0 in Q, (2.27)
¢ :

V- W = 0 in , (2.28)

Vs, — % = 0 inQ, (2.29)

We can also replace (2.27) by —A¢ = 0.

¢
Let w = [V |, the previous PDE can be written as a vector boundary
Vs
value problem (see Section where the H-operator is given by
H(w) =0 (2.30)
with
Hiqi =0, Hi2= Lo —e,0,0; Hiszs = L0 —e,00 (2.31)
Ha1 = L0,0,—e1,05 Ha2 = L0001, Has =0, (2.32)
Hsz 1 = L0,0,-es.05 Hs 2 =0, Hs3 = L0,00,1, (2.33)
and €] = (1,0)t, €y = (O7 1)t
The conormal derivatives are given by
6'w1 _ 07 ﬂéwl _ 07 ’\a’wl _ 07
ony, . 0N, , Ny,
0 % 0
02 = V1n17 et = 07 A 02 = 07
Ny, ONy On;
ow- ow- w-
W3 = V2n27 W3 = 0, s = 0.
(%mm anH,‘,’a anH“
So we obtain
3
ow,
Z ! =V,n)=(Vo,n), (2.34)
a=1 nHl,a
and s s
ow,, ow,,
> =] =0 (2.35)
0Ny 0Ny o

From ([2.35)), we cannot impose boundary conditions on components 2 and 3.
Thus, with notations of Section we have 'Y = T =T with gl = ¢l = 0.
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To take into account boundary conditions (2.24) to , we set I'P =
Fgo U Fgl, F{V = Fl U FlO ) F22 ) F23 and ng = 20(51‘*20 - 205[‘21, g{\f = 0.

The resolution of this vector BVP is given on lines [3] to [I3] of Algorithm
A representation of the velocity potential ¢ and potential flow V is given in

Figure [6]

(a) Velocity potential (b) Potential flow

Figure 6: Stationary heat with potential flow in 2D

The operator in 1} is given by La1,0,v,3. The conormal derivative aan_uﬁ is

ou ou

The algorithm using the toolbox for solving (2.23)-(2.26) is the following:
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Algorithm 2.4 Stationary heat with potential velocity problem

1:
2:

17:

18:
19:
20:
21:
22:

: Hop.H
: Hop.H(3,3) « Loreraror(02,0,0,1)
: PDEflow < mitPDE(Hop, Tr)

11:
12:
13:
14:
15:
16:

Tr < ceTMESH(...) = Load FreeFEM++ mesh

) ()

: Hop <« Horrraror(2, 3)
: Hop.H(1,2) « Lopreraror(02, —e1,0,0)

(

Hop.H(1,3) < Lopreraror(Q2, —e2,0,0)

Hop.H(2,1) < Lopreraror(Q2,0, —e1,0)

Hop.H(2,2) < Loperaror(Q02,0,0,1)
(3,1) (

,1) <« Loperator(Q2,0, —e2,0)

PDEflow « serBC PDE(PDEflow, 20, 1, ’Dirichlet’, 20., ¢¥)
PDEflow « serBC_PDE(PDEflow, 21, 1, ’Dirichlet’, —20., &)
[#,V1,V2] <« SovePDE(PDEflux)

a « (z,y) — 0.1 +4°

g21 < (z,y) — 20y

B« 0.01

Dop « LOPERATOR((g 2) ,0, <51) ,B)
2

PDE «— mitPDE(Dop, 75) = Set homogeneous *Neumann’ condition on all boundaries

PDE « serBC_PDE(PDE, 21,1, ’Dirichlet’, g21, &) >u=4on Ty
PDE « serBC_PDE(PDE, 22,1, >Dirichlet’, 0, &¥) >u=—4only
PDE « serBC PDE(PDE, 23,1, ’Dirichlet’, 0, ¥ >u =0 on Iy

u «— SowePDE(PDE)

The numerical solution for a given mesh is shown on Figure [7]

Figure 7: u
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Method 2 :

2.3.3 Stationary heat with potential flow in 3D
Let Q < R? be the cylinder given in Figure

(a) Bottom face (b) Top face

Figure 8: Stationary heat with potential flow : 3d mesh

The bottom and top faces of the cylinder are respectively I'19g0 UT'1020 U 1021
and F2000 U F2020 U F2021. The hole surface is Fl() U F11 U F31 where FlO U Fll
is the cylinder part and I's; the plane part.

The 3D problem to solve is the following

-

-@'—3D problem : stationary heat with potential flow

Find u € H3() such that
—div(eavVu) +{V,Vuy+Bu = 0 in QcR? (2.36)
w = 30 on I'ip20 U202, (2.37)
u = 100._1>05 on I, (2.38)
0
% = 0 otherwise (2.39)

where 2 and its boundaries are given in Figure[§] This problem is well posed
if a(z) > 0 and B(z) = 0.
We choose o and 8 in Q as :

alz) = 1,
B(x) = 0.01

The potential flow is the velocity field V = V¥ ¢ where the scalar function ¢ is
the velocity potential solution of the PDE :
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-\@/-Velocity potential in 3d

Find ¢ € H?(2) such that
~A¢ = 0inQ, (2.40)
¢ = 1 on F1021 v ongl, (241)
¢ = —1 on I'1p20 U I'2020, (2.42)
0
a—i = 0 otherwise (2.43)

To solve problem ([2.36)-(2.39), we need to compute the velocity field V.. For
that we can rewrite the potential flow problem ([2.40)-(2.43), by introducing
V = (V4,V,,V3) as unknowns :

-\@’-Velocity potential and velocity field in 3d

Find ¢ € H2(Q) and V € H(Q)* such that
- (66‘;1 + 6822 + a;;) = 0 inQ, (2.44)
Vi-— Z—f = 0 in Q, (2.45)
Vs, — gj = 0 in Q, (2.46)
Vs — Z—f = 0 in Q, (2.47)
with boundary conditions to .

We can also replace (2.44) by —A¢ = 0.

¢
Let w = “;1 , the previous PDE can be written as a vector boundary
2
Vs
value problem (see section where the H-operator is given by
Hw) = 0 (2.48)
with
Hiqa =0, Hio=L0-e.,00 Hi3=2L0 €00 Hija=L0—e50,0
(2.49)
Ho1 = Loo,—e,,00 Ho2= L0001, Ha3 =0, Hou =0, (2.50)
H3z1 = L00,—es,0, Hz2=0, Hsz = L0001, Hsa =0, (2.51)
Hi1 = Lo0,—e5,0, Hap =0, Haz =0, Haa= L0001,
(2.52)

and e; = (1,0,0)%, e2 = (0,1,0)%, e3 = (0,0,1)".
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2.3 Vector case 2 EXAMPLES

The conormal derivatives are given by

6w1 -0 awl -0 é’wl —0 awl -0
a77*3‘-[1,1 ’ an?‘l2,1 ' anHS,l ’ an?—l4,1 ’
0 0 0 0
W2 =Vin,, —w2 =0, —w2 =0, e o2 =0,
6nH112 é’nnﬂ“ 6nH3,2 6nH412
0 0 0 0
M Vs, “ o, o, 25—,
671%113 8n7.¢2y3 6n7.[3)3 anq.uﬁ,’
0 0 0 0
W = V3n3a W = 07 wa = 07 W = Oa
anym (9n7.¢2,4 6n7{3’4 anH“

So we obtain A

ow,
) St — (V) = (V 6, (2.53)
a=1 TH, o
e i ow, i ow, - ow,, _0 (2.54)
a=1 anszO‘ a=1 an,H&O‘ a=1 anH‘*va ' ‘

From (2.54), we cannot impose boundary conditions on components 2 to 4.
Thus, with notation of section we have I'Y = TY =TV =T with ¢ =
N _ N _ 0

93 94 :

To take into account boundary conditions (2.41) to ([2.43), we set 'Y =
F]{]OQO U T1021 U 2020 U D021, TY = T\I'Y and g1 = 01,450 0T0020 — 0T 1021 U021 5
91 =0.

The solution of this vector boundary value problem is given in lines [3] to [I3]
of Algorithm A representation of velocity potential ¢ and potential low V'
is given in Figure [9]

(a) ¢ and V : first view (b) ¢ and V : second view

Figure 9: HeatAndFlowVelocity3d01 problem

The operator in 1} is given by La10.v,5. The conormal derivative 2 is

ong

ou ou
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2.4 FEigenvalues 3 EIGENVALUE PROBLEMS

The algorithm using the toolbox for solving (2.44)-(2.47) is the following;:

Algorithm 2.5 Stationary heat with potential velocity problem

1:

e e e e e
S Ut = W N =

17:

18:
19:
20:
21:
22:

Tr < ceTMESH(...) = Load FreeFEM++ mesh
1 0 0
L e «— 0,624* 1,e3<— 0
0 0 1
: Hop < HoperaToR(3,4)
: Hop.H(1,2) « Loreraror(03, —e1,0,0)
: Hop.H(1, 3) « Loreraror(03, —e3,0,0)
Hop.H(1,4) < Loprerator(Qs, 63,0 0)
Hop.H(2,1) <« Loperator(Q3,0,—e1,0), Hop.H(2,2) < LopreraTor(Q03,0,0,1)
Hop.H(3,1) « LorrraTor(Qs,0,—e2,0), Hop.H(3,3) « Lopreraror(Q3,0,0,1)
: Hop.H(4,1) « Loprerator(03,0, —e3,0), Hop.H(4,4) < Loreraror(0s,0,0, 1)
: PDEflow < mitPDE(Hop, 7r)

: PDEflow < serBC_PDE(PDEflow, 20, 1, ’Dirichlet’, 20., &)

: PDEflow < serBC_PDE(PDEflow, 21,1, >Dirichlet’, —20., &¥)
: [@9,V1,V2, V3] < SowePDE(PDEflow)

o (T,y,2)— 1

2 g20 < (x,y,2) —> 30, gi0 < (z,y,2) —> 10 % (J]z — 1] > 0.5)

. B 0.01
a 0 0 Vi
Dop « LopreraTor(|[ 0 o 0,0, V2|,B)
0 0 « V3
PDE « mirPDE(Dop, 7Tr) = Set homogeneous ’Neumann’ condition on all boundaries
PDE « serBC _PDE(PDE, 1020, 1, >Dirichlet’, g20, &)
PDE « serBC_PDE(PDE, 2022, 1, ’Dirichlet’, g20, &)
PDE « serBC_PDE(PDE, 10,1, °Dirichlet’, gi0, &)
u — SowePDE(PDE)

The numerical solution for a given mesh is shown on Figure

2.4 Eigenvalues

3

Eigenvalue problems

We want to solve eigenvalue problems coming from scalar or vector BVP’s.

3.1 Scalar case
The eigenvalue problems associated with scalar BVP (1.2)-(1.4) can be written

as
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3.1 Scalar case 3 EIGENVALUE PROBLEMS

(b) us solution with streamline : second
(a) us solution with streamline : first viewview

Figure 10: HeatAndFlowVelocity3d01 problem

g Scalar eigenvalue problem
Find (), u) € K x H2(Q) such that

L(u) =AB(u) in Q, (3.1)
u =0 on I'P,
ou + a®u =0 on I'%. (3.3)

6n5

where B = ﬁ@dxmod’&,lfo.

A variational formulation of this problem is given by

e N

-\@'-Variational formulation
Find A € K and u € H} 1., () such that

f Dr(u,v)dq + J auvdo = )\j Dp(u,v)dq Yve Hy 1o () (3.4)
Q IR Q '

J

As seen in section ??, the discretization of this variational formulation by
P, -Lagrange finite element method leads to the linear system

~

N

-@-Linear system from the discrete variational formula-
tion (3:4)
Find u € R™ such that
D Akl ey = ) Ap(pjeiu; VieTp,  (35)
JETS JETS
u; = 0VieZp. (3.6)
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3.1 Scalar case 3 EIGENVALUE PROBLEMS

and we have

Up = Z Ujp;-

JELE

Let AB be the matrix associated with B operator. With notations of section ??
and

AS (T}, Th)o = AAB(T5, T v (3.7)

Algorithm 3.1 function EicsPDE : solve scalar or vector eigenvalue problems

Input :
pde : a PDE structure
Bop : operator structure associated with B
N, :  computes the N, first eigenvalues and eigenvectors.
o :  start value for ries function
Output :
A 1ld-array of dimension N.. Contains N.-th first eigenvalues
U : pde.Tyng-by-N, array, U(:, 1) is the i-th eigenvector

associated with the A(i) eigenvalue.
1: Function [U,\] « EicsPDE(pde, Bop, Ne, o)
2:  Ngof < pde.m x pde.Tj.nq

3 A — AssemBrLyP1_Op1V3(pde.Th, pde.Op)

4:  [M%, F?] « RoriwBC(pde)

5. A< A+M"

6: B <« AssemBLyP1_OptTV3(pde.Tp, Bop)

7. [RP,Ip,I%] < DiricurerBC(pde)

8: U« Onyy,ne

0 U5, Al < Bios(A(T, 1), BT, I5), N., 0))

10: end Function
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3.2 Vector case 3 EIGENVALUE PROBLEMS

AT G
VARV Y VYA
Q A

q
P

d

DQ P

The eigenvalue problems associated with vector BVP ((1.10)-(1.12) can be writ-
ten as
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g Vector eigenvalue problems
Find A e K and u = (uy,...,u,) € (H3(Q))™ such that

H(u) =AB(u) in Q,
U, =0 on 'Y va e [1,m],
Ou + afu, =0 on T2 Vae [1,m], (3.10)
6nHQ

where B is a given H-operator.
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