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Abstract

We prove that under some assumptions on an algebraic group G, indecomposable direct
summands of the motive of a projective G-homogeneous variety with coefficients in
Fp remain indecomposable if the ring of coefficients is any field of characteristic p.
In particular for any projective G-homogeneous variety X, the decomposition of the
motive of X in a direct sum of indecomposable motives with coefficients in any finite
field of characteristic p corresponds to the decomposition of the motive of X with
coefficients in Fp. We also construct a counterexample to this result in the case where
G is arbitrary.

Résumé

Nous prouvons que sous certaines hypothèses sur un groupe algébrique G, tout
facteur direct indécomposable du motif associé à une variété projective G-homogène à
coefficients dans Fp demeure indécomposable si l’anneau des coefficients est un corps
de caractéristique p. En particulier pour toute variété projective G-homogène X, la
décomposition du motif de X comme somme directe de motifs indécomposables à
coefficients dans tout corps fini de caractéristique p correspond à la décomposition
du motif de X à coefficients dans Fp. Nous exhibons de plus un contre-exemple à ce
résultat dans le cas où le groupe G est quelconque.

Introduction

Let F be a field, Λ be a commutative ring, CM(F ; Λ) be the category of Grothendieck Chow
motives with coefficients in Λ, G a semi-simple affine algebraic group and X a projective G-
homogeneous F -variety. The purpose of this note is to study the behaviour of the complete
motivic decomposition (in a direct sum of indecomposable motives) of X ∈ CM(F ; Λ) when
changing the ring of coefficients. In the first part we prove some very elementary results in non-
commutative algebra and find sufficient conditions for the tensor product of two connected rings
to be connected. In the second part we show that under some assumptions on G, indecomposable
direct summands of X in CM(F ;Fp) remain indecomposable if the ring of coefficients is any field
of characteristic p (Theorem 2.1), since these conditions hold for the reduced endomorphism
ring of indecomposable direct summands of X. In particular theorem 2.1 implies that the
complete decomposition of the motive of X with coefficients in any finite field of characteristic
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p corresponds to the complete decomposition of the motive of X with coefficients in Fp. Finally
we show that theorem 2.1 doesn’t hold for arbitrary G by producing a counterexample.

Let Λ be a commutative ring. Given a field F , an F -variety will be understood as a separated
scheme of finite type over F . Given such Λ and an F -variety X, we can consider CHi(X; Λ),
the Chow group of i-dimensional cycles on X modulo rational equivalence with coefficients in
Λ, defined as CHi(X) ⊗Z Λ. These groups are the first step in the construction of the category
CM(F ; Λ) of Grothendieck Chow motives with coefficients in Λ. This category is constructed
as the pseudo-abelian envelope of the category CR(F ; Λ) of correspondences with coefficients in
Λ. Our main reference for the construction and the main properties of these categories is [2].
For a field extension E/F and any correspondence α ∈ CH(X × Y ; Λ) we denote by αE the
pull-back of α along the natural morphism (X × Y )E → X × Y . Considering a morphism of
commutative rings ϕ : Λ −→ Λ′ we define the two following functors. The change of base field
functor is the additive functor resE/F : CM(F ; Λ) −→ CM(E; Λ) which maps any summand
(X,π)[i] ∈ CM(F ; Λ) to (XE , πE)[i] and any morphism α : (X,π)[i] → (Y, ρ)[j] to αE . The
change of coefficents functor is the additive functor coeffΛ′/Λ : CM(F ; Λ) −→ CM(F ; Λ′) which
maps any summand (X,π)[i] to (X, (id⊗ϕ)(π))[i] and any morphism α : (X,π)[i]→ (Y, ρ)[j] to
(id⊗ ϕ)(α).
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1. On the tensor product of connected rings

Recall that a ring A is connected if there are no idempotents in A besides 0 and 1.

Proposition 1.1 Let A be a finite and connected ring. Then any element a in A is either
nilpotent or invertible. The set N of nilpotent elements in A is a two-sided and nilpotent ideal.

In order to prove Proposition 1.1 we will need the following elementary lemma.

Lemma 1.2 Let A be a finite ring. An appropriate power of any element a of A is idempotent.

Proof. For any a ∈ A, the set {an, n ∈ N} is finite, hence there is a couple (p, k) ∈ N2 (with k
non-zero) such that ap = ap+k. The sequence (an)n≥p is k-periodic and for example if s is the
lowest integer such that p < sk, ask is idempotent.

Proof of Proposition 1.1. For any a ∈ A, an appropriate power of a is an idempotent by lemma
1.2. Since A is connected, this power is either 0 or 1, that is to say a is either nilpotent or
invertible.

We now show that the set N of nilpotent elements in A is a two-sided ideal. First if a is
nilpotent in A, then for any b in A, ab and ba are not invertible, hence ab and ba belong to N .

It remains to show that the sum of two nilpotent elements in A is nilpotent. Setting ν
for the number of nilpotent elements in A, we claim that for any sequence a1,. . ., aν in N ,
a1...aν = 0. Indeed if aν+1 is any nilpotent in A the finite sequence Π1 = a1, Π2 = a1a2,. . .,
Πν+1 = a1a2...aν+1 consists of nilpotents and by the pigeon-hole principle Πk = Πs, for some
k and s satisfying 1 ≤ k < s ≤ ν + 1. Therefore Πs = Πkak+1...as = Πk which implies that
Πk(1 − ak+1...as) = 0 and Πk = 0 since 1 − ak+1...as is invertible. With this in hand it is clear
that for any a and b in N , (a+ b)ν = 0. Furthermore N ν = 0 and N is nilpotent.

2



Motivic decompositions of projective homogeneous varieties and change of coefficients

Corollary 1.3 Let A be a finite and connected Fp-algebra endowed with a ring morphism ϕ :
A −→ Fp. Then the set N of nilpotent elements in A is precisely ker(ϕ). Furthermore for any
connected Fp-algebra E, A⊗Fp E is connected.

Proof. For any a ∈ N and n ∈ N∗ such that an = 0, 0 = ϕ(an) = ϕ(a)n, hence a lies in the kernel
of ϕ. On the other hand if ϕ(a) = 0, a is not invertible thus a is nilpotent and N = ker(ϕ).
Since N is nilpotent, N ⊗ E is also nilpotent. The sequence

0 // N ⊗ E // A⊗ E ψ // E // 0

is exact and we want to show that any idempotent P in A ⊗Fp E is either 0 or 1. Since E is
connected, ψ(P ) is either 0 or 1. We may replace P by 1− P and so assume that P lies in the
kernel of ψ, which implies that the idempotent P is nilpotent, hence P = 0.

2. Application to motivic decompositions of projective homogeneous varieties

For any semi-simple affine algebraic group G, the full subcategory of CM(F ; Λ) whose objects
are finite direct sums of twists of direct summands of the motives of projective G-homogeneous
F -varieties will be denoted CMG(F ; Λ). We now use corollary 1.3 to study how motivic de-
compositions in CMG(F ; Λ) behave when extending the ring of coefficients. A pseudo-abelian
category C satisfies the Krull-Schmidt principle if the monoid (C,⊕) is free, where C denotes the
set of the isomorphism classes of objects of C.

In the sequel Λ will be a connected ring and X an F -variety. A field extension E/F is a
splitting field of X if the E-motive XE is isomorphic to a finite direct sum of twists of Tate
motives. The F -variety X is geometrically split if X splits over an extension of F , and X
satisfies the nilpotence principle, if for any field extension E/F the kernel of the morphism
resE/F : End(M(X)) −→ End(M(XE)) consists of nilpotents. Any projective homogeneous
variety (under the action of a semi-simple affine algebraic group) is geometrically split and
satisfies the nilpotence principle (see [1]), therefore if Λ is finite the Krull-Schmidt principle
holds for CMG(F ; Λ) by [5, Corollary 3.6], and we can serenely deal with motivic decompositions
in CMG(F ; Λ).

Let G be a semi-simple affine algebraic group over F and p a prime. The absolute Galois
group Gal(Fsep/F ) acts on the Dynkin diagram of G and we say that G is of inner type if this
action is trivial. By [1] the subfield FG of Fsep corresponding to the kernel of this action is a
finite Galois extension of F , and we will say that G is p-inner if [FG : F ] is a power of p. We
now state the main result.

Theorem 2.1 Let G be a semi-simple affine p-inner algebraic group and M ∈ CMG(F ;Fp). For
any field L of characteristic p, M is indecomposable if and only if coeffL/Fp

(M) is indecomposable.

If X is geometrically split the image of any correspondence α ∈ CHdim(X)(X × X; Λ) by the
change of base field functor resE/F to a splitting field E/F of X will be denoted α. The reduced
endomorphism ring of any direct summand (X,π) is defined as resE/F (EndCM(F ;Λ)((X,π))) and

denoted by End((X,π)).

Let X be a complete and irreducible F -variety. The pull-back of the natural morphism
Spec(F (X)) ×X −→ X ×X gives rise to mult:CHdim(X)(X ×X; Λ) −→ CH0(XF (X); Λ) −→ Λ
(where the second map is the degree morphism). For any correspondence α ∈ CHdim(X)(X ×
X; Λ), mult(α) is called the multiplicity of α and we say that a direct summand (X,π) given by a
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projector π ∈ CHdim(X)(X×X; Λ) is upper if mult(π) = 1. If (X,π) is an upper direct summand
of a complete and irreducible F -variety, the multiplicity mult : EndCM(F ;Λ)((X,π)) −→ Λ is a
morphism of rings by [4, Corollary 1.7].

Proposition 2.2 Let G be a semi-simple affine algebraic group and M = (X,π) ∈ CM(F ;Fp)
the upper direct summand of the motive of an irreducible and projective G-homogeneous F -
variety. Then for any field L of characteristic p, M is indecomposable if and only if coeffL/Fp

(M)
is indecomposable.

Proof. Since the change of coefficients functor is additive and maps any non-zero projector to a
non-zero projector, it is clear that if coeffL/Fp

(M) is indecomposable, M is also indecomposable.

Considering a splitting field E of X, the reduced endomorphism ring End(M) := π ◦End(X) ◦π
is connected since M is indecomposable and finite. Corollary 1.3, with A = End(M), E =
L and ϕ = mult implies that End(M) ⊗ L = End(coeffL/Fp

(M)) is connected, therefore by
the nilpotence principle End(coeffL/Fp

(M)) is also connected, that is to say coeffL/Fp
(M) is

indecomposable.

Proof of theorem 2.1. Recall that G is a semi-simple affine p-inner algebraic group and consider
a projective G-homogeneous F -variety X. By [6, Theorem 1.1], any indecomposable direct
summand M of X is a twist of the upper summand of the motive of an irreducible and projective
G-homogeneous F -variety Y , thus we can apply proposition 2.2 to each indecomposable direct
summand of X.

Remark 2.3 If Λ is a finite and connected ring, complete motivic decompositions in CM(F ; Λ)
remain complete when the coefficients are extended to the residue field of Λ by [7, Corollary
2.6], hence the study of motivic decompositions in CMG(F ; Λ), where Λ is any finite connected
ring whose residue field is of characteristic p, is reduced to the study motivic decompositions in
CMG(F ;Fp).

We now produce a counterexample to Theorem 2.1 in the case where the algebraic group
G doesn’t satisfy the needed assumptions. Let L/F be a Galois extension of degree 3. By
[1, Section 7], the endomorphism ring End(M(Spec(L))) of the motive associated with the F -

variety Spec(L) with coefficients in F2 is the F2-algebra of Gal(L/F ), i.e. F2[X]
(X3−1)

' F2 × F4,

hence M(Spec(L)) = M ⊕N , with End(N) = F4 and both M and N are indecomposable. Now
End(resF4/F2

(N)) = F4 ⊗ F4 is not connected since 1⊗ α+ α⊗ 1 is a non-trivial idempotent for
any α ∈ F4 \ F2, hence resF4/F2

(N) is decomposable.
Consider the (PGL2)L-homogeneous L-variety P1

L. The Weil restriction R(P1
L) is a projective

homogeneous F -variety under the action of the Weil restriction of (PGL2)L, and the minimal
extension such that R((PGL2)L) is of inner type is L. By [3, Example 4.8], the motive with
coefficients in F2 of R(P1

L) contains two twists of Spec(L) as direct summands, therefore at least
two indecomposable direct summands of R(P1

L) split off over F4.
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