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Abstract

Let X be a geometrically split, geometrically irreducible variety over a field F satisfying Rost
nilpotence principle. Consider a field extension E/F and a finite field F. We provide in this note
a motivic tool giving sufficient conditions for so-called outer motives of direct summands of the
Chow motive of XE with coefficients in F to be lifted to the base field. This going down result
has been used by S. Garibaldi, V. Petrov and N. Semenov to give a complete classification of the
motivic decompositions of projective homogeneous varieties of inner type E6, and to answer a
conjecture of Rost and Springer.

1. Introduction

Throughout this note, F will be the base field and, by an F -variety, we will mean a smooth, projective
scheme over F . Given an F -variety X, we denote by Ch(X) the Chow group CH(X) ⊗Z F of cycles
on X modulo rational equivalence with coefficients in a finite field F. We write Ch(X̄) for the colimit
of all Ch(XK), where K runs through all field extensions K/F and, if X is integral, we denote by
F(X) its function field.

For any field extension L/F , an element lying in the image of the natural morphism of
Ch(XL) −→ Ch(X̄) is called L-rational. The image of any correspondence α ∈ Ch(XL) under the
canonical morphism Ch(XL) −→ Ch(X̄) is denoted by ᾱ. An F -variety X is geometrically split if
the Grothendieck Chow motive of XF̄ = X ×Spec(F ) Spec(F̄ ) with coefficients in F is isomorphic
to a finite direct sum of Tate motives, for an algebraic closure F̄ /F . The variety X satisfies the
Rost nilpotence principle with coefficients in F if for any field extensions L/E/F the kernel of the
restriction map resL/E : End(M(XE)) −→ End(M(XL)) consists of nilpotents.

As shown in [2], any projective homogeneous F -variety under the action of a semisimple affine
algebraic group is geometrically split and satisfies the Rost nilpotence principle. It follows by
Chernousov et al. [1, Corollary 35] (see also [6, Corollary 2.6]) that the Grothendieck Chow motive
of these varieties with coefficients in F decomposes in an essentially unique way as a direct sum of
indecomposable motives. The study of these decompositions have already shown to be very fruitful
(see [5, 6, 10]).

The notion of upper motives, previously defined by Vishik in the context of quadrics in [10], was
further developed by Karpenko [6] to describe the indecomposable motives lying in the motivic
decomposition of projective homogeneous varieties. If X is a homogeneous F -variety, E/F a
field extension and the upper motive of M(XE) is a direct summand of another motive ME , [10,
Theorem 4.15; 5, Proposition 4.6] give sufficient conditions for the upper motive of X to be a direct
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summand of M . The purpose of the present note is to push these ideas further. We define the notions
of upper, lower and outer direct summands of a direct summand N of the motive of a geometrically
split F -variety. We then show some lifting property of outer summands of NE to the base field with
the following result.

Theorem 1.1. Let N be a direct summand of the motive (with coefficients in F) of a geometrically
split, geometrically integral F -variety X satisfying the Rost nilpotence principle, with coefficients in
F and M a twisted direct summand of the motive of another F -variety Y . Assume that there is a field
extension E/F such that

(1) every E(X)-rational cycle in Ch(X × Y ) is F(X)-rational;
(2) the motive NE has an indecomposable outer direct summand which is also a direct summand

of the motive ME .

Then the motive N has an outer direct summand which is also a direct summand of M .

Theorem 1.1 allows one to descend outer motives of direct summands projective homogeneous
varieties which appear on some field extension E/F of the base field. This generalizes [5, Proposition
4.6], one of the key ingredients in the proof of Karpenko [5, Theorem 1.1], replacing the whole motive
of a variety X by a direct summand. To replace X by an arbitrary direct summand, one needs to
construct explicitly the rational cycles to get an outer summand defined over F , and thus Theorem 1.1
gives a new proof of Karpenko [5, Proposition 4.6]. Note that assumption (1) of Theorem 1.1 holds
if the field extension E(X)/F(X) is unirational, i.e. if there is a field extension L/E(X) such that
L/F(X) is purely transcendental.

The following particular case of Theorem 1.1 was used by Garibaldi et al. [4] to both determine
all the motivic decompositions of homogeneous F -varieties of inner type E6 and prove a conjecture
of Rost and Springer.

Corollary 1.2 [4, Proposition 3.2]. Let X and Y be two projective homogeneous F -varieties for
a semisimple affine algebraic group, and let M and N be direct summands of the motives of Y and
X, respectively, with coefficients in F. Assume that NF(Y) is an indecomposable direct summand of
MF(Y) and Y has an F(X)-point. Then N is a direct summand of M .

Proof Setting E = F(Y ), the field extension E(X)/F(X) is purely transcendental, hence assumption
(1) of Theorem 1.1 holds. �

2. Grothendieck Chow motives

Our main reference for the construction of the category of Grothendieck Chow motives over F with
coefficients in F is [3, Sections 63–65].

Let X and Y be two F -varieties and X = ∐n
k=1 Xk be the decomposition of X as a dis-

joint union of irreducible components with respective dimension d1, . . . , dn. For any integer i,
the group of correspondences between X and Y of degree i with coefficients in F is defined by
Corri (X, Y ) = ∐n

k=1 Chdk+i (Xk × Y ). We now consider the category C(F ; F) whose objects are
pairs X[i], where X is an F -variety and i is an integer. Morphisms are defined in terms of correspon-
dences by HomC(F ;F)(X[i], Y [j ]) = Corri−j (X, Y ). For any correspondences f : X[i] � Y [j ] and
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g : Y [j ] � Z[k] in Mor(C(F ; F)), the composite g ◦ f : X[i] � Z[k] is defined by

g ◦ f = (XpZ
Y )∗((X×YpZ)∗(f ) · (pY×Z

X )∗(g)), (∗)

where UpW
V : U × V × W → U × W is the natural projection.

The category C(F ; F) is preadditive and its additive completion CR(F ; F) is the category of
correspondences over F with coefficients in F, which has a structure of tensor additive category
given by X[i] ⊗ Y [j ] = (X × Y )[i + j ]. The category CM(F ; F) of Grothendieck Chow motives
with coefficients in F is the pseudo-abelian envelope of the category CR(F ; F). Its objects are couples
(X, π), where X is an object of the category CR(F ; �), and π ∈ End(X) is a projector (i.e. π ◦
π = π ). Morphisms are given by HomCM(F ;F)((X, π), (Y, ρ)) = ρ ◦ HomCR(F ;F)(X, Y ) ◦ π and the
objects of CM(F ; F) are called motives. For any F -variety X, the motives (X[i], �idX

) (where �idX

is the graph of the identity of X) will be denoted X[i] and X[0] is the motive of X. The motives
F[i] = Spec(F )[i] are the Tate motives.

Lemma 2.1. Let (X, π) be a direct summand of the motive of an F -variety X. A motive M is a
direct summand of (X, π) if and only if M is isomorphic to (X, ρ), for some projector ρ satisfying
π ◦ ρ ◦ π = ρ.

Proof . Since End ((X, π)) = π ◦ Chdim(X)(X × X) ◦ π , any projector ρ in End ((X, π)) satisfies
π ◦ ρ ◦ π = ρ. �

Definition 2.2. Let M ∈ CM(F ; F) be a motive and i an integer. The i-dimensional Chow group
Chi (M) of M is defined by HomCM(F ;F)(F[i], M). The i-codimensional Chow group Chi (M) of M

is defined by HomCM(F ;F)(M, F[i]).

For any field extension E/F and any correspondence α : X[i] � Y [j ], the pull-back of α along
the natural morphism (X × Y )E → X × Y will be denoted αE . If N = (X, π)[i] is a twisted motivic
direct summand of X, the motive (XE, πE)[i] will be denoted NE .

Finally, the category CM(F ; F) is endowed with a duality functor. If X and Y are two F -varieties
and α ∈ Ch(X × Y ) is a correspondence, the image of α under the exchange isomorphism X × Y →
Y × X is denoted tα. The duality functor is the additive functor † : CM(F ; �)op −→ CM(F ; �)

determined by the formula M(X)[i]† = M(X)[− dim(X) − i] and such that for any correspondence
α : X[i] � Y [j ], α† =t α.

3. Direct summands of geometrically split F -varieties

Throughout this section, we consider a geometrically split F -variety X and E/F a splitting field of
X. By Merkurjev [7, Proposition 1.5], the pairing

� : Ch(XE) × Ch(XE) −→ F

(α, β) �−→ deg(α · β)

is non-degenerate, hence gives rise to an isomorphism of F-modules between Ch(XE) and its dual
space HomF(Ch(XE), F) given by α �→ �(α, ·). The dual basis of a homogeneous basis (xk)

n
k=1 of

Ch(XE) with respect of � is the basis (x∗
k )nk=1 of Ch(XE) such that for any 1 ≤ i, j ≤ n, �(xi, x

∗
j ) =
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δij , where δij is the Kronecker symbol. By definition of the composition (∗) in CM(F ; F), if y

(respectively, y ′) lies in Ch(Y ) (respectively, Ch(Y ′)) for two other F -varieties Y and Y ′ and if
(i, j) are two integers, the composition of the correspondences xi × y ∈ Ch(XE × Y ) and y ′ × x∗

j ∈
Ch(Y ′ × XE) is given by

(xi × y) ◦ (y ′ × x∗
j ) = δij (y

′ × y) ∈ Ch(Y ′ × Y ). (1)

Note that the Kunneth decomposition holds in Ch(XE × Y ) and Ch(Y ′ × XE) in the view of Elman
et al. [3, Proposition 64.3], since XE is split, and thus the cycles of Ch(XE × Y ) and Ch(Y ′ × XE)

may always be written that way.
Upper, lower and outer motives. Let π ∈ Chdim(X)(X × X) be a non-zero projector and N =

(X, π) the associated summand of the motive of X. The base of N is the set B(N) = {i ∈
Z, Chi (NE) is not trivial}. The bottom of N (denoted by b(N)) is the least integer of B(N) and
the top of N (denoted by t (N)) is the greatest integer of B(N). We now introduce the notion of upper
and lower direct summands of N , previously introduced by Vishik in the context of the motives of
quadrics in [10, Definition 4.6].

Definition 3.1. Let N be a direct summand of the twisted motive of a geometrically split F -variety
and M a motivic direct summand of N . We say that

(1) M is upper in N if b(M) = b(N);
(2) M is lower in N if t (M) = t (N);
(3) M is outer in N if M is both lower and upper in N .

Remark 3.2. Keeping the same F -variety X and any direct summand N = (X, π), consider a
homogeneous basis (xk)

n
k=1 of Ch(XE) and its dual basis (x∗

k )nk=1. The base, bottom and top of N can
be easily determined by the decomposition

πE =
n∑

i,j=1

πi,j (xi × x∗
j ),

noticing that B(N) = {dim(xi), πi,j 
= 0 for some j}.

Lemma 3.3. Let N be a motivic direct summand of a geometrically split F -variety and M a direct
summand of N . Then M is lower in N (respectively, upper in N) if and only if the dual motive M†

is upper in N† (respectively, M† is lower in N†).

Proof . For any motive O and for any integer i, Chi (O†) = Ch−i (O). It follows that b(O†) = −t (O)

and t (O†) = −b(O). �
The Krull–Schmidt property. Let C be a pseudo-abelian category and C be the set of the isomor-

phism classes of objects of C. We say that the category C satisfies the Krull–Schmidt property if
the monoid (C, ⊕) is free. The Krull–Schmidt property holds for the motives of geometrically split
F -varieties satisfying the Rost nilpotence principle in CM(F ; F) by Karpenko [6, Corollary 2.6].

Proof of the main result. In order to prove Theorem 1.1, we will need the following lemma,
which will allow us to construct explicitly the rational cycles lifting outer motives to the base
field.
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Lemma 3.4. Let N be a motivic direct summand of a geometrically split, geometrically irreducible
F -variety X satisfying the Rost nilpotence principle and M a twisted direct summand of an F -variety
Y . Assume the existence of a field extension E/F such that

(1) any E(X)-rational cycle in Ch(X × Y ) is F(X)-rational;
(2) there are two correspondences α : NE � ME and β : ME � NE such that β ◦ α is a projector

and (XE, β ◦ α) is a lower direct summand of NE .

Then there are two correspondences γ : N � M and δ : ME � NE such that (XE, δ ◦ γE) is a
direct summand of NE , which contains all lower indecomposable direct summands of (XE, β ◦ α).
Furthermore, if β̄ is F -rational, then δ̄ is also F -rational.

Proof . We may assume by Lemma 2.1 that M = (Y, ρ)[i] and N = (X, π). We construct explicitly
the two correspondences γ and δ. Since E(X) is a field extension of E, ᾱ is E(X)-rational, hence
F(X)-rational by assumption (1). LetL/F be a field extension. Then the morphism Spec(F (XL)) −→
XL induces a pull-back morphism ε∗ : Ch(X × Y × X) −→ Ch((X × Y )F(X)) which maps F -
rational cycles onto F(X)-rational cycles by Elman et al. [3, Corollary 57.11], and so there is a cycle
α1 ∈ Ch(X × Y × X) such that ε∗(ᾱ1) = ᾱ. Since ε∗ maps any homogeneous cycle

∑
i xi × yi × 1

to
∑

i xi × yi and vanishes on homogeneous cycles whose codimension on the third factor is strictly
positive, we have ᾱ1 = ᾱ × 1 + · · · where ‘ · · · ’ is a linear combination of homogeneous cycles in
Ch(X × Y × X) with strictly positive codimension on the third factor.

We now look at α1 as a correspondence X � Y × X and consider the cycle α2 = α1 ◦ π . By
formula (1), we have

ᾱ2 = (ᾱ × 1) ◦ π̄ + · · · ,

where ‘ · · · ’ is a linear combination of homogeneous cycles in Ch(X × Y × X) with dimension
at most t (N) on the first factor (since these terms come from the first factors of π̄ ) and strictly
positive codimension on the third factor (since these terms come from the third factors of ᾱ1 − ᾱ ×
1). Finally, considering the pull-back of the morphism � : X × Y → X × Y × X induced by the
diagonal embedding X and setting α3 = �∗(α2), we have

ᾱ3 = ᾱ ◦ π̄ + · · · ,

where ‘ · · · ’ stands for a linear combination of homogeneous cycles in Ch(X × Y ) with dimension
strictly lesser than t (N) on the first factor.

Composing with π̄ ◦ β̄ on the left and π̄ on the right, we get that

π̄ ◦ β̄ ◦ ᾱ3 ◦ π̄ = π̄ ◦ β̄ ◦ ᾱ ◦ π̄ + ξ,

where ξ is a linear combination of homogeneous cycles of strictly lesser dimension than t (N) on
the first factor since they come from the first factors of ᾱ3 ◦ π̄ − ᾱ ◦ π̄ . The correspondence β ◦ α

defines a direct summand of the motive NE , and thus by Lemma 2.1

π̄ ◦ β̄ ◦ ᾱ3 ◦ π̄ = β̄ ◦ ᾱ + ξ.

By formula (1), β̄ ◦ ᾱ ◦ ξ , ξ ◦ ξ and ξ ◦ β̄ ◦ ᾱ are linear combinations of homogeneous cycles of
dimension strictly lesser than t (N) on the first factor. Repeating the same procedure and since k ◦ h
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is a projector, we see that for any integer n

(π̄ ◦ β̄ ◦ ᾱ3 ◦ π̄)n = β̄ ◦ ᾱ + · · · , (2)

where ‘ · · · ’ is a linear combination of homogeneous cycles in Ch(X × X) with dimension on
the first factor strictly lesser than t (N). Since the direct summand (X, β ◦ α) is lower, all these
correspondences are non-zero and by Karpenko [6, Corollary 2.2] an appropriate power (πE ◦ β ◦
(α3)E ◦ πE)◦n0 is a projector. If we set γ = ρ ◦ α3 ◦ π and δ = (πE ◦ β ◦ (α3)E ◦ πE)◦n0−1 ◦ πE ◦ β,
we see that δ̄ is F -rational if β̄ is F -rational. The correspondence δ ◦ γE is a projector which defines
a direct summand of NE by Lemma 2.1.

Consider the decomposition β̄ ◦ ᾱ = ∑s
i,j=1 pij (xi × x∗

j ) of β̄ ◦ ᾱ with respect to a basis (xi)
s
i=1

of Ch(X̄). By formula (2), the decomposition of δ̄ ◦ γ̄ in (xi × x∗
j )si,j=1 has a non-zero coefficient

for any couple (i, j) such that pij is non-zero and dim(xi) = t ((XE, β ◦ α)). The Krull–Schmidt
property and Remark 3.2 then imply that any lower indecomposable direct summand of (XE, β ◦ α)

is a direct summand of (X, δ ◦ γE). �
We now show how we can derive the proof of Theorem 1.1 from the rational cycles constructed in

Lemma 3.4. To lift the outer motive to the base field F , we apply Lemma 3.4 and the duality functor
twice in order to produce two correspondences which are defined on the base field.

Proof of Theorem 1.1. Let O = (XE, κ) be an outer indecomposable direct summand of NE which
is also a direct summand of ME . We prove Theorem 1.1 by applying Lemma 3.4 once, then the duality
functor and, finally, Lemma 3.4 another time to get all our correspondences defined over the base
field F .

Since O is a direct summand of ME , there are two correspondences α : NE � ME and β :
ME � NE such that β ◦ α = κ . Moreover, O is lower in NE , so Lemma 3.4 justifies the exis-
tence of two other correspondences α′ : N � M and β ′ : ME � NE such that O2 = (XE, β ′ ◦ α′

E)

is a direct summand of NE , and the motive O2 is outer in NE since it contains O. The dual motive
O

†
2 = (XE,tα′

E ◦t β ′)[− dim(X)] is therefore outer in N
†
E by Lemma 3.3 and is a direct summand

of the dual motive M
†
E . Twisting these three motives by dim(X), we can apply Lemma 3.4 again.

The correspondence tα′ is F -rational, so Lemma 3.4 gives two correspondences γ : N† � M† and
δ : M† � N† such that the motive (XE, δE ◦ γE) is both an outer direct summand of N† (since it
contains the dual motive O†) and a direct summand of M†. Transposing again, the motive (X,tγ ◦t δ)

is an outer direct summand of N and a direct summand of M . �

4. Motivic decompositions for groups of inner type E6

The purpose of this section is to discuss the complete classification of the motivic decompositions of
projective homogeneous varieties of inner type E6, which is achieved in [4]. Let G be an algebraic
group of inner type E6 and X a projective G-homogeneous variety. We choose the following
numbering of the Dynkin diagram G:
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The results of Petrov et al. [8] show that in the case whereX is generically split, any indecomposable
summand of the Fp-motive of X is isomorphic to a shift of the upper motive Rp(G) of the variety of
Borel subgroups of G. Furthermore, the structure of the motives Rp(G) is determined in [8] in terms
of the so-called J -invariant modulo p of G.

The J -invariant was first introduced by Vishik [11] in the context of quadratic forms. Petrov et
al. define in [8] the notion of J -invariant modulo p of an arbitrary semisimple algebraic group G,
denoted by Jp(G), which is an r-tuple of integers (j1, . . . , jr ) given by the rational cycles in Ch(Ḡ).
By Petrov et al. [8, Table 4.13], the J -invariant modulo 3 of a semisimple adjoint algebraic group of
inner type E6 is (j1, j2), with 0 ≤ j1 ≤ 2 and 0 ≤ j2 ≤ 1.

Another invariant attached to G is the Tits index, which consists of the data of the Dynkin diagram
of G with some vertices being circled. The complete classification of the Tits indices of type E6,
provided in [9], is as follows:

Let � be a subset of the vertices of the Dynkin diagram of G and X� a projective G-homogeneous
variety of type �. By Petrov et al. [8, Table 3.6] and a case by case analysis of the above Tits indices,
the variety X� is either split or generically split if p 
= 3, � 
= {2}, {4} or {2, 4} and if j1 = 0. Finally,
the results of Chernousov et al. [2] and Garibaldi et al. [4, Section 8] imply that the understanding
of the motivic decompositions of X{2}, X{4} and X{2,4} is reduced to the study of the upper motive of
X2 in CM(F ; F3), which is denoted by Mj1,j2 .

Using Theorem 1.1, Garibaldi et al. provide some restrictions on the Poincaré polynomial of the
upper motive of X, if X is an anisotropic projective homogeneous variety satisfying some technical
assumptions (see [4, Proposition 7.6]). Assuming that J3(G) = (1, 0), they observe that although the
variety X{2} satisfies all those technical assumptions, the Poincaré polynomial of its upper motive
does not match with the conclusion of Garibaldi et al. [4, Proposition 7.6]. In particular, X{2} has a
0-cycle of degree coprime to 3, and M1,0 is the Tate motive F3.

Furthermore, the authors deduce from the fact that M1,0 is the Tate motive that the J -invariant
modulo 3 of G cannot be (2, 0) (see [4, Corollary 8.10]). Indeed, if J3(G) = (2, 0) and SB(3, A)

is the Severi–Brauer variety of right ideals of reduced dimension 3 in the Tits algebra of G, then
J3(GF(SB(3,A))) = (1, 0). In particular, X2 has a zero-cycle of degree coprime to 3 over the function
field of SB(3, A). It follows that the upper motive of X2 would be isomorphic to the upper motive
of SB(3, A), and thus the canonical 3-dimensions of X2 and SB(3, A) would be equal, which is a
contradiction.

The authors use similar techniques to provide isotropy criteria for projective homogeneous vari-
eties. They consider several varieties which satisfy the technical assumptions of Garibaldi et al. [4,
Proposition 7.6] without fulfilling its conclusion, and thus have a zero cycle of degree 3 (or a rational
point). These examples include projective homogeneous varieties for orthogonal group with applica-
tion to the isotropy of varieties of type E7 and varieties of type E8 (see [4, Lemmas 10.15,10.21]).
They also produce with these techniques isotropy criteria for projective homogeneous varieties in
terms of the Rost invariant (see [4, Proposition 10.18] for type E7 and [4, Propositions 10.22] for
type E8).



Page 8 of 8 C. DE CLERCQ

Acknowledgements

I am grateful to N. Karpenko for raising this question and for his suggestions. I also would like to
thank N. Semenov for the very useful conversations.

References

1. V. Chernousov and A. Merkurjev, Motivic decomposition of projective homogeneous varieties
and the Krull–Schmidt theorem, Transform. Groups 11 (2006), 371–386.

2. V. Chernousov, S. Gille and A. Merkurjev, Motivic decomposition of isotropic projective
homogeneous varieties, Duke Math. J. 126 (2005), 137–159.

3. R. Elman, N. Karpenko and A. Merkurjev, The Algebraic and Geometric Theory of Quadratic
Forms, AMS Colloquium Publications 56, American Mathematical Society, Providence, RI,
2008.

4. S. Garibaldi, V. Petrov and N. Semenov, Shells of Twisted Flag Varieties and Non-decomposibility
of the Rost Invariant, preprint, 2010, available on the webpage of the authors.

5. N. Karpenko, Hyperbolicity of orthogonal involutions, Doc. Math. Extra Volume: Andrei A.
Suslin’s Sixtieth Birthday (2010), 371–392, with an appendix of J-.P. Tignol.

6. N. Karpenko, Upper motives of algebraic groups and incompressibility of Severi–Brauer varieties,
J. Reine Angew. Math., to appear. (http://www.math.jussieu.fr/∼karpenko/publ/).

7. A. Merkurjev, R-equivalence on three-dimensional tori and zero-cycles, Algebra Number Theory
2 (2008), 69–89.

8. V. Petrov, N. Semenov and K. Zainoulline, J-invariant of linear algebraic groups, Ann. Sci. École.
Norm. Sup. 41 (2008), 1023–1053.

9. J. Tits, Classification of algebraic semisimple groups, Algebraic Groups and Discontinuous
Subgroups, American Mathematical Society, Providence, RI, 1966.

10. A. Vishik, Motives of Quadrics with Applications to the Theory of Quadratic Forms, Proceedings
of the Summer School ‘Geometric Methods in the Algebraic Theory of Quadratic Forms, Lens
2000’, Lecture Notes in Mathematics, 1835 (2004), 25–101.

11. A. Vishik, On the Chow groups of quadratic Grassmannians, Doc. Math. 10 (2005), 111–130.

http://www.math.jussieu.fr/~karpenko/publ/

