Devoir Maison : révisions à rendre le 27 octobre 2017

Exercice 1

Soit m un nombre réel et soit A la matrice

$$A = \begin{bmatrix} 0 & m & m & m^2 - m \\ 1 & m - 1 & 3m - 1 & m^2 - m \\ 0 & m & m & 0 \\ 1 & m & 3m - 1 & 0 \end{bmatrix}$$

- 1. Calculer le déterminant de A.
- 2. Déterminer, suivant les valeurs de m, les dimensions de l'image et du noyau de A.

Exercice 2

On considère quatre nombres réels a, b, c et d ainsi que les matrices carrées U et A suivantes

$$U = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \quad A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

1. Trouver une condition sur a, b, c et d telle qu'il existe une matrice X carrée de taille 2 telle que

$$UX + XU = A$$

2. Peut-on ajouter une condition supplémentaire sur a, b, c et d pour que la matrice X soit déterminée de manière unique?

Exercice 3

Soit E l'espace vectoriel des fonctions de $\mathbb R$ dans $\mathbb R$. On considère les trois fonctions

$$f_1(x) = e^{-x}$$
 $f_2(x) = xe^{-x}$ $f_3(x) = x^2e^{-x}$.

- 1. Soit F le sous espace vectoriel de E engendré par f_1 , f_2 et f_3 . Montrer que F est de dimension f_2 .
- 2. Pour tout $f \in F$, on introduit l'application $\varphi : f \mapsto \varphi(f) = f'$.
 - (a) Montrer que φ est une application linéaire de F dans F. Écrire la matrice A dans la base f_1 , f_2 , f_3 de F.
 - (b) On pose

$$B = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix}.$$

Montrer la formule suivante : pour tout $n \in \mathbb{N}$,

$$A^{n} = (-1)^{n} \left(I_{3} - nB + \frac{n(n-1)}{2} B^{2} \right).$$

où I_3 désigne la matrice identité de taille 3×3 .

(c) Soit $n \in \mathbb{N}$. À l'aide de la question précédente déterminer la dérivée n-ième de la fonction g définie par

$$g(x) = (3 - 2x + 8x^2)e^{-x}.$$

(a) Soit $k \in \mathbb{N}$. Montrer que l'intégrale impropre

$$I_k = \int_0^{+\infty} t^k e^{-t} \, dt$$

converge et calculer I_k .

(b) Soit $k \in \mathbb{N}$ et soit $f \in F$. Montrer que l'intégrale impropre

$$c_k(f) = \int_0^{+\infty} t^k f(t) \, dt$$

converge.

(c) Soit $\psi: F \mapsto F$ définie par

$$\psi(f) = (c_3(f)(1-x) + c_2(f)x^2)e^{-x}.$$

Monter que ψ est une application linéaire de F dans F. Écrire sa matrice dans la base f_1 , f_2 , f_3 de F.

(d) Déterminer les dimensions du noyau de ψ et de l'image de ψ .