Devoir Maison 2

à faire pour le 15 décembre 2017

Exercice 1 : points fixes répulsifs

Soit $f \in \mathcal{C}^1(\mathbb{R})$ et α un point fixe de f tel que

$$|f'(\alpha)| > 1.$$

Soit $x_0 \in \mathbb{R}$. Pour tout $n \in \mathbb{N}$, on pose

$$x_{k+1} = f(x_k) \quad \forall k \in \mathbb{N}. \tag{1}$$

Montrer que si la suite $(x_k)_{k\in\mathbb{N}}$ converge vers α alors il existe $K\in\mathbb{N}$ tel que pour tout $k\geq K$

$$x_k = \alpha$$
.

Exercice 2

Soit $\lambda \in]0,4[$. On considère la fonction $g:\mathbb{R} \to \mathbb{R}$ définie par

$$g(x) = \lambda x(1-x) \quad \forall x \in \mathbb{R}.$$

- 1. Étude des points fixes de g.
 - (a) Montrer que pour tout $x \in [0,1]$, $g(x) \in [0,1]$.
 - (b) Déterminer les points fixes de g. Indiquer dans quelles conditions ces points fixes sont répulsifs ou attractifs.
- 2. Étude du cas $\lambda \in]3,4[$. On considère la suite fonction $g_1:\mathbb{R} \to \mathbb{R}$ définie par

$$g_1(x) = g \circ g(x)$$

- (a) Montrer que les points fixes de g sont des points fixes de g_1 .
- (b) Montrer que si r est point fixe de g_1 , alors g(r) est aussi point fixe de g_1 .
- (c) Montrer g_1 admet 4 points fixes r_0 , r_1 , r_2 et $g(r_2)$ où r_2 est un nombre à déterminer.
- (d) Montrer que r_2 et $g(r_2)$ sont des points fixes attractifs de g_1 si et seulement si $\lambda \in]3, 1 + \sqrt{6}[$.
- (e) Soit $x_0 \in [0,1]$. On définit la suite

$$x_{n+1} = g(x_n)$$

Supposons que $\lambda \in]3,1+\sqrt{6}[$. Montrer qu'il existe $\varepsilon>0$ tel que, si $|x_0-r_2|<\varepsilon$, le couple de suite $(x_{2k+1},x_{2k})_{k\in\mathbb{N}}$ tend vers $(g(r_2),r_2)$.

Exercice 3 : factorisation LU d'une matrice diagonale strictement dominante

Soit $n \in \mathbb{N}$ et $\mathbf{A} \in \mathcal{M}_n(\mathbb{R})$ une matrice diagonale strictement dominante :

$$\forall i \in [1, n], \qquad |A_{ii}| > \sum_{j=1, j \neq i}^{n} |A_{ij}|$$

- 1. Montrer que la matrice A est inversible.
- 2. Montrer que toutes les sous matrices principales de \mathbf{A} sont non inversibles. En déduire que \mathbf{A} admet une factorisation LU: il existe une matrice $\mathbf{L} \in \mathcal{M}_n(\mathbb{R})$ triangulaire inférieure à diagonale unité et une matrice $\mathbf{U} \in \mathcal{M}_n(\mathbb{R})$ triangulaire supérieure telle que $\mathbf{A} = \mathbf{L}\mathbf{U}$.

Exercice 4: normes matricielles

Soit $\mathbf{A} \in \mathcal{M}_n(\mathbb{R})$. On définit

$$\|\mathbf{A}\|_p = \sup_{x \neq 0} \frac{\|\mathbf{A}x\|_p}{\|x\|_p}.$$

 $\text{pour } p \in \mathbb{N} \text{ ou } p = \infty.$

1. Montrer que

$$\|\mathbf{A}\|_{p} = \sup_{\|x\|_{p}=1} \|\mathbf{A}x\|_{p} \tag{2}$$

et en déduire que

$$\|\mathbf{A}\|_{p} = \max_{\|x\|_{p}=1} \|\mathbf{A}x\|_{p} = \max_{x \neq 0} \frac{\|\mathbf{A}x\|_{p}}{\|x\|_{p}}.$$
(3)

2. Montrer que

$$\|\mathbf{A}\|_1 = \max_{j \in [1,n]} \sum_{i=1}^n |A_{ij}|$$

et que

$$\|\mathbf{A}\|_{\infty} = \max_{i \in [1,n]} \sum_{j=1}^{n} |A_{ij}|$$

3. Soit ${\bf S}$ une matrice symétrique. Montrer que

$$\lambda_{\min}(\mathbf{S}) \le \frac{|\langle \mathbf{S}x, x \rangle|}{\|x\|_2^2} \le \lambda_{\min}(\mathbf{S})$$
 (6)

où $\lambda_{\min}(\mathbf{S})$ (resp. $\lambda_{\max}(\mathbf{S})$) correspond à la plus petite (reps. la plus grande) valeur propre de \mathbf{S} et $<\cdot,\cdot>$ représente le produit scalaire euclidien de \mathbb{R}^n . En déduire que

$$\|\mathbf{A}\|_2 = \sqrt{\rho(\mathbf{A}^t \mathbf{A})}$$

où $ho(\mathbf{A}^t\mathbf{A})$ est le rayon spectral de la matrice $\mathbf{A}^t\mathbf{A}$.