Exercice 3 (dimension 1)

Soit [a,b] un intervalle non vide de $\mathbb R$ et ϕ une fonction continue de [a,b] dans lui même ($\phi([a,b]) \subset [a,b]$). Soit $x_0 \in [a,b]$. On considère la suite $(x_k)_{k \in \mathbb N}$ définie par

$$x_{k+1} = \phi(x_k) \ \forall k \in \mathbb{N}. \tag{1}$$

- 1. Montrer que la suite (1) est bien définie (x_k existe pour tout $k \in \mathbb{N}$).
- 2. Montrer que si la suite (1) converge, alors elle converge vers un point fixe de ϕ .
- 3. Existence du point fixe (Théorème du point fixe de Brouwer) : montrer qu'il existe $\alpha \in [a,b]$ tel que $\phi(\alpha) = \alpha$.
- 4. On suppose de plus que ϕ est contractante, c'est à dire que

$$\exists L < 1, \text{ tel que, } \forall (x, y) \in [a, b]^2, \ |\phi(x) - \phi(y)| \le L|x - y|.$$

- a- Montrer que ϕ admet un unique point fixe $\alpha \in [a, b]$.
- b- Montrer que la suite $(x_k)_{k\in\mathbb{N}}$ converge vers α , pour toute donnée initiale x_0 dans [a,b].
- 1. La suite $(x_p)_{p \in \mathbb{N}}$, est bien définie si la relation (1) permet de définir complètement (et de manière unique) l'ensemble des termes de la suite $(x_p)_{p \in \mathbb{N}}$, connaissant x_0 .

Dans le cas présent, il faut s'assurer que $x_p \in [a,b]$ pour tout entier p car la fonction ϕ n'est par hypothèse définie que sur [a,b]. En effet, si x_p n'appartient pas à l'intervalle [a,b], alors on ne peut pas définir x_{p+1} puisque $\phi(x_p)$ n'existe pas.

Nous montrons ce résultat pas récurrence :

- Initialisation pour p = 0. Par hypothèse, $x_0 \in [a, b]$.
- Hérédité : nous supposons que $x_p \in [a,b]$ et nous allons montrer que $x_{p+1} \in [a,b]$. Par définition, $x_{p+1} = \phi(x_p)$. Puisque par hypothèse, $\phi([a,b]) \subset [a,b]$, on en déduit immédiatement que $x_{p+1} \in [a,b]$.

Remarque. *hypothèse importante* : $\phi([a,b]) \subset [a,b]$.

2. Supposons que la suite $(x_p)_{p\in\mathbb{N}}$ converge vers une limite notée \bar{x} . $\bar{x}\in[a,b]$ car [a,b] est un intervalle fermé. Par ailleurs, en utilisant la continuité de ϕ , on a

$$\lim_{p \to +\infty} \phi(x_p) = \phi(\bar{x}).$$

Par les théorème de comparaison des limites et la relation (1), on a :

$$\bar{x} = \lim_{p \to +\infty} \phi(x_{p+1}) \stackrel{\text{(1)}}{=} \lim_{p \to +\infty} \phi(x_p) = \phi(\bar{x}).$$

Ainsi $\bar{x} = \phi(\bar{x})$ et donc \bar{x} est un point fixe de ϕ .

Remarque. hypothèses importantes : [a, b] est fermé et ϕ est continue sur [a, b].

3. On consider la fonction q définie par $q(x) = \phi(x) - x$. Comme $\phi([a, b]) \subset [a, b]$,

$$q(a) = \phi(a) - a \ge a - a \ge 0.$$

De manière similaire,

$$g(b) = \phi(b) - b \le b - b \le 0.$$

Puisque ϕ est continue sur [a,b], le théorème des valeurs intermédiaires (ou Bolzano) (sur [a,b], ϕ prend toutes les valeurs entre $\phi(a)$ et $\phi(b)$) garantit l'existence d'un nombre $\alpha \in [a,b]$ tel que $g(\alpha)=0$. Or

$$0 = g(\alpha) = \phi(\alpha) - \alpha,$$

donc α est un point fixe de ϕ .

Remarque. L'hypothèse de continuité de ϕ est cruciale. Le résultat est faux si ϕ n'est pas continue. On peut par exemple considérer la fonction $\phi: [-1,1] \to [-1,1]$ telle que

$$\phi(x) = \begin{cases} \frac{1}{2} & \text{si } -1 \le x \le 0, \\ -\frac{1}{2} & \text{si } 0 < x \le 1, \end{cases}$$
 (2)

qui n'admet pas de point fixe sur [-1, 1].

On pourra aussi remarquer qu'il n'y a pas forcément unicité du point fixe. En effet, la fonction $\phi(x) = x$ est continue de [a,b] dans [a,b] et admet une infinité de points fixes.

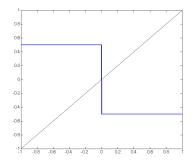


FIGURE 1 – Graphe représentatif de la fonction (2) et de la droite y=x

4.

a- Nous utilisons une démarche classique pour montrer l'unicité. Nous supposons que la fonction ϕ admet deux points fixes α_1 et α_2 ($\alpha_1=\phi(\alpha_1)$ et $\alpha_2=\phi(\alpha_2)$) et nous allons montrer que $\alpha_1=\alpha_2$. En utilisant le fait que ϕ est contractante, on a

$$|\alpha_1 - \alpha_2| = |\phi(\alpha_1) - \phi(\alpha_2)| \le L|\alpha_1 - \alpha_2|.$$

ce qui peut être réécrit comme

$$(1-L)|\alpha_1 - \alpha_2| \le 0.$$

Comme L<1, (1-L)>0, $(1-L)|\alpha_1-\alpha_2|$ est positif ou nul. Donc $(1-L)|\alpha_1-\alpha_2|$ est à la fois positif ou nul et négatif ou nul si bien que

$$(1-L)|\alpha_1 - \alpha_2| = 0.$$

Comme $(1-L) \neq 0$, on a $|\alpha_1 - \alpha_2| = 0$. Finalement $\alpha_1 = \alpha_2$. ϕ a donc au plus un point fixe.

b- D'après les questions 3 et 4, on sait que la fonction ϕ admet un unique point fixe $\alpha \in [a,b]$. Alors, pour tout $k \in \mathbb{N}$,

$$|x_{k+1} - \alpha| = |\phi(x_k) - \phi(\alpha)| \le L|x_k - \alpha|,$$

si bien que, par récurrence, on peut montrer que

$$|x_k - \alpha| \le L^k |x_0 - k|.$$

Comme L<1, $\lim_{k\to +\infty}L^k=0$ et donc le terme de droite de l'inégalité précédente tend vers 0. Par le théorème de comparaison des limites,

$$\lim_{k \to +\infty} |x_k - \alpha| = 0.$$