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The class of problems under consideration
Equation under consideration :

bounded domain of⌦ RN

square matrix of size             symmetric (or hermitian) positive and definite.N ⇥N

b vector of       (or      )RN CN

A

x

TAx > 0

+ boundary conditions

c constant

8x 6= 0A = AT

in�u00 = f

u(0) = u(1) = 0

⇢
model 1d problem: 

⌦ = (0, 1)

�div (Aru) + b ·ru+ cu = f



✓ finite element methods (based on a variational formulation)

advantage: very powerful theory for variational problem
drawbacks: 

- application to non variational problem (hyperbolic) 

- lack of conservativity

drawback: regular mesh
advantage: easy implementation

✓ finite difference methods

Famous numerical methods

drawback: the domain has to be regular
advantage: super-algebraically convergence

✓ spectral methods



✓ Chapter 2: Construction and analysis of finite difference and finite volume 

methods for the numerical resolution of the one dimensional model problem

✓ Chapter 1: the continuous model problem

Outlook of the lecture

✓ Chapter 3: a finite volume method for the resolution of the 2d model 

problem

 + 3 tutorial classes (theoretical and pratical parts)



1ntroduction
Bibliography

✓ books 

✓ teaching materials (including lecture notes of P. Omnes) 
http://www.math.univ-paris13.fr/~delourme/TeachingFV2015.html

Finite Volume Methods, R. Eymard, T. Gallouet, R. Herbin.

Scientific Computing with Matlab and Octave, 3rd edition, A. Quarteroni, F. Saleri, P. Gervasio.

Functional Analysis, Sobolev spaces and Partial Differential Equations, H. Brezis.

http://www.math.univ-paris13.fr/~delourme/TeachingFV.html


Evaluation

✓ 3 tutorials (individual reports and codes to send before November 15)

✓ Exam in november 



1-Outlook of the first chapter

1 Basic concepts of functional analysis

1.1the space 
1.2 the space          ,           and the space of distributions 
1.3 the Sobolev space 
1.4 Lax-Milgram Lemma

2 Application to our model problem

3 Properties of the solution

2.1 Elliptic regularity
2.2 Maximum principle

The continuous model problem

Lp(⌦)
D(⌦) D(⌦) D0(⌦)

Hm(⌦)



1-Outlook of the second chapter

1 Construction of the finite difference scheme and the finite volume scheme
1.1 Finite difference scheme

1.1.1 The mesh
1.1.2 Principle of the method
1.1.3 Matricial version

1.2 Finite volume scheme 
1.2.1 The mesh
1.2.2 Principle of the method
1.2.3 Matricial version

Construction and analysis of Finite difference and finite volume methods for 
the numerical resolution of the one dimensional model problem

2 Existence and uniqueness the finite difference the finite volume methods

2.1 General methodology 
2.2 Finite difference method 
2.3 Finite volume method 

2.3.1 A discrete variational formulation
2.3.2 Existence and uniqueness result
2.3.3 matricial version



1-Outlook of the second chapter

3 Properties of the approximate solution
3.1 The finite difference method

3.2 The finite volume method
1.2.1 Conservatively of the flux
1.2.2 Maximum principle

6

Construction and analysis of Finite difference and finite volume methods for 
the numerical resolution of the one dimensional model problem

4 Convergence analysis

4-1 Finite difference method
4.1.1 Consistency error
4.1.2 A stability result
4.1.3 Convergence result

4-2 Finite volume method 
4.2.1 Two ‘projection' operators
4.2.2 Consistency error for the flux
4.2.3 A stability result
4.2.4 Convergence result



The finite volume mesh and dual mesh

x1/2 x3/2 xj�1/2 xj+1/2 xN+1/2xN�1/2

TNTjT1

x0 xN+1

Tj xj�1/2 xj+1/2= [ ]

= [ ]Dj+1/2 xj xj+1

⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤⇤
x1 x2 xj xj+1 xN

segments Tj (1  j  N)N
N + 1points xj+1/2 (0  j  N)xj ⇢Tj

N + 1segmentsDj+1/2 (0  j  N)
N + 2points xj (0  j  N + 1)

x0 =x1/2 xN+1 =xN+1/2

xj+1/2 2 Dj+1/2

Tj

Dj+1/2

{ }Nj=1 primal mesh

{ }Nj=0 dual mesh

D1/2 D3/2 Dj+1/2 DN+1/2

0 1
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2-a The mesh and the dual mesh

0
x1/2 x3/2 xj�1/2 xj+1/2 xN+1/2xN�1/2

TNTjT1

x0 xN+1

⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤⇤
x1 x2 xj xj+1 xN

D1/2 D3/2 Dj+1/2 DN+1/2

1

xj

✓ The segments      do not have the same size (non uniform mesh)

✓ The point     is not necessarily the middle of  

Tj

Tj

Tj| |

Notation

size of Tj

Dj+1/2

= xj+1/2 xj�1/2

size of Dj+1/2|| = xj+1

�

� xj

h := max

i2[1:n]
|Ti|
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The finite volume mesh and dual mesh



Discrete gradient and discrete divergence operators

x1/2 x3/2 xj�1/2 xj+1/2 xN+1/2xN�1/2

TNTjT1

x0 xN+1

⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤⇤
x1 x2 xj xj+1 xN

D1/2 D3/2 Dj+1/2 DN+1/2

0 1

✓ The discret gradient operator:⇢RN+2 ! RN+1

j 2 [0 : N ]
g :

v = (vj)j2[0:N+1] 7! (gv)j+1/2 :=
vj+1 � vj
|Dj+1/2|

✓ The discret divergence operator:

RN+1 ! RN⇢

j 2 [1 : N ]
d :

v = (vj�1/2)j2[0:N ] 7! (dv)j :=
vj+1/2 � vj�1/2

|Tj |
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Projections operators

Dj+1/2 DN+1/2D1/2 D3/2

x1/2 x3/2 xj�1/2 xj+1/2 xN+1/2xN�1/2

x0 xN+1

⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤
x1 x2 xj xj+1 xN

0

⇧ :

(
C0(⌦) ! RN+2

v 7! (⇧v)i = v(xi) 8i 2 [0 : N + 1]

⇤

⇤
⇤

⇤
⇤

⇤⇤
⇤⇤

P :

(
C0(⌦) ! RN+1

v 7! (Pv)i+1/2 = v(xi+1/2) 8i 2 [0 : N ]
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