Exercice 1: a finite volume scheme for an elliptic equation with discontinuous coefficients

The following questions have priority:

- Section 1.1: question 1.
- Section 1.2.
- Section 1.3: question 2.
- Section 1.4.
- Section 2.

Let Ω be a bounded domain in \mathbb{R}^d (with d = 1 or d = 2) and $f \in L^2(\Omega)$. We consider the following problem: find $u \in H^1_0(\Omega)$ such that

$$-\operatorname{div}(k(x)\nabla u) = f \quad \text{in} \quad \mathcal{D}'(\Omega), \tag{1}$$

where $k \in L^{\infty}(\Omega)$ is a positive function. More precisely, we assume that there exist two constants $C_+ > 0$ and $C_- > 0$, such that, for almost every $x \in \Omega$,

$$0 \le C_{-} \le k(x) \le C_{+}.\tag{2}$$

The objective of this exercice is to prove that Problem (1) is well-posed and to construct a finite volume approximation of its solution in the 1d case.

1 Theoretical part

1.1 Two general results

- 1. Proof of the Poincare inequality in a square: Let $\Omega = \{(x_1, x_2) \in \mathbb{R}^2, 0 < x_1 < L_1, 0 < x_2 < L_2\}, L_1 > 0, L_2 > 0.$
 - a- Let $u \in \mathcal{D}(\Omega)$. Prove the following equality

$$u(x_1, x_2) = \int_0^{x_1} \frac{\partial u(t, x_2)}{\partial t} dt.$$

b- Using the previous equality and the Cauchy-Schwarz inequality, show that for any $u \in \mathcal{D}(\Omega)$,

$$||u||_{L^2(\Omega)} \le L_1 ||\nabla u||_{L^2(\Omega)}.$$

c- Deduce the Poincare inequality: there is a constant $\mathcal{P}>0$ such that,

$$\forall u \in H_0^1(\Omega), \quad \|u\|_{L^2(\Omega)} \le \mathcal{P}\|\nabla u\|_{L^2(\Omega)}$$

2. Proof of the Lax-Milgram Lemma in the symmetric case:

Let V be a Hilbert space (associated norm $\|\cdot\|_V$). Let $a: V \times V \to \mathbb{R}$ be a symmetric bilinear form such that

- a is continuous: $\exists M > 0$ such that $\forall (u, v) \in V^2, a(u, v) \leq M \|u\|_V \|v\|_V$.
- a is coercive: $\exists \alpha > 0$ such that $\forall u \in V, a(u, u) \ge \alpha \|u\|_V^2$.

We denote by V' the dual space of V. Its associated norm is given by

$$\forall \ell \in V', \|\ell\|_{V'} = \sup_{v \in V, v \neq 0} \frac{f(v)}{\|v\|_V}$$

For a given $\ell \in V',$ we consider the following problem: find $u \in V$ such that

$$\forall v \in V, \quad a(u,v) = \ell(v). \tag{3}$$

The objective of the next four questions is to prove that Problem (3) is well-posed:

- a- Show that Problem (3) has at most one solution.
- b- Prove that the bilinear form $(u, v) \rightarrow a(u, v)$ defines a scalar product on V.
- c- Using the Riesz representation theorem, deduce that Problem (3) has at least one solution.
- d- Prove that Problem (3) has a unique solution that satisfies the following stability estimate:

$$||u||_V \le \frac{1}{\alpha} ||\ell||_{V'}.$$

1.2 Well-posedness of Problem (1)

1. Show that Problem (1) is equivalent to the following variational problem: find $u \in H_0^1(\Omega)$ such that

$$\forall v \in H_0^1(\Omega), \quad \int_{\Omega} k(x) \nabla u(x) \cdot \nabla v(x) dx = \int_{\Omega} f(x) v(x) dx.$$
(4)

2. Deduce from the previous question that Problem (1) has a unique solution and that there is a constant C > 0 such that

$$\|\nabla u\|_{L^2(\Omega)} \le C \|f\|_{L^2(\Omega)}.$$

1.3 Investigation of Problem (1) in the one dimensional case

In this part, we consider $\Omega = (0, L)$, L > 0.

1. Strong maximum principle. Assume that $k \in C^{\infty}(\overline{\Omega})$ and $f \in C^{0}(\Omega)$ is such that

$$\exists \eta > 0, \quad f(x) \ge \eta > 0.$$

- a- Prove that if $u \in C^2(\Omega)$ has a local minimum at a point $x_0 \in \Omega$, then $k(x_0)u''(x_0) \ge 0$.
- b- Using a contradiction argument, prove that

$$\min_{\overline{\Omega}} u = \min_{\partial \Omega} u = 0,$$

and conclude.

2. Regularity of u

- a- Using the Sobolev embedding theorem, prove that the function ku (where $u \in H_0^1(\Omega)$ is the unique solution to Problem (1)) is continuous.
- b- Assume that $\Omega = (0,1)$ (L=1) and that there are two positive constant $k_1>0$ and $k_2>0$ such that

$$k(x) = \begin{cases} k_1 & \text{if } 0 \le x \le \frac{1}{2}, \\ k_2 & \text{if } \frac{1}{2} < x \le 1. \end{cases}$$
(5)

We define the following jump values,

$$[u]_{1/2} = \lim_{\varepsilon \to 0^+} \left(u(\frac{1}{2} + \varepsilon) - u(\frac{1}{2} - \varepsilon) \right)$$
$$[ku']_{1/2} = \lim_{\varepsilon \to 0^+} \left(k_2 u'(\frac{1}{2} + \varepsilon) - k_1 u'(\frac{1}{2} - \varepsilon) \right)$$

Prove that $[u]_{1/2}$ and $[ku']_{1/2}$ vanish. Is u' continuous at the point $x = \frac{1}{2}$?

1.4 Construction of the finite volume scheme

In this section, we assume that $\Omega = (0, 1)$ and that k is the piecewise constant function given by (5). We consider a regular mesh (see Figure 1) of N = 2P ($P \in \mathbb{N}^*$) intervalls (or control volume) $T_i = (x_{i-1/2}, x_{i+1/2})$, $i \in [1 : N]$ ($i \in \mathbb{N}$, $1 \le i \le N$). Since the mesh is uniform (or regular), for $i \in [1 : N]$,

$$x_{i-1/2}=\frac{i-1}{h}, \quad \text{with} \quad h=\frac{1}{N}.$$

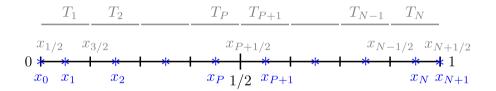


Figure 1: Representation of the mesh

For $i \in [1:N]$, We denote by x_i the midpoint of T_i , and we denote by u_i the associated discrete unknown (note that u_i is expected to be a good approximation of $u(x_i)$ but u_i is not equal to $u(x_i)$). Moreover, we set $x_0 = x_{1/2} = 0$ and $x_{N+1} = x_{N+1/2} = 1$. We associate with x_0 and x_{N+1} the unknowns u_0 and u_{N+1} . In view of the regularity of the mesh, and since N = 2P, we remark that $x_{P+1/2} = \frac{1}{2}$.

1. For $i \in [1 : P - 1]$ and $i \in [P + 2, n]$, following the method of the lecture, propose a method to discretize Problem (1) on the control volume T_i .

2. What is the difficulty raised by the discretization of Problem (1) over T_P and T_{P+1} ?

In order to overcome this difficulty, we introduce a temporary additional unknown $u_{P+1/2}$ associated with the point $x_{P+1/2}$ (here again, we expect $u_{P+1/2}$ to be an approximation of $u(x_{P+1/2})$).

3. In view of the regularity of the exact solution u, explain why there is a priori no need to introduce two new temporary additional unknowns $u_{P+1/2}^-$ and $u_{P+1/2}^+$, $u_{P+1/2}^-$ being an approximation of the value of u on the left of $\frac{1}{2}$ (i.e. $\lim_{x \to \frac{1}{2}^-} u(x)$) and $u_{P+1/2}^+$ being an approximation the value of u on the right of $\frac{1}{2}$ ($\lim_{x \to \frac{1}{2}^+} u(x)$).

4. Using $u_{P+1/2}$ and u_P , propose a method for the discretization of the flux $u'(\frac{1}{2})$ for the volume equation on T_p . Similarly, using $u_{P+1/2}$ and u_{P+1} , propose a discretization of the flux $u'(\frac{1}{2})$ for the volume equation on T_{p+1} .

5. In view of the jump condition $[ku']_{1/2} = 0$, propose a method to evaluate $u_{P+1/2}$ as a function of k_1 , k_2 , u_P and u_{P+1} . Then, eliminate the unknown $u_{P+1/2}$ in the discrete equations of the previous question.

6. Write the systems of equations of question 1 and question 5 as a system of N linear equations associated with N unknowns by eliminating u_0 and u_{N+1} using the Dirichlet boundary conditions. You may write the matricial form of this system.

2 Practical part

Write the Matlab code associated with the system of equations of the previous question (you may use the Matlab command \setminus to solve the linear system).

In order to validate your code, you may compute the exact solution for $k_1=1,\,k_2=lpha$ and

$$f(x) = \begin{cases} 0 & \text{if } 0 < x \le \frac{1}{2}, \\ 1 & \text{if } \frac{1}{2} < x < 1, \end{cases}$$

and, for different values of α , plot the L^{∞} error $(\max_{i \in [1:N]} |u_i - u(x_i)|)$ as a function of h in logarithmic scale (Matlab command loglog). What is the observed convergence rate?