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Exercice 2: a finite volume scheme for the Laplace equation with Neumann boundary
conditons

Sections 2, 4 (question 2) and 5 (question 2) have priority.

Let Ω be a Lipschitz bounded domain in Rd (with d = 1 or d = 2) and f ∈ L2(Ω). We consider the following problem:{
−∆u = f in Ω

∂nu = ∇u · n = 0 on ∂Ω,
(1)

where n denotes the outward norm of ∂Ω. The objective of this exercice is to investigate Problem (1) and to study several
numerical methods to solve it numerically .

1 Analysis of the continuous problem
In this section we prove that providing that compatibility condition (3) is fulfilled, Problem (1) has a unique solution satisfying
the null average condition (2).

We consider the subspace H1
∆ of H1(Ω) defined by

H1
∆ = {v ∈ H1(Ω),∆v ∈ L2(Ω)}.

We admit that as soon as u ∈ H1
∆(Ω), then the normal derivative ∂nu is well defined: In fact, we can prove that ∂nu belongs

to the space H−1/2(∂Ω), which is the dual space of H1/2(Ω) (H1/2(Ω) the space made of the traces of the H1(Ω) functions
on ∂Ω). Moreover, the Green’s formula for the Laplacian is valid:

∀u ∈ H1
∆(Ω), ∀v ∈ H1(Ω),

∫
Ω

∆u v dx = −
∫

Ω

∇u · ∇v dx + 〈∂nu, v〉,

where 〈·, ·〉 stands for the duality pairing between H−1/2(∂Ω) and H1/2(Ω). This duality pairing extends the L2 scalar product
on ∂Ω.

1. Prove that u0 = 1 is a non trivial solution to Problem (1) with f = 0. Note that u0 belongs to H1(Ω). To restore the
uniqueness, we shall impose that u satisfies the null-average condition

u =
1

|Ω|

∫
Ω

u dx = 0. (2)

In the sequel, we denote by L2
0(Ω) the subspace of L2(Ω) made of the functions of L2(Ω) satisfying the null-average condition:

L2
0(Ω) = {v ∈ L2(Ω) such that

1

|Ω|

∫
Ω

v dx = 0}.

2. By integrating the first equation of Problem (1) over Ω, show that f has to satisfy the following compatibility condition:∫
Ω

f(x) dx = 0. (3)

3. Prove that if u ∈ H1
∆(Ω) satisfies (1) and (2), then it satisfies the following variational problem: find u ∈ H1(Ω)∩L2

0(Ω)
such that,

∀v ∈ H1(Ω) ∩ L2
0(Ω),

∫
Ω

∇u · ∇v dx =

∫
Ω

f v dx. (4)

Conversely, prove that if u ∈ H1(Ω) ∩ L2
0(Ω) is solution to the variational Problem (4) and if f satisfies the compatibility

condition (3), then u belongs to H1
∆(Ω) and satisfies Problem (1).

4. Prove that Problem (4) is well posed and conclude. You may used the so-called Poincare-Wirtinger inequality: There is a
constant C > 0 such that, for any u ∈ H1(Ω),

‖u− u‖L2(Ω) ≤ C ‖∇u‖L2(Ω).
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2 Construction of the finite volume scheme in the one dimensional case
In this section, we assume that Ω = (0, 1). We consider a mesh of N intervals (or control volumes) Ti = (xi−1/2, xi+1/2),
i ∈ [1 : N ] (i ∈ N, 1 ≤ i ≤ N), where the subdivision (xi+1/2)i∈[0:N ] satisfies:

0 = x1/2 < x3/2 < · · · < xi−1/2 < xi+1/2 < · · · < xN+1/2 = 1.

For i ∈ [1 : N ], we choose a point xi ∈ Ti (not necessarily the midpoint), and we denote by ui the associated discrete
unknown (note that ui is expected to be a good approximation of u(xi) but ui is not equal to u(xi)). Moreover, we set
x0 = x1/2 = 0 and xN+1 = xN+1/2 = 1. We associate with x0 and xN+1 the unknowns u0 and uN+1.

1. Imitating the approach used for the Dirichlet problem, construct a set of N linear equations associated with the N discrete
unknowns ui, i ∈ [1 : N ]. Do not omit to take into account the Neumann boundary conditions. Write the problem under the
matricial form:

Mu = f̃ (5)

where M ∈MN (R), u = (u1, u1, · · · , uN )T , and

f̃ = (|T1|f1, |T2|f2, · · · , |TN |fN )T with f = (fi)i∈[1:N ] and fi =
1

|Ti|

∫
Ti

f dx, i ∈ [1 : N ]. (6)

Show that the matrix M is symmetric.

The remainder of this part consists in proving that Problem (5) has a solution.

2. Prove the following discrete variational formulation: For any w = (wj)j∈[0:N+1] ∈ RN+2,

(gu, gw)D = (f ,w)T .

where f is defined by (6). Here, for any u = (uj+1/2)j∈[0:N ] ∈ RN+1 and v = (vj+1/2)j∈[0:N ] ∈ RN+1,

(u, v)D =

N∑
j=0

|Dj+1/2|uj+1/2 vj+1/2.

for any u = (uj)j∈[0:N+2] ∈ RN+2 and v = (vj)j∈[0:N+2] ∈ RN+2,

(u, v)T =

N∑
j=1

|Tj |uj vj .

The operator g : RN+2 7→ RN+1 is the discrete gradient operator: for any v = (vj)j∈[0:N+1] ∈ RN+2, the vector gv =(
(gv)j+1/2

)
j∈[0:N ]

∈ RN+1

(gu)j+1/2 =
uj+1 − uj
|Dj+1/2|

.

3. Deduce from the previous question that Ker(M) = span{u0}, where u0 ∈ RN the constant vector such that

(u0)j = 1 ∀j ∈ [1 : N ]. (7)

4. Using the result of the previous question, the fact that M is symmetric, and the compatibility condition (3), prove that
Problem (5) has a solution (defined up to a constant).

5. Prove that imposing additionally the discrete null average condition

N∑
i=1

|Ti|vi = 0 (8)

restores the uniqueness.

The new system of linear equations made Problem (5) together with the discrete null average condition (8) a system of N + 1
equations with N unknowns. As a result, the direct methods (LU, Gauss elimination) for solving the linear square systems of
equations cannot be used directly.

In the next three sections, we shall investigate three methods for the resolution of this problem. For the numerical results,
you might take f(x) = π2 cos(πx). The exact solution is this case is given by u(x) = cos(πx). You might use a
uniform mesh.
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3 The penalization method
The first idea to deal with this problem is to replace the Neumann condition ∂nu by a mixed condition (or Robin condition)

∂nuε + εuε = 0 on ∂Ω. (9)

where ε is a small parameter.

1. Prove that if uε satisfies the penalized problem, the uε ∈ H1(Ω) satisfies the modified variational formulation:

∀v ∈ H1(Ω),

∫
Ω

∇uε · ∇v dx+ ε

∫
∂Ω

uεv dx =

∫
Ω

fvdx. (10)

We admit that the associated bilinear form is coercive on H1(Ω), so that Problem (10) has a unique solution.

2. Under the compatibility condition (3), prove that the solution of Problem (10) satisfies the null average (2).

3. Construct a finite volume scheme associated with this method. We denote uh
ε the approximation uε using this scheme.

represent the evolution of the error

‖uh
ε −Πu‖T
‖u‖L2(Ω)

, ‖uhε − u‖T =
√

(uhε − u, uhε − u)T ,

with respect to the penalisation parameter ε in the logarithmic scale. Here Π : C0(0, 1) → RN is defined by (Πu)i = u(xi).
You can take ε between 10−1 and 10−7. You may choose h sufficiently small so that the approximation error (‖uh

ε −Πuε‖T )
is small compared to penalisation error (‖u− uε‖L2(Ω)). What do you observe ? Explain.

Remark. To improve the efficiency of your code, you may declare the discretisation matrix as a sparse matrix (e.g. M =
sparse(1000,1000)).

4 The Lagrange multiplier method
The second method presented here consists in imposing the discrete null average condition by means of a Lagrange multiplier
(this method is strongly connected to the optimization theory).

1. Prove that Problem (5)-(8) is equivalent to the following linear square system : find (u, λ) ∈ RN × R such that{
Mu + λb = f̃

bTu = 0
(11)

where b = (|Ti|)i∈[1:N ] ∈ RN and f̃ is defined in (6). Prove that the square linear system (11) has a unique solution.

2. Implement this method and plot the evolution of the error
‖u−Πu‖T
‖u‖L2(Ω)

with respect to h.

5 An iterative method: the conjugate gradient method
The conjugate gradient method is a very powerful iterative method to solve square linear systems of the form Ax = b
providing that A ∈MN (R) is a symmetric definite positive matrix, x ∈ RN and y ∈ RN .

For the sake of completeness, we remind the algorithm associated with this method (in what follows, (·, ·) denotes the euclidian
scalar product of RN ): let δ ≥ 0 (δ being the prescribed precision),

1. Initialization step: x0 ∈ RN is given.

- k = 0

- xk = x0

- rk := y −Axk

- pk := rk

2. Reccurrent step:
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• if
√

(rk, rk) > δ

- αk :=
(rk, rk)

(pk,Apk)
- xk+1 := xk + αkpk

- rk+1 := rk − αkApk

- βk :=
(rk+1, rk+1)

(rk, rk)
- pk+1 := rk+1 + βkpk

- k := k + 1

• If
√

(rk, rk) ≤ δ, the convergence is reached. We set M = k.

By convention for k > M we set xk = xM and rk = pk = 0.

If δ = 0 and A is a symmetric definite positive matrix, the previous algorithm converges in at most N iterations.

1. Assume that A is symmetric (not necessarily definite and positive), let {ũ} ∈ RN belong to Ker(A). Assume that that

(x0, ũ) = 0 and (y, ũ) = 0. (12)

Prove that the sequences (xk)k∈N, (rk)k∈N and (pk)k∈N defined by the previous algorithm are well defined and show that
the sequence (xk)k∈N satisfies

(xk, ũ) = 0 for any k ∈ N.

In other words, if x0 is orthogonal to ũ, all the terms xk are orthogonal to ũ.

The third method then consists in applying the conjugate gradient method to the linear system (5) (of course, in this case, M
is symmetric and positive but not invertible), choosing x0 orthogonal to u0 (defined in (7)). We admit that, in the present
case, the conjugate gradient algorithm converges to a solution of (5). This method then selects the unique solution of (5)
that is orthogonal to Ker(M).

Naturally, the selected solution corresponds to the solution satisfying the discrete null average condition (8) only if the mesh is
regular. But, if the mesh is not regular, we can, in a first step, compute the solution orthogonal to u0, the solution satisfying
the discrete null average condition (8) being computed a posteriori.

2. Implement this method and plot the evolution of the error
‖u−Πu‖T
‖u‖L2(Ω)

with respect to h.
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