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Exercice 3: a finite volume scheme for the heat equation

Let Ω = (0, 1) and ν > 0. We consider the one dimensional heat equation

∂u(x, t)

∂t
− ν ∂

2u(x, t)

∂x2
= 0, x ∈ Ω, t > 0, (1)

together with homogeneous Neumann boundary conditions

∂u

∂x
(0, t) =

∂u

∂x
(1, t) = 0 , ∀t > 0, (2)

and the initial condition
u(x, t = 0) = u0(x), (3)

where u0 is a given function belonging to L2(Ω).

Equation (1) is called the heat equation because it models the temperature distribution u in the domain Ω at the time t. The
heat equation and its variants occur in many diffusion phenomena and ν is called the diffusion parameter. It is the simplest
example of a parabolic equation. Equation (2) means that the heat flux across the boundary vanishes.

Problem (1-2-3) has a unique solution in C((0,+∞);H2(Ω)). Moreover, for any t > 0, u(·, t) ∈ C∞(Ω) (cf. Brezis).

1 Analysis of the solution of the continuous problem
1. Prove that, for v(x, t) is smooth enough

2

∫
[0,1]

∂v(x, t)

∂t
v(x, t)dx =

∫
[0,1]

∂

∂t

(
v2(x, t)

)
dx =

d

dt

(∫ 1

0

v2(x, t)dx

)
,

Deduce that t −→
∫ 1

0
u2(x, t)dx is a decreasing function.

2. Show that u satisfies ∫
[0,1]

u(x, t)dx =

∫
[0,1]

u0(x)dx ∀t ≥ 0.

3. We admit that, as t tends to +∞, u(·, t) tends to a limit function denoted by ū ∈ H2(Ω) and that ∂u
∂t tends to 0. Give

the equation verified by the function ū. What are the associated boundary conditions ? Using the previous question, compute
the function ū. Give the explicite value of ū in the particular case

u0(x) =

{
1 if x < 1/2
0 if x > 1/2

. (4)

4. Using the Poincare-Wirtinger inequality, prove ‖u− ū‖L2(Ω) tends exponentially fast to 0 as t tends to +∞.

2 Finite volume approximation
Let T > 0. We shall approach numerically the equation (1) on (0, T )×Ω. For the space discretization, we use a regular mesh
obtained by splitting the segment [0, 1] into N cells of length ∆x := 1

N . For i ∈ [: N ], we denote by xi the midpoint of Ti
and we set x0 = 0 and xN+1 = 1. For the time discretization, we split the time interval (0, T ) of the simulation is also split
into time steps of equal size ∆t > 0. With each point xi and each time step tn := n∆t, we associate a discrete unknown
uni , which we expect to be an approximation of the value u(xi, t

n).

We then consider the following scheme : for any i ∈ [1 : N ],

un+1
i = uni +

ν∆t

(∆x)2
(uni+1 − 2uni + uni−1). (5)

1



where, for any n ∈ N, and in oder to approximate the Neumann boundary condition, we set

un0 = un1 and unN+1 = unN (6)

The scheme 5 is said to be explicit, because the computation of un+1
i can be done directly (using the values of uni−1, u

n
i and

uni+1) without solving any linear system.

1. Denoting by un = (uni )i∈[1:N ] ∈ RN , show that the previous scheme may be written the following matricial form: ∀n ∈ N.

un+1 = Mun M ∈MN (R). (7)

Make the matrix M explicite.

In order to study the stability of the scheme, we introduce the notion of L∞-stability. For any u = (ui)i∈[1:N ] ∈ RN we
denote by

‖u‖∞ := sup
i∈[1,N ]

|ui|. (8)

A scheme is said to be L∞ stable if its solution (un)n∈N satisfies

∀n ∈ N ||un+1||∞ ≤ ||un||∞,

which means that the L∞ norm of its solution un does not grow with respect to n. In other words, the matrix M of
equation (7) satisfies

‖M‖∞ = sup
v∈RN ,v 6=0

‖Mv‖∞ ≤ 1.

2. We remind that a number p is a convex combination of the numbers (qj)j∈[1:k] if there exists a set of k real numbers
(θj)j∈[1:k] such that

p =

k∑
j=1

θjqj and ∀j ∈ [1 : k], θj ∈ [0, 1].

- Show that if, for all i ∈ [1 : N ], un+1
i is a convex combination of uni−1, u

n
i and uni+1, then the scheme is L∞ stable.

- For i ∈ [2 : N − 1], find a condition linking ν, ∆t and ∆x such that un+1
i given by (5) is a convex combination of

(uni−1, u
n
i , u

n
i+1).

- Similarly, find a condition ν, ∆t and ∆x such that un+1
1 is a convex combination of (un1 , u

n
2 ) and un+1

N is a convex
combination of (unN−1, u

n
N ) ?

- Deduce that the scheme (5-6) is L∞ stable under a “CFL” condition. Explain why is this type of condition is a severe
drawback of this explicit scheme.

3. Compute the truncation (or consistancy) error rn = (rni )i∈[1:N ] ∈ RN

rni =



u(x1, t
n+1)− u(x1, t

n)

∆t
− ν

∆x2
(u(x2, t

n)− u(x1, t
n)) i = 1,

u(xi, t
n+1)− u(xi, t

n)

∆t
− ν

∆x2
(u(xi+1, t

n)− 2u(x1, t
n) + u(xi−1, t

n)) i ∈ [2 : N − 1],

u(xN , t
n+1)− u(xN , t

n)

∆t
− ν

∆x2
(u(xN−1, t

n)− u(xN , t
n)) i = N.

and show that, for any n ≤ T
∆t (T is the final time of the simulation),

‖rn‖∞ ≤ C(T )(∆t+ ∆x)

Prove that the error en = (eni )i∈[1:N ] ∈ RN defined by

eni = uni − u(xi, t
n). (9)

satisfies
en+1 = Men + ∆t rn.

4. Under the CFL condition of question 2, show the following inequality:

||en+1||∞ ≤ ||en||∞ + ∆t ||rn||∞.
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Deduce that

||en||∞ ≤ ||e0||∞ + ∆t

n−1∑
m=0

||rn||∞.

5. Assuming that u0
i = u0(xi), prove that, under the CFL condition of question 2, the scheme (5-6) converges and show that

for n ≤ T
∆t , there is a constant C(T ) (which depends on T ) such that

||en||∞ ≤ C(T )∆x

3 Practical part
1. Write the program associated with the scheme (5-6). You may take N , ν, T , and λ = ν∆t

∆x2 as the input parameters of
your program.

2. Compute the exact solution associated with the initial data u0(x) = cos(πx) and ν = 1. To find the exact solution, you
can use the technic of separations of variables, i.e. you may look for a solution of the form

u(x, t) = cos(πx)g(t).

3. Take N = 10, ν = 1, T = 1 and choose λ = 0.25, λ = 0.49 and λ = 0.51. Visualize the evolution of u with respect to t.
What do you observe ?

4. For λ = 0.49 (N = 10m, T = 1, ν = 1), visualize the time evolution of the L∞ norm of the error (9). Visualize the time
evolution of the discrete L2 energy

En =

(
N∑
i=1

∆x (uni )2

)1/2

.

5. Let λ = 0.49, T = 0.25 and ν = 1. Plot the L∞ norm of the error (9) with respect to N .

6. We consider the initial data u0 given by (4). We fix λ = 0.4, N = 20 and T = 1. Run the simulations for different values
of the diffusion coefficient ν = 1, ν = 0.5, ν = 0.25 and ν = 0.125.Visualize and comment the time evolution of the energy
deviation:

ẽn =

(
N∑
i=1

∆x (uni − 1/2)2

)1/2

.

Representing the values of u at different time steps, to which function seems u to converge ? How does this convergence
depend on the value of ν ? Is it coherent with the theory?
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