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Exercice 3: a finite volume scheme for the heat equation

Let 2 = (0,1) and v > 0. We consider the one dimensional heat equation

Ou(z,t) O%u(x,t)
TR - =0, z€Ot>0, (D

together with homogeneous Neumann boundary conditions

Ou Oou

and the initial condition
U(I’,t = O) = UO(x)a (3)

where g is a given function belonging to L?(2).

Equation (1) is called the heat equation because it models the temperature distribution u in the domain €2 at the time ¢. The
heat equation and its variants occur in many diffusion phenomena and v is called the diffusion parameter. It is the simplest
example of a parabolic equation. Equation (Z) means that the heat flux across the boundary vanishes.

Problem ((L}{2}i3) has a unique solution in C((0, +o0); H?(£2)). Moreover, for any t > 0, u(-,t) € C=(Q) (cf. Brezis).

1 Analysis of the solution of the continuous problem

1. Prove that, for v(x,t) is smooth enough

Ov(z,t) / 4 d (/1 9 )
2 ——v(x, t)dr = — (v°(z,t)) de = — vi(x,t)dz |,
/[0,1] ot ( ) [0,1] ot ( ( )) dt 0 ( )

Deduce that t — fol u?(x,t)dx is a decreasing function.

2. Show that u satisfies

/ u(z, t)dx = / uo(x)dz Yt > 0.
[0,1] [0,1]

3. We admit that, as ¢ tends to +oo, u(-,t) tends to a limit function denoted by 4 € H?(2) and that % tends to 0. Give
the equation verified by the function . What are the associated boundary conditions ? Using the previous question, compute
the function @. Give the explicite value of @ in the particular case

1 a<1)2
“0(3”)_{ 0 if r>1/2 @

4. Using the Poincare-Wirtinger inequality, prove |[u — || 12(q) tends exponentially fast to 0 as ¢ tends to +oo.

2 Finite volume approximation

Let T" > 0. We shall approach numerically the equation on (0, T) x Q. For the space discretization, we use a regular mesh
obtained by splitting the segment [0, 1] into N cells of length Az := % For i € [: N], we denote by z; the midpoint of T;
and we set o = 0 and 41 = 1. For the time discretization, we split the time interval (0,7") of the simulation is also split
into time steps of equal size At > 0. With each point z; and each time step t" := nAt, we associate a discrete unknown
ul', which we expect to be an approximation of the value u(x;,t"™).

We then consider the following scheme : for any i € [1: N],

n n Z/At n
U, +1 _ uil + W(uiiH — QU? + u?ﬁl). (@)



where, for any n € N, and in oder to approximate the Neumann boundary condition, we set

n n n n
uy =uy and Uz, =uy (6)

n+1

i

The scheme [5|is said to be explicit, because the computation of u
uj, 1) without solving any linear system.

can be done directly (using the values of u? ;, u} and

1. Denoting by u” = (u);cn:n € RY, show that the previous scheme may be written the following matricial form: Vn € N.

u"t = Mu" M e My(R). (7)

Make the matrix M explicite.

In order to study the stability of the scheme, we introduce the notion of L*-stability. For any u = (u;);cq1:n] € RY we
denote by
lul|co := sup |uyl- (8)
i€[1,N]

A scheme is said to be L stable if its solution (u"),cn satisfies
vneN ||un+1||oc < [u™[[eo,

which means that the L° norm of its solution u™ does not grow with respect to n. In other words, the matrix M of
equation ([7) satisfies
Ml = sup M < 1.
vERN v#0
2. We remind that a number p is a convex combination of the numbers (g;);e1.4) if there exists a set of k real numbers
(05)je1:x) such that
k
p=> 0ig; and Vjel[l:k]0;€[0,1].
j=1

- Show that if, for all i € [L : N], u!*" is a convex combination of u[" ;, u? and uZ, ,, then the scheme is L> stable.

- Fori € [2: N — 1], find a condition linking v, At and Az such that u"™" given by is a convex combination of
(u?flvu?auzﬁrl)'

- Similarly, find a condition v, At and Ax such that u]"" is a convex combination of (uf,u%) and /' is a convex
combination of (u},_,,u%) 7

- Deduce that the scheme (5{6]) is L>° stable under a “CFL" condition. Explain why is this type of condition is a severe
drawback of this explicit scheme.

3. Compute the truncation (or consistancy) error r” = (r{");c[1:n] € RV

w(wy, ") — (e, t" v n " '
P 1 (e ) e 17) i=1
n w(wy, t") — u(w, " v n " ") i
pn = ul )At (w5, 8") A (@i, 1) = 2u(en, ) + (e, 1) i€ [2:N - 1]
w(zy, ") —u(ey, " v ‘
T e e, ) e ) =N

and show that, for any n < % (T is the final time of the simulation),
[r"[|oo < C(T)(AL + Ax)
Prove that the error €™ = (€}');c(1:n) € R™ defined by

el =up —u(z;, t"). 9)

satisfies
e"tl = Me™ + Atr™.

4. Under the CFL condition of question 2, show the following inequality:

lle" Moo < [l€"[loo + At ||r"[]oo.



Deduce that

n—1

le™llse < [1€%]oo + A Y |[r"|oc

m=0

5. Assuming that u? = ug(z;), prove that, under the CFL condition of question 2, the scheme (5516]) converges and show that
for n < -L | there is a constant C(T') (which depends on T') such that

le"[|oe < C(T)Ax

3 Practical part

1. Write the program associated with the scheme 1 @ You may take N, v, T, and A = Zﬁﬁ as the input parameters of
your program.

2. Compute the exact solution associated with the initial data ug(z) = cos(mz) and v = 1. To find the exact solution, you
can use the technic of separations of variables, i.e. you may look for a solution of the form

u(zx,t) = cos(mx)g(t).

3. Take N =10, v =1, T =1 and choose A = 0.25, A = 0.49 and A = 0.51. Visualize the evolution of u with respect to ¢.
What do you observe ?

4. For A=0.49 (N =10m, T =1, v = 1), visualize the time evolution of the L> norm of the error (9). Visualize the time
evolution of the discrete Lo energy

N 1/2
E" = <Z Az (u?)2> .
i=1
5. Let A=0.49, T =0.25 and v = 1. Plot the L> norm of the error (@) with respect to N.

6. We consider the initial data ug given by @). We fix A = 0.4, N =20 and 7' = 1. Run the simulations for different values
of the diffusion coefficient v = 1, v = 0.5, v = 0.25 and v = 0.125.Visualize and comment the time evolution of the energy

deviation:
N 1/2
&= (Z Az (uff — 1/2)2> .
i=1

Representing the values of u at different time steps, to which function seems u to converge 7 How does this convergence
depend on the value of v 7 Is it coherent with the theory?
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