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Abstract

Suivant un programme suggéré par Schmidt, on étudie I’approximation
diophantienne pour les sous-espaces de 'espace euclidien R". Si A et B
sont deux sous-espaces de dimensions respectives d et e, on interpréte
le j-éme angle entre A et B en termes de pinceaux dans la grassmanni-
enne. Cela nous permet de majorer ’exposant diophantien presque str
pour l'approximation diophantienne au j-éme angle d’un sous-espace A
choisi aléatoirement suivant la mesure de Lebesgue sur la variété grass-
mannienne. On conjecture que la borne obtenue, qui généralise celle de
Moshchevitin, est optimale.

Abstract

Following a suggestion of Schmidt, we study rational approximations
to linear subspaces of the Euclidean space R". Given two subspaces A and
B with dim A = d and dim B = e, we interpret the j-th angle between
A and B in terms of pencils in the Grassmann variety. Using this, we
derive an upper bound for the almost sure Diophantine exponent with
respect to the j-th angle of a subspace A chosen randomly with respect to
the Lebesgue measure on the Grassmann variety. Our bound generalizes
a result of Moshchevitin, and we conjecture that equality holds almost
surely.

Introduction

Dans un article fondateur [4], Schmidt suggere le probléme suivant :

Etant donné des entiers 0 < d < n, 0 < e < n et un sous-espace vectoriel A de
l’espace euclidien R™, étudier les sous-espaces rationnels B de dimension e qui
sont proches de A.

Il s’agit de comparer la hauteur du sous-espace rationnel B, définie comme le
covolume du réseau BN Z"™ dans B,

H(B) =vol (B/BNZ"),

a la distance de B 4 A. Notons que 1’on peut encore interpréter ce probléme de
différentes fagons. Supposons par exemple n = 4 et d = e = 2. Les sous-espaces
A et B de dimension 2 dans R* peuvent se voir comme des droites dans I’espace
projectif P3(R). A partir de la distance usuelle d(-,-) sur I'espace projectif, il
existe alors au moins deux distances naturelles entre A et B :



e la distance minimale 11 (A, B) = minge 4, pep d(a,b);
e la distance de Hausdorff ¢5(A, B) = max,e d(a, B).

En général, pour prendre en compte toutes les possibilités, Schmidt observe que
la position de B par rapport a A est entiérement déterminée par une famille
d’angles ¢;(A, B), j = 1,...,min(d, e), compris entre 0 et 7, et propose par
conséquent d’étudier ’approximation diophantienne pour chacun de ces angles.
La définition des angles ¢, (A, B) est rappelée a la partie Ci-dessous, on utilise
aussi la distance 1; associée & I'angle ¢;, simplement définie par ¢;(A4,B) =
sin¢; (A, B).

Dans toute la suite, on note Grg,(R) la variété grassmannienne des sous-
espaces de R" de dimension d, et Gry,,(Q) 'ensemble de ses points rationnels,
i.e. des sous-espaces de dimension d qui admettent une base constituée de vec-
teurs & coordonnées rationnelles. Si A est un sous-espace de R™ de dimension
d, on définit son exposant diophantien pour I'approximation au j-éme angle par
des sous-espaces rationnels de dimension e par

Bjedn(A)=inf {8>0 | Ic>0: VB € Gre,(Q), ¥;(4,B) > cH(B) "} .

Dans cet article, on s’intéresse a l’exposant diophantien d’un sous-espace A
choisi aléatoirement suivant la mesure de Lebesgue. Dans le cas particulier ot
n = 2d = 2e et j = 1, Moshchevitin [3, Satz 2] a démontré un analogue de la
partie « convergente » du théoréme de Khintchine, dont on déduit facilement
une borne supérieure sur ’exposant diophantien de presque tout sous-espace A.
Notre résultat principal est une généralisation du théoréme de Moshchevitin,
valable pour tout choix d’entiers n, d, e et j.

Théoréme 1. Soient des entiers 1 < d,e < n et j tel que max(0,d+ e —n) <
j <min(d,e). Si: RT — RT est une fonction décroissante telle que

“+o0
/ u"_lw(u)j(”_d_e+j) du < 400,
1

alors pour presque tout A dans Grq,(R), l’inégalité
Y (A, B) <¢(H(B))
n’a qu’un nombre fini de solutions B € Gre,(Q).

Remarque. Dans le théoréme de Moshchevitin |3|, Phypothése de convergence
sur la fonction 1 est plutot > -, q"* 14(,/q) < +oc. Comme la hauteur d’'un
sous-espace rationnel est toujours de la forme H(B) = ,/g pour un certain
q € N*, cette condition est sans doute plus naturelle. Cependant, lorsque 1 est
décroissante, on vérifie facilement a 'aide d’une comparaison série-intégrale et
du changement de variable u = /g que ces deux conditions sont équivalentes.
On renvoie & la conclusion pour une discussion plus détaillée de I’hypothése de
monotonie sur .

Comme premier corollaire de ce théoréme, on obtient un majorant naturel
pour l’exposant diophantien d’un sous-espace choisi aléatoirement suivant la
mesure de Lebesgue.



Corollaire 2 (Majoration de 'exposant presque siir). Pour presque tout A dans
Grgn(R), pour tout max(0,d + e —n) < j < min(d, e),

n

/6]767(17”( ) = ](n—d—€+j)

On peut s’attendre a ce qu'une égalité soit en fait valable presque stirement.
Notons cependant qu’en général, I'inégalité n’est pas valable pour tout A dans
Grgn(R), comme l'a démontré Elio Joseph [2| dans le casn =4,d =e =2 et
7 = 1. Nous discutons ces problémes un peu plus en détail & la fin de I'article.

Le plan de Darticle est le suivant. Dans une premiére partie, on rappelle la
définition et les propriétés élémentaires des angles successifs entre deux sous-
espaces vectoriels. Les liens avec la notion de pinceau dans la variété grass-
mannienne sont établis dans la seconde partie. La démonstration a proprement
parler du théoréme [T] est exposée a la partie

1 Angles entre sous-espaces vectoriels

Si R™ est muni de la structure euclidienne standard, ’angle <t((A4, B) entre deux

droites vectorielles A et B est par définition I'unique élément de [0, g] tel que
si ua et up sont deux vecteurs unitaires sur A et B, respectivement, alors

|(ua,up)| = cos<t(A, B),
et la distance entre A et B est
d(A, B) =sin<(A4, B).

Plus généralement, la position relative de deux sous-espaces vectoriels A et B
de dimensions respectives d et e est décrite par la famille des angles successifs,
définis de la facon suivante. On choisit d’abord deux droites A; € A et B; € B
telles que

d(Ay1,B1) =min{d(U,V) ; UC A,V C B,dimU =dimV = 1}.
Le premier angle entre A et B est
@1(A,B) = <I(A1,B1).

Le second angle est défini de maniére semblable, a partir des sous-espaces AN A7
et BN Af : on choisit deux droites Ay € AN Af et By € BN B telles que
d(As, Bs) soit minimal et on pose

@Q(A, B) = <I(A2,BQ).

Si f = min(d, e), on construit ainsi deux familles de droites orthogonales (A4;)1<j<f
dans A et (B,;)1<;<s dans B telles que pour chaque j,

i UCAN(®icjA)" et V.C BN (®ie;By) "
. 5y) =min {avy s [ CAD B A) e (@B |



et les angles successifs entre A et B sont les quantités
©;i(A,B) = <(A;, Bj), j=1,...,f.
Suivant Schmidt |4], nous noterons aussi
Y;(A,B) =sinp;(A4, B).

Remarque. Les droites A; et B, ne sont pas toujours uniquement définies,
mais la suite des angles (¢;(A, B))1<;<y lest, et ne dépend donc pas des choix
faits pour construire les familles (A;)1<j<s et (Bj)i<j<s. Cela peut se voir
comme une conséquence de la proposition [4] ci-dessous, qui donne une autre
interprétation des angles successifs entre A et B. Schmidt |4, Theorem 4| en
donne une démonstration un peu différente.

Commengons par un lemme élémentaire qui montre que ’on passe simple-
ment de la famille (A;) a (B;) par projection orthogonale sur B, et vice-versa.

Lemme 3. Soient A et B deux sous-espaces vectoriels de R™ de dimensions
respectives d et e. On note py et pp les projections orthogonales sur A et B,
respectivement. Avec les notations ci-dessus, on a, pour tout 7 = 1,...,min(d, e)
tel que ¥;(A,B) < 1,

B; =pp(A;) et Aj=pa(By).
En particulier, avec f = min(d, e),
Yr(A, B) = max{d(u,B) ; u€ A, ||u]| =1}
= max{d(v,A) ; v € B, |[v|| = 1}.
Démonstration. Montrons par récurrence sur j que si ¢);_1(A4, B) < 1, alors
AN (®icjA)E = AN (@i Bi)*.

Pour 5 = 1, il n’y a rien & démontrer, supposons donc le résultat connu pour
j > 1et tel que ¥;(A, B) < 1. Par définition, les droites A; et B; sont choisies
dans AN (®;<;jA;)t et BN (®;<;B;)* de sorte que la distance d(A;, B;) soit
minimale. Par hypothése de récurrence, AN (@Kin)L = AN (GBKJ-Bi)l7 et par
conséquent, A; doit étre la projection orthogonale de B; sur AN (®;<;B;)*
et donc

Aj C By + (AN (@<, B)H) "
C At + @<, B;.

En passant & l'orthogonal, on trouve
AN (®i<;Bi)* C AF

et avec ’hypothése de récurrence,

AN (@ig;Bi)" C AN (@igjAi)*

Comme la dimension du sous-espace de gauche est minorée par celle du sous-
espace de droite, les deux membres de cette inclusion doivent étre égaux, ce



qui achéve la récurrence. Par construction, 4; C AN (@;;4;) et B; =
me(®i<jBi)J_(Aj). L’espace (691»<J»Bj)L est stable par la projection pp, donc
légalité AN (Bi<;4:)" = AN (@;<;B;)* implique que B; = pp(4;). Par sy-
métrie, on a aussi A; = pa(B;).

Notons f = min(d,e), et fixons une base orthonormée (u;)1<;<q telle que
A; = Ru; pour tout j =1,..., f, et une base orthonormée (v;)1<;<. telle que
B;j = Ruj pour j = 1,..., f. Ce qui précéde montre que pour j < f, il existe
Aj € R tel que pp1(u;) = uj — Ajv;. Par conséquent, si ¢ < j,

(P (1), P (uy)) = (s, ppo (ug)) = (i, uj — Avj) = 0.
Par ailleurs, pour j > f, on a toujours
uj € An (@, 4)" = An(el,B)" c B*

donc ppi(u;) = uj. Cela montre que la famille de vecteurs {pgp.(u;); 1 <j <
d}, est orthogonale. Si u € A est unitaire, on décompose

_ . 2 _
u = g aju; avec E aj; = 1
J

et donc

d f
d(u, B)> = |ppr (W)|]> = _a? - ppe (uj)I> = a? - lpp (u))]*.
j=1

j=1
En particulier, d(u, B) < maxj—1,. f|lpp+(u;)|, ce qui se réécrit

d(u,B) < max d(u;, B) =sings(A,B) = ¢¢(A, B).
1<5<f

Comme I'égalité est atteinte si u = uy, cela montre ce qu’on veut. O

Définition (Distance entre deux sous-espaces). Etant donné deux sous-espaces
A et B dans R™, de dimensions respectives d et e, on définit la distance de A &
B par la formule

d(A,B) =4(A,B) ol f =min(d,e).

Notons que d n’est pas une distance a proprement parler, puisque d(A, B) =
0 n’implique pas A = B, mais seulement A C B ou B C A. Néanmoins, si I’on se
restreint aux sous-espaces de dimension d fixée, on vérifie facilement 'inégalité
triangulaire a l’aide du lemme[3] ce qui montre que d induit une distance au sens
usuel du terme sur la variété grassmannienne Grg ,(R) des sous-espaces de R"
de dimension d. Ces observations permettent d’interpréter les angles successifs
entre A et B en termes de distance dans la variété grassmannienne.

Proposition 4 (j-éme angle et sous-espaces de dimension j). Soit A et B

deuz sous-espaces vectoriels de R™ de dimensions respectives d et e. Pour tout
j=1,...,min(d, e),

. UCA VCB,

¥5(4, B) = min {d(U’ V)i GimU =dimV = }



Démonstration. Pour j =1,...,min(d, e), posons
Uj:Vect(Al,...,Aj) et Vj:Vect(Bl,...,Bj).

Si U est un sous-espace de A de dimension j < min(d,e), alors I'intersection
AN Uj{ 1 NU est non triviale, et toute droite D dans cette intersection vérifie
d(D, B) > sinp;(A, B). Fixons une telle droite D. Alors, pour tout sous-espace
V C B de dimension j,

d(U,V)>d(U,B) > d(D,B) > ¢;(4, B).

Comme I’égalité est atteinte pour U = Uj et V' =V}, cela montre la proposition.
O

Le théoréme suivant, pour lequel on renvoie & Schmidt |4, Theorem 5] montre
que les angles successifs caractérisent entiérement la position relative de A par
rapport a B.

Théoréme 5. Fizons des entiers 1 < d,e < n et notons g = max(0,d + e —n)
et f =min(d,e). Pour toute famille croissante de paramétres 0 < hgq < -+ <
vy < 1, il existe & isométrie prés une unique paire (A, B) de sous-espaces de
dimensions respectives d et e telle que

Vi(A,B)=1; pourtoutj=g+1,...,f.

Remarque. Notons que si d + e > n, alors ¢;(A,B) = 0 pour tout j =
1,...,d4+e—mn. Cela montre qu’en général, le nombre de parameétres nécessaires
pour décrire la position relative de A et B est égal & f—¢g = min(d,e,n—d,n—e).

2 Pinceaux dans la grassmannienne

Rappelons qu’étant donné deux entiers n > e > 1, on note Gr.,(R) la va-
riété grassmannienne des sous-espaces vectoriels de dimension e dans R”. Les
contraintes géométriques qui apparaissent naturellement dans ’approximation
diophantienne des sous-espaces vectoriels sont les pinceaur, dont on rappelle la
définition ci-dessous.

Définition (Pinceau). Etant donné B dans Gren(R) et j € Z, on note
Ppj={A€Grgn(R) |[dimANB>j}.

Remarque. Si j < d+ e —n, on a toujours Pp; = Grg,(R), tandis que si
j > min(d, e), alors Pg; = &. Le pinceau Pp ; est donc une sous-variété stricte
non vide si et seulement si max(0,d + e —n) < j < min(d, e).

Le lemme suivant relie les angles successifs entre deux sous-espaces A et B
aux distances dans Grg,(R) de A aux différents pinceaux définis & partir de
B. (Naturellement, un énoncé analogue est valable en échangeant A et B.) Ci-
dessous, si F' est un fermé quelconque de Grg,(R), et A € Grg,(R), on note
d(A, F') la distance de A au fermé F, ou la distance sur Grg ,(R) est celle définie
au paragraphe précédent.



Proposition 6 (Angles et pinceaux). Soient A et B deuz sous-espaces vectoriels
de R™ de dimensions respectives d et e. Pour tout j =1,...,min(d,e),

Yi(A,B) =d(A,Ps,;).

Démonstration. Si A’ € Pp,j, il existe un sous-espace V. C A’ N B tel que
dimV = j. D’apreés la proposition [4] on a

d(A,A") > d(A, V) > ,(A,B)

et donc d(4, Pr ;) > ¥;(A, B).

Réciproquement, la proposition [fl montre aussi qu'il existe deux sous-espaces
U C AetV C B de dimension j tels que d(U, V) = v;(A, B). Ecrivons A = U®
U’, et posons A’ =V @ U'. Alors, A’ € Pp; et d(A, A") < d(U,V) =;(A, B),
donc

d(A,Pgj;) <v¢;(A,B).
O

La proposition ci-dessus permet de retrouver un résultat de Schmidt [4]
Theorem 6], qui exprime les angles successifs entre A+ et B1 en fonction des
angles entre A et B.

Corollaire 7 (Angles successifs des supplémentaires orthogonaux). Soient A
et B deux sous-espaces vectoriels de R™ de dimensions respectives d et e. Pour
tout j = max(0,d + e —n)...min(d,e),

7/}_7 (Aa B) = 1/}n—d—€+j (AJ_7 BJ_)

Démonstration. D’aprés le lemme si A et A’ sont deux éléments de Grg ., (R),
leur distance est donnée par

d(A,A’") = max{d(u, 4") ; u € A, ||u|| =1}.
Or, d(u, A") = max{(u,v') ;0" € (A, ||v/|| = 1}, et donc
d(A, A') = max{(u,v') ; u € A, v € (A)F, |luf = [lv']| = 1}
Par symétrie de la distance (ici, A et A’ sont de méme dimension), on a aussi

d(A, A" =max{(v,u) ; ve At W/ € A, ||| = ||v]| =1}
= d(A*+, (A)h).

Cela montre déja le corollaire pour ’angle maximal, correpondant & j = min(d, e).

Pour le cas général, on utilise la proposition @ Supposons (A, B) < p.
Alors, il existe A’ dans Grg,(R) tel que d(A, A") < pet A’ € Pp j,ie. dimA'N
B > j. De fagon équivalente,

dmA' +B=d+e—dimA'NB<d+e—j
et, passant a I’orthogonal,

dim(AN)r*NBt>n—d—e+j



ie.
(‘Al)L € ,PBJ-,nfdfeJrj-
Comme d(A+, (A")*) = d(A, A") < p, cela implique d(A*, Ppr g ey;) < pet
donc
¢n7d76+j (ALv Bl) < p-
Ainsi, ¥y —g—etj (AL, BY) <4;(A, B), et en appliquant cette inégalité a AL et
B*, on obtient ’égalité souhaitée. O

Remarque. Comme les sous-espaces A et B sont entiérement déterminés par
leurs supplémentaires orthogonaux, on peut toujours se ramener au cas d+¢ < n,
quitte & remplacer A par A+ et B par B~ .

Nous concluons cette partie par le calcul de la dimension d’un pinceau, qui
nous sera utile pour évaluer la mesure de Lebesgue d’'un petit voisinage d’un
pinceau.

Proposition 8 (Dimension d’un pinceau). Les entiers n, d, e et j étant fixés,
les sous-variétés Pp j dans Grg,(R) sont toutes isométriques. De plus, sid, e €
{1,...,n} et max(0,d + e —n) < j <min(d,e) alors

dimPg; =jle—j)+ (d—j)(n—d).
Comme dim Gry,(R) = d(n — d), cette égalité se réécrit
codimPp; = j(n —d—e+j).

Démonstration. La premiére partie de I’énoncé découle de ce que le groupe d’iso-
métries SO, (R) agit transitivement sur Gr. ,, (R). Pour le calcul de la dimension,
on peut donc supposer B = R¢. La condition max(0,d + e —n) < j7 < min(d, e)
implique que ’ensemble

,P/B’j ={A € Grg,(R) | dimANB =j}
est un ouvert dense dans Pp ;, et donc
dimPp ; = dim Pp ;.
L’application
F: PJ’BJ —  Grj(R)
A ~ ANB
est une fibration de Pp ; au-dessus de Gr;.(R), et la fibre F~1(U) au-dessus
d’un sous-espace U C R¢ de dimension j est égale a ’ensemble des sous-espaces
A de dimension d dans R™ tels que ANR® = U. L’application A — A/U permet
d’identifier F~1(U) a I'ensemble des sous-espaces de R" 7 de dimension d — j
qui sont en somme directe avec R®~7. Comme j > d+ e —n, cet ensemble est un
ouvert dense dans Grg—; ,—;(R), et donc dim F~*(U) = (d — j)(n — d). Ainsi,
dim Pp ; = dim Gr; (R) + dim £~ (V)
=jle—=j)+(d—j)(n—d).



3 Le cas convergent du théoréme de Khintchine

Avec le lemme de Borel-Cantelli, les observations des deux paragraphes précé-
dents permettent de démontrer facilement le théoréme 1| énoncé dans l'introduc-
tion.

Démonstration du théoréeme[dl. Dans cette démonstration, pour toute partie ¥
dans Grg,(R) et tout § > 0, on note Y'(®) le §-voisinage de Y, i.e.

Y = {2 € Gryg,(R) | d(z,Y) < 6}
D’aprés la proposition @ pour tout B dans Gre ,(R),
{A € Grgu(R) | ¥;(A,B) < 8} =Py

et donc, avec la proposition [8] a certaines constantes multiplicatives prés ne
dépendant que de n,

[{A € Gran(R) | ¥;(A, B) < §}| =< §9(n=d=etd),

D’aprés Schmidt [4, Theorem 3], pour tout & > 0, le nombre de sous-espaces
rationnels B € Gre,,(Q) tels que 28 < H(B) < 2F*! est majoré par < 257, et
donc

S HAECraa(®) | 5(A B) < (H(B)}| < 2ap(2hp (et

B: 2F<H(B)<2k+1

Par conséquent,

ZHA € Grg,n(R) | ¥j(A,B) <y(H(B)} < Zzlmw k)i (n—d—c-+)
B k>0
< Z qn 1 (TL d—e+j)
< +00.
Le lemme de Borel-Cantelli permet de conclure. 0

Rappelons que 'ezposant diophantien d’'un sous-espace A de dimension d
dans R™ pour I'approximation au j-éme angle par des sous-espaces rationnels
de dimension e est défini par

Bjedn(A) =inf {8 >0 | 3c>0: VB € Gr,(Q), ¥;(4,B) > cH(B) " }.

Le théoréme ci-dessus donne déja une majoration de l'exposant diophantien
d’un sous-espace A choisi aléatoirement dans Grg,(R) suivant la mesure de
Lebesgue.

Corollaire 9 (Majoration de 'exposant presque siir). Pour presque tout A dans
Grgn(R), pour tout j < min(d,e),
n

), e ’ﬂA g%'
Freant) < 5o a et )

Démonstration. 11 suffit d’appliquer le théoréme ci-dessus a la fonction 1(q) =
g i—d—Fn ¢ qui satisfait la condition de convergence pour tout £ > 0. O



Conclusion

En guise de conclusion, nous faisons le point sur certaines questions suggérées
par Schmidt dans son article fondateur [4], & la lumiére du résultat élémentaire
présenté ci-dessus et des autres progrés récents du domaine.

L’hypothése de monotonie. On peut reprendre le calcul fait & la fin de la
démonstration du théoréme [I| sans ’hypothése que i est décroissante. Remar-
quons tout d’abord que la hauteur d’un sous-espace rationnel B est toujours de
la forme H(B) = /q, pour ¢ € N*. En effet, si le sous-réseau B N 74 a pour
base (v1,...,ve), et si la puissance extérieure A°R™ est munie de la structure
euclidienne usuelle, alors

H(B)=|v1 A+ Aol
Posons donc

Nan(q) = card{B € Grq,(Q) | H(B) = +/q}.
Alors,

> HA € Gran(R) | ¥;(4, B) < ¥ (H(B))}|

= 3" Naw(@) - {A € Gran(R) | ¥5(A, B) < v(y)}|

q>1

= 3" Nuwla) - w(/ay "=+,

q>1

Cela montre que le théoréme [I] est encore valable sans autre hypothése sur 1
que la convergence de la somme

S Naw(g) - (v "4 < foc.

g1

n
J(n—d—e+j)
est vérifiée pour presque tout A dans Grg, (R). Plus généralement, il est possible

que pour toute fonction : Rt — RT décroissante telle que

Valeur presque stire. On peut conjecturer que I'égalité 3; ¢ 4.n(A) =

/ un71¢(u)J(n7dfe+j) du = 400,
1

I'inégalité ¢; (A, B) < ¢(H(B)) ait une infinité de solutions B € Gr, ,(Q) pour
presque tout A dans Gry,, (R). Dans le cas particulier j = min(d, ), ces résultats
ont été démontrés dans |1}, théoréme 3| a aide des méthodes de la dynamique
homogéne.

Valeur minimale. Dans le cas particulier ot j = min(d, €), nous avons montré
dans |1, théoréme 1] que I'exposant diophantien de tout point est toujours au
moins égal & sa valeur presque stre :

VA e Grd,n(R)v 5min(d,e),e,d,n(A) > mjn(dye)(nn—max(d,e))'

10



Cependant, Joseph [2]| a construit des sous-espaces A de dimension 2 dans R*
tels que B1,2,.2.4(A) = 3, et avec les résultats de Schmidt [4], cela montre que
dans le cas particulier n =4, d=e=2et j =1,

n

AeGrdn(R)ﬁ1224( ) jin—d—e+j)

Il serait intéressant en général de calculer la borne inférieure

ﬁjedn( )

Sjedn T AeGrd n(]R

ou au moins de déterminer & quelle condition sur n, d, € et j cette borne inférieure
coincide avec la valeur presque stire de 'exposant. En dehors du cas particulier
ou (j,e,d,n) = (1,2,2,4) discuté ci-dessus, la majoration de I’exposant presque
siir obtenue dans cet article améliore strictement les bornes de Schmidt [4] et
Joseph |2] :
<"
Bsean™= jn—d—e+j)

Grace a 'exemple de Joseph [2], on sait que 1’égalité n’est pas toujours valable.
A notre connaissance, les meilleures bornes inférieures connues sont en général

d(n - j)
BicanZ jn—djn—e)

et lorsque j =1,

3 n(n —1)
=hedn = (n—d)(n—e)’
Remarquons que les bornes supérieures et inférieures sur 3. ne coincident

—j,e,d,n
jamais, et que pour n =4 et d = e = 2, I’exposant minimal est égal au membre

de gauche |[2].

Invariance de ’exposant. Le corollaire EL avec I'égalité H(B) = H(B*) pour
tout B dans Gr. ,(Q), montre qu’on a toujours

ﬁj,e,d,n(A) = ﬁn—d—e—&-j,n—e,n—d,n(AL)

Par conséquent, la valeur minimale @J_’& an doit étre invariante par l’involution
(j,e,d,n) = (n—d—e+j,n—en—d,n), tout comme la valeur presque stire
de Bje,dan(A), sielle existe. Schmidt suggére que ﬁj&dm pourrait aussi étre
invariante par 'involution (j,e,d,n) — (4, d, e,n), mais cela semble plus difficile
a démontrer. Notons que la borne supérieure obtenue dans le présent article est
bien invariante par ces deux transformations.
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