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Abstract
Suivant un programme suggéré par Schmidt, on étudie l’approximation

diophantienne pour les sous-espaces de l’espace euclidien Rn. Si A et B
sont deux sous-espaces de dimensions respectives d et e, on interprète
le j-ème angle entre A et B en termes de pinceaux dans la grassmanni-
enne. Cela nous permet de majorer l’exposant diophantien presque sûr
pour l’approximation diophantienne au j-ème angle d’un sous-espace A
choisi aléatoirement suivant la mesure de Lebesgue sur la variété grass-
mannienne. On conjecture que la borne obtenue, qui généralise celle de
Moshchevitin, est optimale.

Abstract
Following a suggestion of Schmidt, we study rational approximations

to linear subspaces of the Euclidean space Rn. Given two subspaces A and
B with dimA = d and dimB = e, we interpret the j-th angle between
A and B in terms of pencils in the Grassmann variety. Using this, we
derive an upper bound for the almost sure Diophantine exponent with
respect to the j-th angle of a subspace A chosen randomly with respect to
the Lebesgue measure on the Grassmann variety. Our bound generalizes
a result of Moshchevitin, and we conjecture that equality holds almost
surely.

Introduction
Dans un article fondateur [4], Schmidt suggère le problème suivant :
Étant donné des entiers 0 < d < n, 0 < e < n et un sous-espace vectoriel A de
l’espace euclidien Rn, étudier les sous-espaces rationnels B de dimension e qui
sont proches de A.
Il s’agit de comparer la hauteur du sous-espace rationnel B, définie comme le
covolume du réseau B ∩ Zn dans B,

H(B) = vol (B/B ∩ Zn) ,

à la distance de B à A. Notons que l’on peut encore interpréter ce problème de
différentes façons. Supposons par exemple n = 4 et d = e = 2. Les sous-espaces
A et B de dimension 2 dans R4 peuvent se voir comme des droites dans l’espace
projectif P3(R). À partir de la distance usuelle d(·, ·) sur l’espace projectif, il
existe alors au moins deux distances naturelles entre A et B :
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• la distance minimale ψ1(A,B) = mina∈A, b∈B d(a, b);

• la distance de Hausdorff ψ2(A,B) = maxa∈A d(a,B).

En général, pour prendre en compte toutes les possibilités, Schmidt observe que
la position de B par rapport à A est entièrement déterminée par une famille
d’angles ϕj(A,B), j = 1, . . . ,min(d, e), compris entre 0 et π

2 , et propose par
conséquent d’étudier l’approximation diophantienne pour chacun de ces angles.
La définition des angles ϕj(A,B) est rappelée à la partie 1. Ci-dessous, on utilise
aussi la distance ψj associée à l’angle ϕj , simplement définie par ψj(A,B) =
sinϕj(A,B).

Dans toute la suite, on note Grd,n(R) la variété grassmannienne des sous-
espaces de Rn de dimension d, et Grd,n(Q) l’ensemble de ses points rationnels,
i.e. des sous-espaces de dimension d qui admettent une base constituée de vec-
teurs à coordonnées rationnelles. Si A est un sous-espace de Rn de dimension
d, on définit son exposant diophantien pour l’approximation au j-ème angle par
des sous-espaces rationnels de dimension e par

βj,e,d,n(A) = inf
{
β > 0

∣∣ ∃c > 0 : ∀B ∈ Gre,n(Q), ψj(A,B) ≥ cH(B)−β
}
.

Dans cet article, on s’intéresse à l’exposant diophantien d’un sous-espace A
choisi aléatoirement suivant la mesure de Lebesgue. Dans le cas particulier où
n = 2d = 2e et j = 1, Moshchevitin [3, Satz 2] a démontré un analogue de la
partie « convergente » du théorème de Khintchine, dont on déduit facilement
une borne supérieure sur l’exposant diophantien de presque tout sous-espace A.
Notre résultat principal est une généralisation du théorème de Moshchevitin,
valable pour tout choix d’entiers n, d, e et j.

Théorème 1. Soient des entiers 1 ≤ d, e ≤ n et j tel que max(0, d+ e− n) ≤
j ≤ min(d, e). Si ψ : R+ → R+ est une fonction décroissante telle que∫ +∞

1

un−1ψ(u)j(n−d−e+j) du < +∞,

alors pour presque tout A dans Grd,n(R), l’inégalité

ψj(A,B) ≤ ψ(H(B))

n’a qu’un nombre fini de solutions B ∈ Gre,n(Q).

Remarque. Dans le théorème de Moshchevitin [3], l’hypothèse de convergence
sur la fonction ψ est plutôt

∑
q≥1 q

n/2−1ψ(
√
q) < +∞. Comme la hauteur d’un

sous-espace rationnel est toujours de la forme H(B) =
√
q pour un certain

q ∈ N∗, cette condition est sans doute plus naturelle. Cependant, lorsque ψ est
décroissante, on vérifie facilement à l’aide d’une comparaison série-intégrale et
du changement de variable u =

√
q que ces deux conditions sont équivalentes.

On renvoie à la conclusion pour une discussion plus détaillée de l’hypothèse de
monotonie sur ψ.

Comme premier corollaire de ce théorème, on obtient un majorant naturel
pour l’exposant diophantien d’un sous-espace choisi aléatoirement suivant la
mesure de Lebesgue.
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Corollaire 2 (Majoration de l’exposant presque sûr). Pour presque tout A dans
Grd,n(R), pour tout max(0, d+ e− n) ≤ j ≤ min(d, e),

βj,e,d,n(A) ≤
n

j(n− d− e+ j)
.

On peut s’attendre à ce qu’une égalité soit en fait valable presque sûrement.
Notons cependant qu’en général, l’inégalité n’est pas valable pour tout A dans
Grd,n(R), comme l’a démontré Élio Joseph [2] dans le cas n = 4, d = e = 2 et
j = 1. Nous discutons ces problèmes un peu plus en détail à la fin de l’article.

Le plan de l’article est le suivant. Dans une première partie, on rappelle la
définition et les propriétés élémentaires des angles successifs entre deux sous-
espaces vectoriels. Les liens avec la notion de pinceau dans la variété grass-
mannienne sont établis dans la seconde partie. La démonstration à proprement
parler du théorème 1 est exposée à la partie 3.

1 Angles entre sous-espaces vectoriels
Si Rn est muni de la structure euclidienne standard, l’angle ∢(A,B) entre deux
droites vectorielles A et B est par définition l’unique élément de

[
0, π2

]
tel que

si uA et uB sont deux vecteurs unitaires sur A et B, respectivement, alors

|(uA, uB)| = cos∢(A,B),

et la distance entre A et B est

d(A,B) = sin∢(A,B).

Plus généralement, la position relative de deux sous-espaces vectoriels A et B
de dimensions respectives d et e est décrite par la famille des angles successifs,
définis de la façon suivante. On choisit d’abord deux droites A1 ∈ A et B1 ∈ B
telles que

d(A1, B1) = min{d(U, V ) ; U ⊂ A, V ⊂ B, dimU = dimV = 1}.

Le premier angle entre A et B est

φ1(A,B) = ∢(A1, B1).

Le second angle est défini de manière semblable, à partir des sous-espaces A∩A⊥
1

et B ∩ A⊥
1 : on choisit deux droites A2 ∈ A ∩ A⊥

1 et B2 ∈ B ∩ B⊥
1 telles que

d(A2, B2) soit minimal et on pose

φ2(A,B) = ∢(A2, B2).

Si f = min(d, e), on construit ainsi deux familles de droites orthogonales (Aj)1≤j≤f

dans A et (Bj)1≤j≤f dans B telles que pour chaque j,

d(Aj , Bj) = min

{
d(U, V ) ;

U ⊂ A ∩ (⊕i<jAi)
⊥ et V ⊂ B ∩ (⊕i<jBi)

⊥

dimU = dimV = 1

}
,
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et les angles successifs entre A et B sont les quantités

φj(A,B) = ∢(Aj , Bj), j = 1, . . . , f.

Suivant Schmidt [4], nous noterons aussi

ψj(A,B) = sinφj(A,B).

Remarque. Les droites Aj et Bj ne sont pas toujours uniquement définies,
mais la suite des angles (ψj(A,B))1≤j≤f l’est, et ne dépend donc pas des choix
faits pour construire les familles (Aj)1≤j≤f et (Bj)1≤j≤f . Cela peut se voir
comme une conséquence de la proposition 4 ci-dessous, qui donne une autre
interprétation des angles successifs entre A et B. Schmidt [4, Theorem 4] en
donne une démonstration un peu différente.

Commençons par un lemme élémentaire qui montre que l’on passe simple-
ment de la famille (Aj) à (Bj) par projection orthogonale sur B, et vice-versa.

Lemme 3. Soient A et B deux sous-espaces vectoriels de Rn de dimensions
respectives d et e. On note pA et pB les projections orthogonales sur A et B,
respectivement. Avec les notations ci-dessus, on a, pour tout j = 1, . . . ,min(d, e)
tel que ψj(A,B) < 1,

Bj = pB(Aj) et Aj = pA(Bj).

En particulier, avec f = min(d, e),

ψf (A,B) = max{d(u,B) ; u ∈ A, ∥u∥ = 1}
= max{d(v,A) ; v ∈ B, ∥v∥ = 1}.

Démonstration. Montrons par récurrence sur j que si ψj−1(A,B) < 1, alors

A ∩ (⊕i<jAi)
⊥ = A ∩ (⊕i<jBi)

⊥.

Pour j = 1, il n’y a rien à démontrer, supposons donc le résultat connu pour
j ≥ 1 et tel que ψj(A,B) < 1. Par définition, les droites Aj et Bj sont choisies
dans A ∩ (⊕i<jAi)

⊥ et B ∩ (⊕i<jBi)
⊥ de sorte que la distance d(Aj , Bj) soit

minimale. Par hypothèse de récurrence, A∩ (⊕i<jAi)
⊥ = A∩ (⊕i<jBi)

⊥, et par
conséquent, Aj doit être la projection orthogonale de Bj sur A ∩ (⊕i<jBi)

⊥ ,
et donc

Aj ⊂ Bj +
(
A ∩ (⊕i<jBi)

⊥)⊥
⊂ A⊥ +⊕i≤jBi.

En passant à l’orthogonal, on trouve

A ∩ (⊕i≤jBi)
⊥ ⊂ A⊥

j

et avec l’hypothèse de récurrence,

A ∩ (⊕i≤jBi)
⊥ ⊂ A ∩ (⊕i≤jAi)

⊥.

Comme la dimension du sous-espace de gauche est minorée par celle du sous-
espace de droite, les deux membres de cette inclusion doivent être égaux, ce
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qui achève la récurrence. Par construction, Aj ⊂ A ∩ (⊕i<jAi)
⊥ et Bj =

pB∩(⊕i<jBi)⊥(Aj). L’espace (⊕i<jBj)
⊥ est stable par la projection pB , donc

l’égalité A ∩ (⊕i<jAi)
⊥ = A ∩ (⊕i<jBi)

⊥ implique que Bj = pB(Aj). Par sy-
métrie, on a aussi Aj = pA(Bj).

Notons f = min(d, e), et fixons une base orthonormée (uj)1≤j≤d telle que
Aj = Ruj pour tout j = 1, . . . , f , et une base orthonormée (vj)1≤j≤e telle que
Bj = Rvj pour j = 1, . . . , f . Ce qui précède montre que pour j ≤ f , il existe
λj ∈ R tel que pB⊥(uj) = uj − λjvj . Par conséquent, si i < j,

⟨pB⊥(ui), pB⊥(uj)⟩ = ⟨ui, pB⊥(uj)⟩ = ⟨ui, uj − λvj⟩ = 0.

Par ailleurs, pour j > f , on a toujours

uj ∈ A ∩ (⊕f
i=1Ai)

⊥ = A ∩ (⊕f
i=1Bi)

⊥ ⊂ B⊥

donc pB⊥(uj) = uj . Cela montre que la famille de vecteurs {pB⊥(uj) ; 1 ≤ j ≤
d}, est orthogonale. Si u ∈ A est unitaire, on décompose

u =
∑
j

ajuj avec
∑

a2j = 1

et donc

d(u,B)2 = ∥pB⊥(u)∥2 =

d∑
j=1

a2j · ∥pB⊥(uj)∥2 =

f∑
j=1

a2j · ∥pB⊥(uj)∥2.

En particulier, d(u,B) ≤ maxj=1,...,f∥pB⊥(uj)∥, ce qui se réécrit

d(u,B) ≤ max
1≤j≤f

d(uj , B) = sinφf (A,B) = ψf (A,B).

Comme l’égalité est atteinte si u = uf , cela montre ce qu’on veut.

Définition (Distance entre deux sous-espaces). Étant donné deux sous-espaces
A et B dans Rn, de dimensions respectives d et e, on définit la distance de A à
B par la formule

d(A,B) = ψf (A,B) où f = min(d, e).

Notons que d n’est pas une distance à proprement parler, puisque d(A,B) =
0 n’implique pas A = B, mais seulement A ⊂ B ou B ⊂ A. Néanmoins, si l’on se
restreint aux sous-espaces de dimension d fixée, on vérifie facilement l’inégalité
triangulaire à l’aide du lemme 3, ce qui montre que d induit une distance au sens
usuel du terme sur la variété grassmannienne Grd,n(R) des sous-espaces de Rn

de dimension d. Ces observations permettent d’interpréter les angles successifs
entre A et B en termes de distance dans la variété grassmannienne.

Proposition 4 (j-ème angle et sous-espaces de dimension j). Soit A et B
deux sous-espaces vectoriels de Rn de dimensions respectives d et e. Pour tout
j = 1, . . . ,min(d, e),

ψj(A,B) = min

{
d(U, V ) ;

U ⊂ A, V ⊂ B,
dimU = dimV = j

}
.
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Démonstration. Pour j = 1, . . . ,min(d, e), posons

Uj = Vect(A1, . . . , Aj) et Vj = Vect(B1, . . . , Bj).

Si U est un sous-espace de A de dimension j ≤ min(d, e), alors l’intersection
A ∩ U⊥

j−1 ∩ U est non triviale, et toute droite D dans cette intersection vérifie
d(D,B) ≥ sinφj(A,B). Fixons une telle droite D. Alors, pour tout sous-espace
V ⊂ B de dimension j,

d(U, V ) ≥ d(U,B) ≥ d(D,B) ≥ ψj(A,B).

Comme l’égalité est atteinte pour U = Uj et V = Vj , cela montre la proposition.

Le théorème suivant, pour lequel on renvoie à Schmidt [4, Theorem 5] montre
que les angles successifs caractérisent entièrement la position relative de A par
rapport à B.

Théorème 5. Fixons des entiers 1 ≤ d, e ≤ n et notons g = max(0, d+ e− n)
et f = min(d, e). Pour toute famille croissante de paramètres 0 ≤ ψg+1 ≤ · · · ≤
ψf ≤ 1, il existe à isométrie près une unique paire (A,B) de sous-espaces de
dimensions respectives d et e telle que

ψj(A,B) = ψj pour tout j = g + 1, . . . , f.

Remarque. Notons que si d + e > n, alors ψj(A,B) = 0 pour tout j =
1, . . . , d+e−n. Cela montre qu’en général, le nombre de paramètres nécessaires
pour décrire la position relative de A et B est égal à f−g = min(d, e, n−d, n−e).

2 Pinceaux dans la grassmannienne
Rappelons qu’étant donné deux entiers n ≥ e ≥ 1, on note Gre,n(R) la va-
riété grassmannienne des sous-espaces vectoriels de dimension e dans Rn. Les
contraintes géométriques qui apparaissent naturellement dans l’approximation
diophantienne des sous-espaces vectoriels sont les pinceaux, dont on rappelle la
définition ci-dessous.

Définition (Pinceau). Étant donné B dans Gre,n(R) et j ∈ Z, on note

PB,j = {A ∈ Grd,n(R) | dimA ∩B ≥ j } .

Remarque. Si j ≤ d + e − n, on a toujours PB,j = Grd,n(R), tandis que si
j > min(d, e), alors PB,j = ∅. Le pinceau PB,j est donc une sous-variété stricte
non vide si et seulement si max(0, d+ e− n) < j ≤ min(d, e).

Le lemme suivant relie les angles successifs entre deux sous-espaces A et B
aux distances dans Grd,n(R) de A aux différents pinceaux définis à partir de
B. (Naturellement, un énoncé analogue est valable en échangeant A et B.) Ci-
dessous, si F est un fermé quelconque de Grd,n(R), et A ∈ Grd,n(R), on note
d(A,F ) la distance de A au fermé F , où la distance sur Grd,n(R) est celle définie
au paragraphe précédent.
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Proposition 6 (Angles et pinceaux). Soient A et B deux sous-espaces vectoriels
de Rn de dimensions respectives d et e. Pour tout j = 1, . . . ,min(d, e),

ψj(A,B) = d(A,PB,j).

Démonstration. Si A′ ∈ PB,j , il existe un sous-espace V ⊂ A′ ∩ B tel que
dimV = j. D’après la proposition 4, on a

d(A,A′) ≥ d(A, V ) ≥ ψj(A,B)

et donc d(A,PB,j) ≥ ψj(A,B).
Réciproquement, la proposition 4 montre aussi qu’il existe deux sous-espaces

U ⊂ A et V ⊂ B de dimension j tels que d(U, V ) = ψj(A,B). Écrivons A = U⊕
U ′, et posons A′ = V ⊕ U ′. Alors, A′ ∈ PB,j et d(A,A′) ≤ d(U, V ) = ψj(A,B),
donc

d(A,PB,j) ≤ ψj(A,B).

La proposition ci-dessus permet de retrouver un résultat de Schmidt [4,
Theorem 6], qui exprime les angles successifs entre A⊥ et B⊥ en fonction des
angles entre A et B.

Corollaire 7 (Angles successifs des supplémentaires orthogonaux). Soient A
et B deux sous-espaces vectoriels de Rn de dimensions respectives d et e. Pour
tout j = max(0, d+ e− n) . . .min(d, e),

ψj(A,B) = ψn−d−e+j(A
⊥, B⊥).

Démonstration. D’après le lemme 3, si A et A′ sont deux éléments de Grd,n(R),
leur distance est donnée par

d(A,A′) = max{d(u,A′) ; u ∈ A, ∥u∥ = 1}.

Or, d(u,A′) = max{⟨u, v′⟩ ; v′ ∈ (A′)⊥, ∥v′∥ = 1}, et donc

d(A,A′) = max{⟨u, v′⟩ ; u ∈ A, v′ ∈ (A′)⊥, ∥u∥ = ∥v′∥ = 1}.

Par symétrie de la distance (ici, A et A′ sont de même dimension), on a aussi

d(A,A′) = max{⟨v, u′⟩ ; v ∈ A⊥, u′ ∈ A′, ∥u′∥ = ∥v∥ = 1}
= d(A⊥, (A′)⊥).

Cela montre déjà le corollaire pour l’angle maximal, correpondant à j = min(d, e).
Pour le cas général, on utilise la proposition 6. Supposons ψj(A,B) ≤ ρ.

Alors, il existe A′ dans Grd,n(R) tel que d(A,A′) ≤ ρ et A′ ∈ PB,j , i.e. dimA′ ∩
B ≥ j. De façon équivalente,

dimA′ +B = d+ e− dimA′ ∩B ≤ d+ e− j

et, passant à l’orthogonal,

dim(A′)⊥ ∩B⊥ ≥ n− d− e+ j
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i.e.
(A′)⊥ ∈ PB⊥,n−d−e+j .

Comme d(A⊥, (A′)⊥) = d(A,A′) ≤ ρ, cela implique d(A⊥,PB⊥,n−d−e+j) ≤ ρ et
donc

ψn−d−e+j(A
⊥, B⊥) ≤ ρ.

Ainsi, ψn−d−e+j(A
⊥, B⊥) ≤ ψj(A,B), et en appliquant cette inégalité à A⊥ et

B⊥, on obtient l’égalité souhaitée.

Remarque. Comme les sous-espaces A et B sont entièrement déterminés par
leurs supplémentaires orthogonaux, on peut toujours se ramener au cas d+e ≤ n,
quitte à remplacer A par A⊥ et B par B⊥.

Nous concluons cette partie par le calcul de la dimension d’un pinceau, qui
nous sera utile pour évaluer la mesure de Lebesgue d’un petit voisinage d’un
pinceau.

Proposition 8 (Dimension d’un pinceau). Les entiers n, d, e et j étant fixés,
les sous-variétés PB,j dans Grd,n(R) sont toutes isométriques. De plus, si d, e ∈
{1, . . . , n} et max(0, d+ e− n) ≤ j ≤ min(d, e) alors

dimPB,j = j(e− j) + (d− j)(n− d).

Comme dimGrd,n(R) = d(n− d), cette égalité se réécrit

codimPB,j = j(n− d− e+ j).

Démonstration. La première partie de l’énoncé découle de ce que le groupe d’iso-
métries SOn(R) agit transitivement sur Gre,n(R). Pour le calcul de la dimension,
on peut donc supposer B = Re. La condition max(0, d+ e− n) ≤ j ≤ min(d, e)
implique que l’ensemble

P ′
B,j = {A ∈ Grd,n(R) | dimA ∩B = j}

est un ouvert dense dans PB,j , et donc

dimP ′
B,j = dimPB,j .

L’application
F : P ′

B,j → Grj,e(R)
A 7→ A ∩B

est une fibration de P ′
B,j au-dessus de Grj,e(R), et la fibre F−1(U) au-dessus

d’un sous-espace U ⊂ Re de dimension j est égale à l’ensemble des sous-espaces
A de dimension d dans Rn tels que A∩Re = U . L’application A 7→ A/U permet
d’identifier F−1(U) à l’ensemble des sous-espaces de Rn−j de dimension d − j
qui sont en somme directe avec Re−j . Comme j ≥ d+e−n, cet ensemble est un
ouvert dense dans Grd−j,n−j(R), et donc dimF−1(U) = (d− j)(n− d). Ainsi,

dimPB,j = dimGrj,e(R) + dimF−1(U)

= j(e− j) + (d− j)(n− d).
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3 Le cas convergent du théorème de Khintchine
Avec le lemme de Borel-Cantelli, les observations des deux paragraphes précé-
dents permettent de démontrer facilement le théorème 1 énoncé dans l’introduc-
tion.

Démonstration du théorème 1. Dans cette démonstration, pour toute partie Y
dans Grd,n(R) et tout δ > 0, on note Y (δ) le δ-voisinage de Y , i.e.

Y (δ) = {x ∈ Grd,n(R) | d(x, Y ) ≤ δ}.

D’après la proposition 6, pour tout B dans Gre,n(R),

{A ∈ Grd,n(R) | ψj(A,B) ≤ δ} = P(δ)
B,j

et donc, avec la proposition 8, à certaines constantes multiplicatives près ne
dépendant que de n,

|{A ∈ Grd,n(R) | ψj(A,B) ≤ δ}| ≍ δj(n−d−e+j).

D’après Schmidt [4, Theorem 3], pour tout k ≥ 0, le nombre de sous-espaces
rationnels B ∈ Gre,n(Q) tels que 2k ≤ H(B) < 2k+1 est majoré par ≲ 2kn, et
donc ∑
B : 2k≤H(B)<2k+1

|{A ∈ Grd,n(R) | ψj(A,B) ≤ ψ(H(B))}| ≲ 2knψ(2k)j(n−d−e+j).

Par conséquent,∑
B

|{A ∈ Grd,n(R) | ψj(A,B) ≤ ψ(H(B))}| ≲
∑
k≥0

2knψ(2k)j(n−d−e+j)

≲
∑
q

qn−1ψ(q)j(n−d−e+j)

< +∞.

Le lemme de Borel-Cantelli permet de conclure.

Rappelons que l’exposant diophantien d’un sous-espace A de dimension d
dans Rn pour l’approximation au j-ème angle par des sous-espaces rationnels
de dimension e est défini par

βj,e,d,n(A) = inf
{
β > 0

∣∣ ∃c > 0 : ∀B ∈ Gre,n(Q), ψj(A,B) ≥ cH(B)−β
}
.

Le théorème ci-dessus donne déjà une majoration de l’exposant diophantien
d’un sous-espace A choisi aléatoirement dans Grd,n(R) suivant la mesure de
Lebesgue.

Corollaire 9 (Majoration de l’exposant presque sûr). Pour presque tout A dans
Grd,n(R), pour tout j ≤ min(d, e),

βj,e,d,n(A) ≤
n

j(n− d− e+ j)
.

Démonstration. Il suffit d’appliquer le théorème ci-dessus à la fonction ψ(q) =

q−
n

j(n−d−e+j)
−ε, qui satisfait la condition de convergence pour tout ε > 0.
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Conclusion
En guise de conclusion, nous faisons le point sur certaines questions suggérées
par Schmidt dans son article fondateur [4], à la lumière du résultat élémentaire
présenté ci-dessus et des autres progrès récents du domaine.

L’hypothèse de monotonie. On peut reprendre le calcul fait à la fin de la
démonstration du théorème 1 sans l’hypothèse que ψ est décroissante. Remar-
quons tout d’abord que la hauteur d’un sous-espace rationnel B est toujours de
la forme H(B) =

√
q, pour q ∈ N∗. En effet, si le sous-réseau B ∩ Zd a pour

base (v1, . . . , ve), et si la puissance extérieure ∧eRn est munie de la structure
euclidienne usuelle, alors

H(B) = ∥v1 ∧ · · · ∧ ve∥.

Posons donc

Nd,n(q) = card{B ∈ Grd,n(Q) | H(B) =
√
q}.

Alors,∑
B

|{A ∈ Grd,n(R) | ψj(A,B) ≤ ψ(H(B))}|

=
∑
q≥1

Nd,n(q) · |{A ∈ Grd,n(R) | ψj(A,B) ≤ ψ(
√
q)}|

≍
∑
q≥1

Nd,n(q) · ψ(
√
q)j(n−d−e+j).

Cela montre que le théorème 1 est encore valable sans autre hypothèse sur ψ
que la convergence de la somme∑

q≥1

Nd,n(q) · ψ(
√
q)j(n−d−e+j) < +∞.

Valeur presque sûre. On peut conjecturer que l’égalité βj,e,d,n(A) = n
j(n−d−e+j)

est vérifiée pour presque tout A dans Grd,n(R). Plus généralement, il est possible
que pour toute fonction ψ : R+ → R+ décroissante telle que∫ +∞

1

un−1ψ(u)j(n−d−e+j) du = +∞,

l’inégalité ψj(A,B) ≤ ψ(H(B)) ait une infinité de solutions B ∈ Gre,n(Q) pour
presque tout A dans Grd,n(R). Dans le cas particulier j = min(d, e), ces résultats
ont été démontrés dans [1, théorème 3] à l’aide des méthodes de la dynamique
homogène.

Valeur minimale. Dans le cas particulier où j = min(d, e), nous avons montré
dans [1, théorème 1] que l’exposant diophantien de tout point est toujours au
moins égal à sa valeur presque sûre :

∀A ∈ Grd,n(R), βmin(d,e),e,d,n(A) ≥ n
min(d,e)(n−max(d,e)) .
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Cependant, Joseph [2] a construit des sous-espaces A de dimension 2 dans R4

tels que β1,2,2,4(A) = 3, et avec les résultats de Schmidt [4], cela montre que
dans le cas particulier n = 4, d = e = 2 et j = 1,

inf
A∈Grd,n(R)

β1,2,2,4(A) = 3 < 4 =
n

j(n− d− e+ j)
.

Il serait intéressant en général de calculer la borne inférieure

β
j,e,d,n

:= inf
A∈Grd,n(R)

βj,e,d,n(A),

ou au moins de déterminer à quelle condition sur n, d, e et j cette borne inférieure
coïncide avec la valeur presque sûre de l’exposant. En dehors du cas particulier
où (j, e, d, n) = (1, 2, 2, 4) discuté ci-dessus, la majoration de l’exposant presque
sûr obtenue dans cet article améliore strictement les bornes de Schmidt [4] et
Joseph [2] :

β
j,e,d,n

≤ n

j(n− d− e+ j)
.

Grâce à l’exemple de Joseph [2], on sait que l’égalité n’est pas toujours valable.
À notre connaissance, les meilleures bornes inférieures connues sont en général

β
j,e,d,n

≥ d(n− j)

j(n− d)(n− e)

et lorsque j = 1,

β
j,e,d,n

≥ n(n− 1)

(n− d)(n− e)
.

Remarquons que les bornes supérieures et inférieures sur β
j,e,d,n

ne coïncident
jamais, et que pour n = 4 et d = e = 2, l’exposant minimal est égal au membre
de gauche [2].

Invariance de l’exposant. Le corollaire 7, avec l’égalité H(B) = H(B⊥) pour
tout B dans Gre,n(Q), montre qu’on a toujours

βj,e,d,n(A) = βn−d−e+j,n−e,n−d,n(A
⊥).

Par conséquent, la valeur minimale β
j,e,d,n

doit être invariante par l’involution
(j, e, d, n) 7→ (n− d− e+ j, n− e, n− d, n), tout comme la valeur presque sûre
de βj,e,d,n(A), si elle existe. Schmidt suggère que β

j,e,d,n
pourrait aussi être

invariante par l’involution (j, e, d, n) 7→ (j, d, e, n), mais cela semble plus difficile
à démontrer. Notons que la borne supérieure obtenue dans le présent article est
bien invariante par ces deux transformations.
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