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Introduction

Le but de ce cours est de mettre en évidence quelques liens entre l’approxi-
mation diophantienne et l’étude des réseaux d’un espace euclidien.

L’ensemble Q des nombres rationnels est dense dans la droite réelle R :
tout élément θ dans R peut être approché par une suite de points rationnels
p
q . Le domaine de l’approximation diophantienne est celui de l’étude de ces
approximations rationnelles.
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Chapitre 1

Approximation diophantienne
dans Rn

ch:rn
Commençons par le rappel de la théorie classique de l’approximation dio-

phantienne en dimension 1.

1.1 La droite réelle
ss:r

Le théorème suivant est un exemple typique des résultats que nous cherche-
rons à établir dans ce cours. On l’énonce parfois de la façon suivante : « Tout
nombre réel est approchable à l’ordre 2 par des rationnels ».

ordre2 Théorème 1.1. Pour tout θ ∈ R, il existe un rationnel pq arbitrairement proche

de θ et tel que
∣∣∣θ − p

q

∣∣∣ < 1
q2 .

Démonstration. Nous donnons d’abord une démonstration de ce théorème qui
repose sur la théorie des fractions continues, et donne en outre un algorithme
pour construire une suite de rationnels approchant θ et vérifiant l’inégalité du
théorème.

Sans perte de généralité, on peut supposer θ > 0. Posons alors θ0 = θ, puis
pour tout n ≥ 0,

an = bθnc et θn+1 =
1

θn − an
.

Notons
[
1
θ

]
la droite engendrée par le vecteur

(
1
θ

)
dans R2. Par récurrence, on

observe que [
1
θ

]
=

(
0 1
1 a0

)
. . .

(
0 1
1 an

)[
1

θn+1

]
(1.1) thetan

et

θ = a0 +
1

a1 + 1

. . .+an+ 1
θn+1

. (1.2) theta
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6 CHAPITRE 1. APPROXIMATION DIOPHANTIENNE DANS RN

On peut définir deux suites d’entiers (pn)n≥0 et (qn)n≥0 par les égalités(
qn qn+1

pn pn+1

)
=

(
0 1
1 a0

)
. . .

(
0 1
1 an+1

)
.

En particulier, prenant θn+1 = +∞ dans (
thetanthetan
??) ci-dessus, on trouve

pn
qn

= a0 +
1

a1 + 1

. . .+ 1
an

.

De plus, (
thetatheta
??) montre que θ est une fonction monotone de θn+1 ∈ [an+1,+∞) et

donc appartient à l’intervalle
[
pn
qn
, pn+1

qn+1

]
. (Les bornes ne sont pas nécessairement

dans cet ordre.) On remarque alors que le déterminant de la matrice qui définit
pn et qn est ∣∣∣∣qn qn+1

pn pn+1

∣∣∣∣ = (−1)n.

Cela implique pn+1

qn+1
− pn

qn
= (−1)n

qnqn+1
et par suite

∣∣∣∣θ − pn
qn

∣∣∣∣ ≤ 1

qnqn+1
<

1

q2
n

.

Exercice 1 (Théorème de Hurwitz).

(a) Montrer qu’il existe n arbitrairement grand tel que qn+1

qn
> φ := 1+

√
5

2 .

(b) En déduire que
∣∣∣θ − pn

qn

∣∣∣ ≤ 1
q2n
√

5
.

(c) Vérifier que si c < 1/
√

5, on a
∣∣∣φ− p

q

∣∣∣ ≥ c
q2 pour tout rationnel p/q.

Solution. (a) Les entiers qn vérifient la relation de récurrence qn+1 = an+1qn+
qn−1. Si an ≥ 2 pour n arbitrairement grand, alors qn+1 ≥ 2qn ≥ φqn et
on a ce qu’on veut. Si an = 1 pour tout n suffisamment grand, et si
qn ≤ φqn−1, alors qn+1 = qn + qn−1 ≤ (1 + 1/φ)qn = φqn.

(b) Remarquons que si qn+1

qn
> φ, alors qn+1

qn
+ qn

qn+1
> φ+ 1

φ =
√

5, et donc

∣∣∣∣pn+1

qn+1
− pn
qn

∣∣∣∣ =
1

qnqn+1
≤ 1

qnqn+1

√
5

(
qn
qn+1

+
qn+1

qn
) =

1√
5

(
1

q2
n+1

+
1

q2
n

).

Comme θ appartient à l’intervalle
[
pn
qn
, pn+1

qn+1

]
, on doit avoir

∣∣∣θ − pn
qn

∣∣∣ ≤
1

q2n
√

5
ou
∣∣∣θ − pn+1

qn+1

∣∣∣ ≤ 1
q2n+1

√
5
.
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(c) Notons φ′ = 1−
√

5
2 . Pour tout rationnel p/q qui approche φ, on peut écrire,

pour ε > 0 arbitrairement proche de 0,

1

q2
≤
∣∣∣∣φ′ − p

q

∣∣∣∣ ∣∣∣∣φ− p

q

∣∣∣∣
≤ (φ′ − φ+ ε)

∣∣∣∣φ− p

q

∣∣∣∣
= (
√

5 + ε)

∣∣∣∣φ− p

q

∣∣∣∣ .
Le théorème

ordre2ordre2
?? ci-dessus peut aussi se démontrer très simplement à l’aide du

principe des tiroirs de Dirichlet. On obtient même l’énoncé un peu plus précis
suivant.

dirichletn1 Théorème 1.2 (Dirichlet). Soit θ ∈ R. Pour tout Q ∈ N∗, il existe q ∈
{0, . . . , Q} et p ∈ Z tels que

∣∣∣θ − p
q

∣∣∣ < 1
qQ . En particulier, l’inégalité

∣∣∣θ − p
q

∣∣∣ < 1
q2

admet une infinité de solutions (p, q) ∈ Z2.

Démonstration. On découpe l’intervalle [0, 1[ en Q tiroirs [ kQ ,
k+1
Q [. Comme la

famille {qθ mod 1 ; q = 0, . . . , Q} contient Q+1 éléments, le principe des tiroirs
montre que deux d’entre eux appartiennent au même tiroir. Par conséquent, il
existe q1 > q2 dans {0, . . . , Q} et p1, p2 ∈ Z tels que

|(q1θ − p1)− (q2θ − p2)| < 1

Q
.

Posant q = q1 − q2 et p = p1 − p2, on trouve bien
∣∣∣θ − p

q

∣∣∣ < 1
qQ .

Pour quantifier la qualité des approximations rationnelles à un réel u donné,
on peut lui associer un exposant diophantien.

Définition 1.3. Étant donné θ ∈ R, on définit l’exposant diophantien β(θ) ∈
[2,+∞] par

β(θ) = inf

{
β > 0 | ∃c > 0 : ∀p

q
∈ Q,

∣∣∣∣θ − p

q

∣∣∣∣ ≥ cq−β} .
Le lemme de Borel-Cantelli permet de calculer facilement l’exposant dio-

phantien d’un point θ choisi aléatoirement dans R suivant la mesure de Le-
besgue.

psn1 Théorème 1.4 (Exposant presque sûr). Pour presque tout θ dans R au sens
de la mesure de Lebesgue, β(θ) = 2.

Démonstration. D’après le principe de Dirichlet, β(θ) ≥ 2 pour tout θ, et il
suffit donc de démontrer l’inégalité opposée. Si I est un intervalle borné de R
et ε > 0, on pose, pour q ∈ N∗,

Aq = {θ ∈ I | ∃p ∈ Z :

∣∣∣∣θ − p

q

∣∣∣∣ ≤ q−2−ε}.
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Cet ensemble est réunion d’au plus 2q|I| intervalles de longueur q−2−ε, donc

|Aq| . q−1−ε.

En particulier,
∑
q≥1|Aq| < +∞, et par le lemme de Borel-Cantelli, pour presque

tout θ dans I, il existe q0 tel que pour tout q ≥ q0, θ 6∈ Aq. Cela montre que
β(θ) ≤ 2 + ε, et à la limite quand ε tend vers 0, on trouve bien β(θ) ≤ 2.

Exercice 2 (Théorème de Khintchine).
Étant donné une fonction ψ : N→ N, on considère l’équation∣∣∣∣θ − p

q

∣∣∣∣ ≤ ψ(q) (Eψ) epsi

1. Montrer que si
∑
q≥1 qψ(q) < +∞, alors, pour presque tout θ dans R,

l’inégalité (
epsiepsi
??) n’a qu’un nombre fini de solutions p

q dans Q.
2. (Difficile) Montrer que si ψ est décroissante et vérifie

∑
q≥1 qψ(q) = +∞,

alors, pour presque tout θ dans R, l’inégalité (
epsiepsi
??) admet une infinité de

solutions p
q .

Solution. 1.
2.

Le dernier résultat que nous voulons mentionner dans cette théorie de l’ap-
proximation des nombres réels par des rationnels est le célèbre théorème de
Roth, qui montre que du point de vue de l’exposant diophantien, les points
algébriques irrationnels se comportent comme les points génériques pour la me-
sure de Lebesgue.

Théorème 1.5 (Roth). Si θ ∈ R \Q est algébrique, i.e. racine d’un polynôme
à coefficients rationnels, alors β(θ) = 2.

La démonstration de ce théorème est difficile, et trop longue pour être incluse
dans ces notes. Dans le cas particulier où θ est algébrique de degré 2, on peut
en donner une démonstration élémentaire, cf. exercice ci-dessous.

Exercice 3 (Théorème de Liouville).

1. Montrer qu’il existe c > 0 tel que pour tout rationnel pq ,
∣∣∣√2− p

q

∣∣∣ ≥ c
q2 .

En déduire que β(
√

2) = 2.
2. Plus généralement, montrer que si θ est un nombre algébrique de degré d,

alors β(θ) ≤ d. En déduire que θ =
∑
n≥1 10−n! est transcendant.

Solution. 1.
2.

Remarque. S’il existe c > 0 tel que
∣∣∣θ − p

q

∣∣∣ ≥ c
q2 pour tout rationnel pq , on dit

que θ est mal approchable par les rationnels. L’argument de l’exercice ci-dessus
montre que l’ensemble BA des réels mal approchables contient l’ensemble des
irrationnels quadratiques. On peut par ailleurs montrer que BA est négligeable
pour la mesure de Lebesgue, mais de dimension de Hausdorff égale à 1. On
ne sait toujours pas si BA contient un nombre algébrique de degré strictement
supérieur à 2.
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1.2 La correspondance de Dani
Rappelons qu’un réseau ∆ dans R2 est un sous-groupe discret à 2 généra-

teurs. En d’autres termes, pour une certaine base (u1, u2) de R2,

∆ = Zu1 ⊕ Zu2.

L’action linéaire du groupe GL2(R) des matrices inversibles à coefficients dans
R induit une action transitive sur l’espace Ω2 des réseaux de R2 ; le stabilisateur
du réseau Z2 est égal au sous-groupe GL2(Z) des matrices à coefficients entiers
dont l’inverse est aussi à coefficients entiers. Cela permet d’identifier

Ω2 ' GL2(R)/GL2(Z).

Pour décrire la position d’un élément ∆ de l’espace Ω2, nous utiliserons deux
quantités :

— la systole λ1(∆) = min{‖v‖ ; v ∈ ∆ \ {0}}
— le covolume µ2(∆) = ‖u1 ∧ u2‖, si ∆ = Zu1 ⊕ Zu2.
Un résultat fondamental de Minkowski montre que le covolume majore le

carré de la systole.

Théorème 1.6 (Minkowski). Pour tout réseau ∆ dans R2, λ1(∆)2 ≤ 2√
3
µ2(∆).

Démonstration. Soit u1 ∈ ∆ \ {0} de norme minimale, et u2 ∈ ∆ minimal tel
que (u1, u2) soit libre. Écrivons u2 = xu1 + yu⊥1 , où u⊥1 est orthogonal à u1, et
de même norme. Alors, ‖u2‖2 = ‖u1‖2(x2 + y2) et comme par choix de u2, on
doit avoir ‖u2‖ ≤ ‖u2 ± u1‖, on obtient

x2 + y2 ≤ (x± 1)2 + y2

d’où |x| ≤ 1
2 puis |y| ≥

√
3

2 . (Faire un dessin.) Cela implique µ2(∆) ≥ ‖u1∧u2‖ =

|y|‖u1‖2 ≥
√

3
2 λ1(∆)2.

Exercice 4 (Sommes de deux carrés).
1. Soit p un nombre premier impair. Montrer que −1 est un carré modulo p

si et seulement si p ≡ 1 mod 4.
2. Soit p ≡ 1 mod 4, et a tel que a2 + 1 ≡ 0 mod p. À l’aide du réseau ∆ =

Z
(
a
1

)
+ pZ2, montrer qu’il existe deux entiers x, y tels que p = x2 + y2.

3. En déduire qu’un entier n est somme de deux carrés si et seulement si
pour tout p ≡ 3 mod 4, vp(n) est pair.

Solution. 1. Le groupe multiplicatif (Z/pZ)∗ est cyclique, donc −1 est un
carré si et seulement si (−1)

p−1
2 = 1.

2. Tout élément
(
x
y

)
de ∆ vérifie x2 + y2 ≡ 0 mod p. Le réseau ∆ est de

covolume p, donc, d’après le premier théorème de Minkowski, il contient
un élément tel que x2 + y2 ≤ 2√

3
p < 2p. Comme x2 + y2 est un multiple

de p, on doit avoir x2 + y2 = p.
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3. L’égalité (x2 + y2)(z2 + t2) = (xz + ty)2 + (xt − yz)2 montre que l’en-
semble des sommes de deux carrés est stable par produit, et avec la ques-
tion précédente, cela implique qu’il contient tous les entiers n vérifiant
vp(n) ≡ 0 mod 2 pour tout p ≡ 3 mod 4. Réciproquement, supposons
n = x2 + y2. Le lemme chinois montre que pour tout p, l’équation a2 +
b2 ≡ 0 mod pvp(n) admet une solution (a, b) 6≡ 0 mod pvp(n). Écrivant
a = pαa1 et b = pβb1, on peut supposer α ≤ β et alors a2

1 + p2(β−α)b21 ≡ 0
mod pvp(n)−2α. Si vp(n) est impair, alors vp(n)−2α 6= 0, donc x2 +y2 ≡ 0
a une solution non triviale dans Z/pvp(n)−2αZ, et donc aussi dans Z/pZ.
Donc −1 est un carré modulo p, et cela implique p ≡ 1 mod 4.

On considère maintenant le sous-groupe à un paramètre (at)t∈R dans GL2(R)
défini par

at =

(
e−

t
2 0

0 e
t
2

)
,

et on cherche à comprendre le comportement asymptotique d’une orbite (at∆)t∈R
dans l’espace Ω2.

Définition 1.7. Le taux de fuite d’un réseau ∆ sous l’action de (at) dans
l’espace des réseaux est défini par

γ(∆) = lim sup
t→+∞

−1

t
log λ1(at∆).

Exercice 5. 1. Montrer que pour tout ∆ dans Ω2, γ(∆) ∈ [0, 1].
2. En utilisant l’ergodicité de l’action de (at)t∈R sur Ω2, montrer que pour

presque tout ∆ dans Ω2, γ(∆) = 0.

Le lien entre l’approximation diophantienne et l’espace des réseaux se fait
grâce à la correspondance de Dani, dont une forme est la proposition suivante.

Proposition 1.8 (Correspondance de Dani). Pour θ ∈ R, posons uθ =

(
1 0
−θ 1

)
et ∆θ = uθZ2. Alors,

β(θ) =
1

1
2 − γ(∆θ)

.

Démonstration. Supposons
∣∣∣θ − p

q

∣∣∣ ≤ q−β , i.e. |p− qθ| ≤ q−β+1. Pour t > 0, on
calcule

atuθ

(
q
p

)
=

(
e−

t
2 q

e
t
2 (p− qθ)

)
et choisissant t > 0 tel que et = qβ , on obtient donc, pour v =

(
q
p

)
,

‖atuθv‖ ≤ q−
β
2 +1 = e−t(

1
2−

1
β ).

Cela montre déjà que γ ≥ 1
2 −

1
β . Réciproquement, si v =

(
q
p

)
vérifie ‖atuθv‖ ≤

e−γt pour t > 0, on en tire q ≤ e( 1
2−γ)t puis∣∣∣∣θ − p

q

∣∣∣∣ ≤ 1

q
e−(γ+ 1

2 )t ≤ q
−1+

γ+1
2

1
2
−γ = q

−1
1
2
−γ
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d’où β ≥ 1
1
2−γ

.

Exercice 6. Soit ∆ un réseau dans R2 admettant une base à coefficients algé-
briques. En admettant le théorème de Thue-Siegel-Roth, montrer que γ(∆) = 0
sauf si ∆ contient un vecteur sur l’axe des abscisses, auquel cas γ(∆) = 1.

1.3 Approximation en dimension supérieure
sec:dimsup

Étant donné un point θ = (θ1, . . . , θn) dans Rn, il existe traditionnellement
deux problèmes d’approximation par des rationnels au point θ, qui généralisent
tous deux le cadre de la droite réelle.

(A) Approximation simultanée
On définit l’exposant diophantien β1(θ) pour l’approximation simultanée de

la façon suivante :

β1(θ) = sup

{
β > 0

∣∣∣∣∣ ∃(q, p1, . . . , pn) :
(p1q , . . . ,

pn
q )→ θ

max1≤i≤n

∣∣∣θi − pi
q

∣∣∣ ≤ q−β
}

Pour la suite, il sera approprié de voir cette approximation dans l’espace pro-
jectif Pn(R) des droites vectorielles dans Rn+1. Pour x et y dans Pn(R), on note
^(x, y) l’angle entre les droites x et y et on définit la distance entre x et y par

d(x, y) = |sin^(x, y)|.

La hauteur d’un point rationnel v ∈ Pn(R) — i.e. d’une droite dans Rn+1

engendrée par un vecteur rationnel — est définie par

H(v) = min
{
‖v‖ ; v ∈ v ∩ Zn+1

}
.

ex:schanuel Exercice 7 (Théorème de Schanuel).
Montrer que le nombre le points rationnels v dans Pn tels que H(v) ≤ H est
équivalent à vol(BRn+1 (0,1))

ζ(n+1) ·Hn+1 lorsque H tend vers +∞.

L’exposant diophantien d’un point x dans Pn(R) pour l’approximation par
des droites rationnelles est

β1(x) = sup

{
β > 0

∣∣∣∣ ∃v ∈ Pn(Q) :
v → x

d(v, x) ≤ H(v)−β

}
.

Si x est la droite engendrée par le vecteur (1, θ1, . . . , θn), on retrouve bien l’ex-
posant β1(θ) défini ci-dessus. Les résultats du paragraphe

ss:rss:r
?? se généralisent de

la façon suivante. Ci-dessous, et dans la suite, on note Q l’ensemble des nombres
réels algébriques, i.e. qui sont racines d’un polynôme non nul à coefficients dans
Q. Par Pn(Q) on désigne l’ensemble des droites dans Rn+1 qui contiennent un
vecteur dont toutes les coordonnées sont dans Q.

th:pnsimul Théorème 1.9 (Propriétés de l’exposant diophantien β1 sur Pn).
1. (Dirichlet) Pour tout x ∈ Pn(R), β1(x) ≥ n+1

n .
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2. (Borel-Cantelli) Pour presque tout x ∈ Pn(R), β1(x) = n+1
n .

3. (Roth-Schmidt) Pour tout x ∈ Pn(Q) hors de tout sous-espace rationnel
strict, β1(x) = n+1

n .

Démonstration. (Dirichlet) Quitte à permuter les coordonnées, on peut suppo-
ser que la droite x est engendrée par le vecteur (1, θ1, . . . , θn). Montrons que
pour tout entier Q > 1, il existe des entiers q ∈ {1, . . . , Q} et p1, . . . , pn ∈ Z tels
que pour chaque i,

∣∣∣θi − pi
q

∣∣∣ ≤ 1

qQ
1
n
.

La démonstration est essentiellement la même qu’en dimension n = 1 : on
considère les Q+ 1 points de [0, 1)n obtenus par réduction modulo 1 des points
(qθ1, . . . , qθn), q = 0, . . . , Q. Pour des raisons de volume, les cubes (modulo 1)
de côté Q−

1
n centrés en chacun de ces points ne sauraient être tous disjoints,

donc il existe q′ < q′′ tels que pour certains entiers p1, . . . , pn,

∀i ∈ {1, . . . , n}, |q′′θi − q′θ′i − pi| < Q−
1
n .

Cela donne ce qu’on veut, en posant q = q′′ − q′.
(Borel-Cantelli) Le nombre de points rationnels de hauteur au plus H dans
Pn+1 satisfait

NPn(H) = |{v ∈ Pn(Q) | H(v) ≤ H}| . Hn+1.

Pour β > 0, on peut donc majorer la mesure de l’ensemble

AH =
⋃

v∈Pn(Q):
H≤H(v)<2H

B(v,H−β)

par |AH | . Hn+1−nβ . En particulier, si β > n+1
n , la somme

∑
H=2k |AH |

converge, et donc, d’après le lemme de Borel-Cantelli, pour presque tout x
dans Pn(R), pour tout H = 2k suffisamment grand, x 6∈ AH . Cela implique
β1(x) ≤ n+1

n . Par le principe de Dirichlet, l’inégalité opposée est toujours véri-
fiée, donc β1(x) = n+1

n pour presque tout x dans P1(R).
(Roth-Schmidt) Le calcul de l’exposant des points algébriques est plus subtil, il
requiert l’introduction du théorème du sous-espace de Schmidt, et fait l’objet
du reste de ce paragraphe.

Nous admettrons le résultat fondamental suivant, qui a justement été démon-
tré par Schmidt dans le but de généraliser le théorème de Roth en dimension
supérieure.

Théorème 1.10 (Schmidt, théorème du sous-espace). Soit d ∈ N∗ et L un élé-
ment de GLd(Q), dont on note L1, . . . , Ld les lignes. Pour tout ε > 0, l’ensemble
des v ∈ Zd tels que

|L1(v) . . . Ld(v)| ≤ ‖v‖−ε

est contenue dans une union finie d’hyperplans.

À partir de ce résultat, nous pouvons facilement calculer l’exposant d’un
point x dans Pn(Q).
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Démonstration du théorème
th:pnsimulth:pnsimul
??, 3. On peut supposer que la droite x est en-

gendrée par un vecteur de la forme (1, θ2, . . . , θn+1), où θi ∈ Q. Notant v =
(q, p1, . . . , pn un élément de Rn+1, on définit n+1 formes linéaires sur Rn+1 par

L1(v) = q
∀i ≥ 2, Li(v) = qθi − pi.

Si v désigne la droite engendrée par le vecteur v, on majore

|L1(v)| ≤ ‖v‖
∀i ≥ 2, |Li(v)| . ‖v‖ · d(v, x).

En particulier, si d(v, x) ≤ H(v)−
n+1
n −ε, alors

|L1(v) . . . Ln+1(v)| . H(v)n+1H(v)−n(n+1
n +ε) ≤ ‖v‖−nε

et d’après le théorème du sous-espace de Schmidt, les solutions v à cette inégalité
sont contenues dans un nombre fini d’hyperplans rationnels. Si V est un tel
hyperplan, alors x 6∈ V , par hypothèse, et donc x ne peut pas être approché par
un élément v = Rv dans V Cela montre que l’inégalité d(v, x) ≤ H(v)−

n+1
n −ε

n’a qu’un nombre fini de solutions v ∈ Pn(Q), d’où β1(x) ≤ n+1
n . Ici encore

l’inégalité réciproque découle du principe de Dirichlet.

(B) Approximation des formes linéaires

Le deuxième problème d’approximation classique associé à un point θ =
(θ1, . . . , θn) dans Rn est celui de la recherche de solutions entières (q, p1, . . . , pn)
à l’inégalité

|q + p1θ1 + · · ·+ pnθn| ≤
(

max
1≤i≤n

|pi|
)−β+1

. (1.3) eq:lf

Cette inégalité s’interprète géométriquement comme un problème d’approxi-
mation dans l’espace projectif dual P∗n(R), que l’on identifie à l’ensemble des
hyperplans de Rn+1. Si x∗ = (1, θ1, . . . , θn)⊥ désigne l’hyperplan orthogonal au
vecteur (1, θ1, . . . , θn), et v = Rv, où v = (q, p1, . . . , pn), l’inégalité ci-dessus
peut se réécrire

d(v, x∗) ≤ H(v)−β

où cette fois d(v, x∗) désigne la distance du point v à l’hyperplan x dans l’espace
projectif Pn(R).

Comme ci-dessus, on définit l’exposant diophantien d’un élément x dans
P∗n(R) pour l’approximation par des droites rationnelles est

β1(x∗) = sup

{
β > 0

∣∣∣∣ ∃v ∈ Pn(Q) :
v → x∗

d(v, x∗) ≤ H(v)−β

}
.

À titre d’exercice, on laisse le soin au lecteur de vérifier que les résultats du
paragraphe

ss:rss:r
?? se généralisent aussi à ce cadre.

th:pnlf Théorème 1.11 (Propriétés de l’exposant diophantien β1 sur P∗n).
1. (Dirichlet) Pour tout x∗ ∈ P∗n(R), β1(x∗) ≥ n+ 1.
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2. (Borel-Cantelli) Pour presque tout x∗ ∈ P∗n(R), β1(x∗) = n+ 1.
3. (Roth-Schmidt) Pour tout x∗ ∈ P∗n(Q) ne contenant aucun sous-espace

rationnel non trivial, β1(x∗) = n+ 1.

Exercice 8 (Approximation par des formes linéaires).
Expliquer comment on peut aussi interpréter l’inégalité (

eq:lfeq:lf
??) comme un pro-

blème d’approximation de la droite x = R(1, θ1, . . . , θn) par un hyperplan ra-
tionnel. Si l’on note βn(x) l’exposant diophantien associé, justifier que βn(x) =
β1(x⊥).

1.4 Exercices supplémentaires
Exercice 9 (Meilleures approximations).
(a) Montrer que la suite (|qnθ − pn|)n≥0 est décroissante.
(b) Pour tout rationnel pq avec q < qn, on a |qθ − p| ≥ |qn−1θ − pn−1|.
(c) Réciproquement, montrer que si θ est irrationnel et

|qθ − p| = min
q′≤Q, p′

|q′θ − p′|

pour un certain Q ≥ q, alors p
q apparaît dans la suite (pnqn )n≥0.

Solution. (a) La matrice(
1 0
−θ 1

)(
qn qn−1

pn pn−1

)
=

(
qn qn−1

pn − qnθ pn−1 − qn−1θ

)
est de déterminant égal à 1 en valeur absolue. Par suite,

|pn−1 − qn−1θ| ≥
1

qn
− qn−1

qn
|pn − qnθ|

et comme 1 ≥ qn+1|qnθ − pn|, on trouve

|pn−1 − qn−1θ| ≥ |pn − qnθ|(
qn+1

qn
− qn−1

qn
) = an+1|pn − qnθ| ≥ |pn − qnθ|.

(b) Le réseau unimodulaire (
q−1
n 0
0 qn

)(
1 0
−θ 1

)
Z2

admet une base donnée par

[u1, u2] =

(
1 qn−1/qn

qn(pn − qnθ) qn(pn−1 − qn−1θ).

)
Les vecteurs u1 et u2 sont tous deux dans [0, 1]× [−1, 1], avec des signes

opposés sur la seconde coordonnée. Soit v =

(
q/qn

qn(p− qθ)

)
un élément du

réseau, avec q < qn. En utilisant le fait que la première coordonnée de v
appartient à [0, 1), on observe (faire un dessin) que la deuxième coordonnée
de v est minorée en valeur absolue par la deuxième coordonnée de u2, i.e.

qn|p− qθ| ≥ qn|pn−1 − qn−1θ|.
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(c) Soit n tel que qn−1 ≤ Q < qn. La question précédente montre que |qθ−p| =
maxq′≤Q, p′ |q′θ− p| = |qn−1θ− pn−1|, et cela implique q = qn−1 car θ est
irrationnel. (Si θ est rationnel, on peut aussi montrer q = qn−1, mais c’est
un peu plus subtil, cf. Khinchin, Continued fractions.)

Exercice 10 (Un théorème de Legendre).
Montrer que si pq n’apparaît pas dans la suite (pnqn )n≥0, alors

∣∣∣θ − p
q

∣∣∣ ≥ 1
2q2 .

Solution. On raisonne par contraposée en supposant |q(qθ−p)| ≤ 1
2 . Le réseau

unimodulaire (
q−1 0
0 q

)(
1 0
−θ 1

)
Z2

contient le vecteur u =

(
1

q(qθ − p)

)
, qui appartient à {1} × [−1/2, 1/2]. Tout

autre vecteur v =

(
x
y

)
=

(
q′/q

q(q′θ − p′)

)
du réseau appartenant à [0, 1]×R doit

vérifier
|det(u, v)| = |xq(qθ − p) + y| ≥ 1

et par conséquent

|q(q′θ − p′)| = |y| ≥ 1− x

2
>

1

2
≥ |q(qθ − p)|.

Cela montre que |qθ− p| = minq′≤q, p′ |q′θ− p′|, et d’après l’exercice précédent,
p
q doit apparaître dans la suite des quotients partiels (pnqn )n≥0.

Exercice 11. Montrer que pour tout rationnel pq avec q < qn distinct de qn−1,

on a
∣∣∣θ − p

q

∣∣∣ > 1
qqn

.

Solution. De l’égalité∣∣∣∣ 1 qn−1/qn
qn(qnθ − pn) qn(qn−1θ − pn−1)

∣∣∣∣ = 1

on déduit
qn|qn−1θ − pn−1| ≥ 1− qn−1|qnθ − pn|.

Ensuite, on reprend le raisonnement de la deuxième question de l’exercice pré-

cédent : le vecteur v =

(
q/qn

qn(p− qθ)

)
a sa première coordonnée dans [0, 1) et

n’est pas égal à u2, donc sa deuxième coordonnée est minorée par la somme des
deuxièmes coordonnées de u1 et u2 :

qn|qθ − p| ≥ qn|qn−1θ − pn−1|+ qn|qnθ − pn|
≥ 1− qn−1|qnθ − pn|+ qn|qnθ − pn|
> 1.
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Exercice 12. Montrer que la suite ((cosn)n)n≥1 ne tend pas vers 0 en l’infini.

Exercice 13 (Monotonie des quotients partiels).
Montrer que les suites (p2nq2n )n≥0 et (p2n+1

q2n+1
)n≥0 sont adjacentes.

Solution. Les égalités{
q2n+2p2n+1 − p2n+2q2n+1 = −1
q2n+1p2n − q2np2n+1 = 1

impliquent que q2n+1 ·
∣∣∣∣q2n+2 q2n

p2n+2 p2n

∣∣∣∣ = q2n+2 − q2n et donc

p2n+2

q2n+2
− p2n

q2n
=

q2n+2 − q2n

q2n+2q2n+1q2n
> 0.

i.e. (p2nq2n )n≥0 est croissante. On montre de même que (p2n+1

q2n+1
)n≥0 est décroissante,

et comme ces deux suites convergent toutes deux vers θ, elles sont adjacentes.

Exercice 14 (Borne inférieure sur l’erreur d’approximation).
Montrer que pour tout n,

∣∣∣θ − pn
qn

∣∣∣ > 1
qn(qn+1+qn) .

Solution. L’intervalle
[
pn
qn
, pn+1

qn+1

]
contient θ. La suite de fractions médianes

pn+pn+1

qn+qn+1
, pn+2pn+1

qn+2qn+1
, . . . , pn+an+1pn+1

qn+an+1qn+1
est monotone. D’après l’exercice précédent,

la fraction pn+2

qn+2
= pn+an+1pn+1

qn+an+1qn+1
est située du même côté de θ que pn

qn
, donc c’est

aussi le cas de pn+pn+1

qn+qn+1
. En particulier,∣∣∣∣θ − pn

qn

∣∣∣∣ ≥ ∣∣∣∣pn + pn+1

qn + qn+1
− pn
qn

∣∣∣∣ =
1

qn(qn + qn+1)
.

Exercice 15. Le but de cet exercice est de justifier que la systole et le covolume
permettent de décrire à une constante près la position d’un élément de l’espace
des réseaux du plan euclidien.

1. Justifier qu’une métrique riemannienne invariante à droite sur GL2(R)
induit une distance riemannienne sur Ω2. Vérifier que pour cette distance,
une suite (∆n)n≥1 converge vers un élément ∆ = Zu1⊕Zu2 si, et seulement
si, on peut écrire ∆n = Zu(n)

1 ⊕Zu(n)
2 , avec limu

(n)
1 = u1 et limu

(n)
2 = u2.

2. Montrer qu’à certaines constantes multiplicatives près, pour tous ∆,∆′ ∈
Ω2,

d(∆,∆′) � max

(∣∣∣∣log
µ1(∆′)

µ1(∆)

∣∣∣∣ , ∣∣∣∣log
µ2(∆′)

µ2(∆)

∣∣∣∣) .
3. (Critère de Mahler) Montrer qu’une partie A ⊂ Ω2 est relativement com-

pacte si et seulement si son image par l’application ∆ 7→ (µ1(∆), µ2(∆))
est relativement compacte dans (R∗+)2.



Chapitre 2

Réseaux dans Rd et
sous-espaces rationnels

ch:sublattice
Pour présenter les différents énoncés d’approximation diophantienne dans

Rn dans un cadre unifié, Schmidt a proposé en 1967 le problème suivant :

Fixons des entiers d, k et ` tels que d ≥ 2 et 0 < k, ` < d. Étant donné un
sous-espace x de dimension ` dans Rd, étudier les sous-espaces rationnels v de
dimension k proches de x.

Dans la suite, l’espace Rd est muni de sa structure euclidienne usuelle ; la
norme est notée ‖·‖ et le produit scalaire 〈·, ·〉. Rappelons que la distance entre
un vecteur u et une partie fermée F est définie par d(u, F ) = minv∈F d(u,v).
Pour pouvoir évaluer la qualité d’une approximation rationnelle v de dimension
k au sous-espace x de dimension `, on définit aussi

d(v, x) =

{
maxu∈v;‖u‖=1 d(u, x) si k ≤ `
maxu∈x;‖u‖=1 d(u, v) si ` ≤ k

Notons que d(·, ·) n’est pas à proprement parler une distance, puisque d(v, x) = 0
si et seulement si v ⊂ x ou x ⊂ v.

Exercice 16. Vérifier qu’on a toujours d(v, x) = d(v⊥, x⊥).

Solution. Si x est un sous-espace vectoriel de Rd, alors pour tout u ∈ Rd,

d(u, x) = max{〈u,w〉 ; w ∈ x⊥ unitaire}.

Par conséquent,

d(v, x) = max{〈u,w〉 ; u ∈ v unitaire et w ∈ x⊥ unitaire}
= d(x⊥, v⊥) = d(v⊥, x⊥),

où la dernière égalité découle de la symétrie de la distance que nous avons
définie.

17
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On définit aussi la hauteur d’un sous-espace rationnel v comme le volume
d’un domaine fondamental de v sous l’action de v ∩ Zd :

H(v) = vol
(
v/v ∩ Zd

)
.

Concrètement, si les vecteurs u1, . . . , uk forment une base de v ∩Zd, alors H(v)
est égale au volume du parallélépipède engendré par ces vecteurs. Nous verrons
ci-dessous que pour tout H ≥ 0, il n’y a qu’un nombre fini de sous-espaces
rationnels v tels que H(v) ≤ H. Dans la suite, nous noterons

X`,d(R) = {x ≤ Rd | dimx = `}

la variété grassmannienne des sous-espaces de dimension ` dans Rd, et

X`,d(Q) = {x ≤ Rd | dimx = ` et x est défini sur Q}.

Les notions de distance et de hauteur ci-dessus permettent d’associer à un élé-
ment x dans X`,d(R) une famille d’exposants diophantiens βk(x), k = 1, . . . , d−
1, définis par

βk(x) = sup

{
β > 0

∣∣∣∣ ∃v ∈ Xk,d(Q) :
d(v, x)→ 0
d(v, x) ≤ H(v)−β

}
(2.1) eq:betak

Le but de ce chapitre est d’obtenir les premières propriétés élémentaires de
ces familles d’exposants, et d’énoncer les résultats qui seront démontrés dans
la suite du cours. Nous commençons par quelques rappels sur les réseaux de
l’espace euclidien Rd.

2.1 Sous-groupes discrets de Rd

pr:discret Proposition 2.1. Tout sous-groupe discret de Rd est de la forme Λ = Zv1 ⊕
· · · ⊕ Zvk, où les vecteurs v1, . . . ,vk sont linéairement indépendants sur R.

Démonstration. On procède par récurrence sur la dimension d. Pour d = 0,
il n’y a rien à démontrer, supposons donc le résultat connu pour d − 1 ≥ 0.
Si Λ est un sous-groupe discret de Rd, on choisit un élément v1 ∈ Λ non nul
de norme minimale. Soit π : Rd → v⊥1 la projection orthogonale sur v⊥1 . Tout
élément de v′ ∈ π(Λ) admet une pré-image v ∈ Λ telle que d(v,v⊥1 ) ≤ ‖v1‖
et donc ‖v‖ ≤ ‖v′‖+ ‖v1‖. Comme Λ est discret, cela montre que π(Λ) est un
sous-groupe discret de v⊥1 . Par hypothèse de récurrence, on peut écrire,

π(Λ) = Zπ(v2)⊕ · · · ⊕ Zπ(vk)

pour certains vecteurs v2, . . . ,vk dans Λ tels que π(v2), . . . , π(vk) soient li-
néairement indépendants. Si v est un élément de Λ, on peut écrire π(v) =∑
i≥2 niπ(vi), avec ni ∈ Z, donc

π

v −
∑
i≥2

nivi

 = 0

d’où v−
∑
i≥2 nivi = λv1 pour un certain λ ∈ R. Mais par minimalité de ‖v1‖,

on doit avoir λ ∈ Z, ce qui achève la démonstration.
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Définition 2.2 (Covolume d’un sous-groupe discret). Si Λ = Zv1⊕· · ·⊕Zvk est
un sous-groupe discret de Rd, on note |Λ| le volume du parallélépipède engendré
par les éléments de la base (v1, . . . ,vk).

Exercice 17.

1. Si Λ est un sous-groupe discret de Rd, on définit le dual Λ∗ = {w ∈
VectR Λ | ∀v ∈ Λ, 〈w,v〉 ∈ Z}. Montrer que |Λ∗| = |Λ|−1.

2. Si Λ1 ≤ Λ est un sous-groupe discret primitif, on pose Λ/Λ1 = πΛ⊥1
(Λ).

Vérifier que |Λ/Λ1| = |Λ|/|Λ1|.
3. Montrer que pour tout v dans Xk,d(Q), H(v) = H(v⊥).

Solution. 1.
2.
3. Étant donné un sous-espace rationnel v dans Rd, notons Λv = v ∩Zd. On

vérifie facilement que Λ∗v ⊃ Zd/Λv⊥ , et donc

H(v)−1 = |Λv|−1 = |Λ∗v| ≤ Λ−1
v⊥

= H(v⊥)−1

i.e.
H(v⊥) ≤ H(v).

En appliquant cette inégalité à v⊥, on trouve aussi H(v) = H((v⊥)⊥) ≤
H(v⊥), d’où l’égalité souhaitée.

2.2 Les théorèmes de Minkowski

Définition 2.3 (Réseau dans Rd). Un réseau ∆ dans Rd est un sous-groupe
discret de rang d. De façon équivalente, il existe une base (v1, . . . ,vd) de Rd
telle que

∆ = Zv1 ⊕ · · · ⊕ Zvd.

Le résultat le plus fondamental de la géométrie des nombres est le premier
théorème de Minkowski, qui permet de majorer la norme de la systole λ1(∆)
d’un réseau en fonction du covolume. Rappelons que λ1(∆) est par définition la
norme minimale d’un élément non nul de ∆.

Théorème 2.4 (Premier théorème de Minkowski). Soit ∆ un réseau dans Rd
et C une partie convexe symétrique telle que volC > 2d|∆|. Alors C ∩∆ 6= {0}.
En particulier,

λ1(∆)d ≤ 2d|∆|
volBRd(0, 1)

.

Démonstration. Soit F un domaine fondamental pour ∆ dans Rd. Le convexe
C ′ = 1

2C vérifie vol(C ′) = 2−d vol(C) > |∆| = |F |. Par conséquent,

|C ′| =
∑
v∈∆

|C ′ ∩ (F + v)| =
∑
v∈∆

|(C ′ + v) ∩ F | > |F |
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et il doit donc exister v1 6= v2 ∈ ∆ tels que C ′ + v1 ∩ C ′ + v2 6= ∅. Cela donne,
pour certains c1, c2 dans C ′, c1 + v1 = c2 + v2, et comme C est convexe et
symétrique, le vecteur v = v2 − v1 = c1 − c2 est un élément non nul de C ∩∆.

Pour la deuxième assertion, il suffit d’observer que si λd > 2d|∆|
volBRd (0,1) , alors

le convexe C = BRd(0, λ) vérifie volC > 2d|∆|.

Exercice 18 (Théorème des quatre carrés).
1. Montrer que pour tout nombre premier p, il existe une solution non triviale

(a, b, c) à l’équation a2 + b2 + c2 ≡ 0 mod p.
2. À l’aide du réseau ∆ = pZ4 + Z(a, b, c, 0) + Z(0,−c, b, a), montrer que p

est somme de quatre carrés.
3. Conclure que tout entier positif est somme de quatre carrés.

Solution. 1. L’ensemble des carrés modulo p est de cardinal p+1
2 , de même

que l’ensemble des −1 − b2, donc on peut trouver a et b tels que a2 =
−1− b2. Avec c = 1, on trouve bien a2 + b2 + c2 ≡ 0 mod p.

2. L’image du réseau ∆ dans (Z/pZ)4 est un sous-groupe d’ordre p2, donc ∆
est un réseau de covolume p2 dans R4. D’après le théorème de Minkowski, il
existe un élément (x, y, z, t) dans ∆ tel que x2+y2+z2+t2 ≤ p· 4

volBR4 (0,1) .
Or, on calcule facilement

volBR4(0, 1) =

∫
1x2+y2+z2+t2≤1 dx dy dz dt

= π

∫
(1− x2 − y2)1x2+y2≤1 dx dy

= 2π2

∫ 1

0

(1− r2)r dr

= π2

3 .

Par suite, x2 +y2 +z2 + t2 ≤ p · 12
π2 < 2p. Comme tout élément de ∆ vérifie

x2 + y2 + z2 + t2 ≡ 0 mod p, on doit avoir x2 + y2 + z2 + t2 = p.
3. La multiplicativité de la norme sur l’algèbre des quaternions montre que le

produit de deux sommes de quatre carrés est encore une somme de quatre
carrés. Comme l’ensemble des sommes de quatre carrés contient tous les
nombres premiers, il est égal à l’ensemble des entiers naturels.

Pour décrire plus précisément la forme d’un réseau ∆ dans Rd, on pose la
définition suivante.

Définition 2.5 (Minima successifs). Les minima successifs d’un réseau ∆ dans
Rd sont les nombres réels positifs λ1(∆) ≤ λ2(∆) ≤ · · · ≤ λd(∆) définis par

λi(∆) = inf{λ > 0 | B(0, λ)∩∆ contient i vecteurs linéairement indépendants}.

Le second théorème de Minkowski exprime le fait que les vecteurs qui réa-
lisent les minima successifs sont toujours presque orthogonaux. Ci-dessous, l’es-
pace Rd est muni de sa norme euclidienne.
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Théorème 2.6 (Second théorème de Minkowski). Pour tout réseau ∆ dans Rd,

|∆| ≤ λ1(∆) . . . λd(∆) ≤ 2d|∆|
volBRd(0, 1)

.

Démonstration. Notons (vi)1≤i≤d une famille linéairement indépendante d’élé-
ments de ∆ tels que pour chaque i, ‖vi‖ = λi(∆). Comme le réseau ∆1 =
Zv1 ⊕ · · · ⊕ Zvd est inclus dans ∆, on peut majorer

|∆| ≤ |∆1| ≤
d∏
i=1

‖vi‖ = λ1(∆) . . . λd(∆).

Pour l’autre inégalité du théorème, on note (ui)1≤i≤d une base orthonormée de
Rd (obtenue par le procédé de Gramm-Schmidt) telle que pour tout i,

Vi := Vect(u1, . . . , ui) = Vect(v1, . . . , vi).

Soit T : Rd → Rd l’application linéaire telle que pour tout i = 1, . . . , d, Tui =
λi(∆)−1ui, et ∆′ = T∆. Montrons que λ1(∆′) ≥ 1. Pour cela, si v ∈ ∆, on écrit

v =

j∑
i=1

αivi, avec αj 6= 0.

Comme v est linéairement indépendant de (v1, . . . , vj−1), on a ‖v‖ ≥ λj(∆).
Par ailleurs, comme (ui) est orthonormée, ‖T−1|Vj‖ = λj(∆), et par suite

‖Tv‖ ≥ 1

‖T−1|Vi‖
‖v‖ ≥ 1,

d’où λ1(∆′) ≥ 1. Pour conclure, on applique le premier théorème de Minkowski
dans le réseau ∆′ :

1 ≤ λ(∆′)d ≤ 2d|∆′|
volBRd(0, 1)

=
1

λ1(∆) . . . λd(∆)
· 2d|∆|

volBRd(0, 1)
.

Exercice 19 (Norme et théorèmes de Minkowski).

1. Montrer que si l’espace Rd est muni d’une norme arbitraire, on a toujours

1

d!
· |∆| ≤ λ1(∆) . . . λd(∆) ≤ 2d

volBRd(0, 1)
· |∆|.

2. Vérifier que ces inégalités sont optimales.

Solution. 1.

2.
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2.3 Sous-espaces rationnels de hauteur bornée
Comme application du second théorème de Minkowski, nous allons montrer

un encadrement asymptotique du nombre de sous-espaces rationnels de dimen-
sion k et de hauteur inférieure à H.

Proposition 2.7. Pour tout entier d ≥ 1, pour tout k = 1, . . . , d−1, le nombre

Nk,d(H) = |{v ∈ Xk,d(Q) | H(v) ≤ H}|

vérifie
Nk,d(H) �d Hd.

Démonstration. Montrons d’abord par récurrence sur k que Nk,d(H) . Hd.
Pour k = 1, le résultat est clair puisque Nk,d(H) est égal au nombre de points
primitifs dans Zd de norme au plus H. (Voir exercice

ex:schanuelex:schanuel
?? sur le théorème de

Schanuel.) Supposons qu’on ait montré que pour tout H, Nk−1,d(H) .d Hd.
Par le second théorème de Minkowski, si v ∈ Xk(Q) vérifie H(v) ≤ H, alors
il existe v′ ∈ Xk−1(Q) tel que v′ ≤ v et H(v′) . H

k−1
k . Si v′ ∈ Xk−1,d(Q),

les éléments v ∈ Xk,d(Q) contenant v′ correspondent aux vecteurs primitifs du
réseau Zd/(v′ ∩Zd), de covolume H(v′)−1 et de dimension d−k+ 1 ; de plus, la
norme du vecteur de Zd/(v′∩Zd) correspondant à v est égale à H(v)H(v′)−1 ≤
HH(v′)−1. Par le cas k = 1, le nombre de tels sous-espaces est donc majoré par
.
(
HH(v′)−1

)d−k+1
H(v′) et par conséquent,

Nk,d(H) ≤
∑
v′ :

H(v′).H
k−1
k

(
HH(v′)−1

)d−k+1
H(v′)

.
∑
n :

2n.H
k−1
k

∑
v′ :

2n≤H(v′)<2n+1

(
H2−n

)d−k+1
2n

.
∑

n : 2n.H
k−1
k

2dn
(
H2−n

)d−k+1
2n

. Hd−k+1 ·
(
H

k−1
k

)k
. Hd.

La démonstration de l’inégalité réciproque est analogue, par induction rétro-
grade sur k. Remarquons d’abord qu’il existe c > 0 tel que Nd−1,d(H) =
N1,d(H) ≥ cHd. Supposons Nk,d(H) ≥ cH pour tout H. Le même raisonnement
que ci-dessus donne pour une constante c0 = c0(d),∑

v′ :
H(v′)≤H

(
H

k
k−1H(v′)−1

)d−k+1

H(v′) ≥ Nk,d(cH
k
k−1 ) ≥ cc

dk
k−1

0 H
dk
k−1

Le calcul ci-dessus, avec la majoration Nk−1,d(H) . Hd, montre qu’on peut
choisir c1 = c1(d) > 0 tel que∑

v′ :
H(v′)≤c1H

(
H

k
k−1H(v′)−1

)d−k+1

H(v′) ≤ 1
2cc

dk
k−1

0 H
dk
k−1 .
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Cela permet de conclure

Nk−1,d(H)c−d+k
1 H

d
k−1 ≥

∑
v′ :

c1H≤H(v′)≤H

(
HH(v′)−1

)d−k+1
H(v′)

≥ 1
2cc

dk
k−1

0 H
dk
k−1

et donc Nk−1,d(H) & Hd.

Application : Valeur heuristique de l’exposant diophantien
Supposons pour simplifier 1 ≤ k ≤ ` < d. Pour v dans Xk,d(Q), l’inégalité

d(x, v) ≤ ε définit dans X`,d(R) un voisinage de taille ε de la sous-variété

Ev = {x ∈ X`,d(R) | x ≥ v} ⊆ X`,d(R).

Cette sous-variété est de dimension (`−k)(d−`), et donc de codimension k(d−`).
Par conséquent, pour une mesure riemannienne sur X`,d(R), on peut évaluer

|{x ∈ X`,d(R) | d(x, v) ≤ ε}| � εk(d−`).

Comme il y a dans Xk,d(Q) à peu près Hd points de hauteur au plus H, on en
déduit que la somme∑

v∈Xk,d(Q)

|{x ∈ X`,d(R) | d(x, v) ≤ H(v)−β}|

converge si et seulement si β > d
k(d−`) . Cela suggère que d

k(d−`) est une valeur
critique pour l’exposant diophantien βk(x) défini au début de cette partie, par
la formule (

eq:betakeq:betak
??).

Le but de la suite de ce cours sera de démontrer le résultat suivant. On
rappelle qu’un pinceau dans X`,d est une sous-variété de la forme

PW,r = {x ∈ X`,d(R) | dimx ∩W ≥ r}

où W ≤ Rd est un sous-espace vectoriel, et r un entier positif. Un tel pinceau
est dit rationnel si le sous-espaceW est rationnel, et contraignant si r

dimW > `
d .

Théorème 2.8 (Approximation diophantienne dans la grassmannienne). Soient
1 ≤ k ≤ ` < d des entiers fixés.
(1) Pour tout x dans X`,d(R), βk(x) ≥ d

k(d−`) .

(2) Pour presque tout x dans X`,d(R), βk(x) = d
k(d−`) .

(3) Pour tout x dans X`,d(Q) non contenu dans un pinceau rationnel contrai-
gnant, βk(x) = d

k(d−`) .

Pour la démonstration de ce théorème, nous établissons dans la partie sui-
vante une correspondance entre les exposants βk(x) et l’existence de certains
petits vecteurs le long d’une orbite diagonale dans un espace de réseau bien
choisi.

Exercice 20. Vérifier que sans la restriction k ≤ `, l’exposant critique pour
l’approximation d’un élément x ∈ X`,d(R) par des sous-espaces rationnels de
dimension k est égal à d

min(k,`)(d−max(k,`)) . Expliquer pourquoi on peut déduire
le cas général du cas où k ≤ `.
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2.4 Exercices supplémentaires
Exercice 21. Le but de cet exercice est de donner une démonstration un peu
différente du premier théorème de Minkowski. Nous montrerons même le résultat
un peu plus précis suivant : si ∆ est un réseau de Rd et C un convexe symétrique,
le cardinal de ∆ ∩ C est minoré par |C|

2dµd(∆)
.

1. Justifier qu’on peut supposer sans perte de généralité que ∆ = Zd.
2. Pour n ≥ 1, notons ∆n = 1

nZ
d. Donner un équivalent du cardinal de

C
2 ∩∆n lorsque n tend vers l’infini.

3. En déduire que pour n assez grand, l’application C
2 ∩∆n → ∆n/∆ admet

une fibre de cardinal supérieur à |C|
2d

, et conclure.
4. Retrouver le point

premierpremier
?? du théorème ci-dessus.

Exercice 22. 1. Construire un réseau ∆ dans R3 tel que le sous-réseau qui
réalise µ2(∆) ne contienne pas les deux vecteurs qui réalisent les deux
premiers minima λ1(∆) et λ2(∆).

2. Justifier que si ∆ est un réseau dans Rd et v1, . . . , vd des vecteurs tels
que pour chaque i, ‖vi‖ = λi(∆), alors le sous-groupe ∆0 = Zv1 ⊕ . . .Zvd
vérifie [∆ : ∆0] ≤ 2d

|B(0,1)| .

3. Construire un réseau ∆ dans Rd, d ≥ 4 et des vecteurs v1, . . . , vd tels que
pour chaque i, ‖vi‖ = λi(∆), mais néanmoins ∆ > Zv1 ⊕ · · · ⊕ Zvd.



Chapitre 3

La correspondance de Dani

ch:dani
Cette partie est dédiée à la correspondance qui relie les exposants diophan-

tiens βk(x), k = 1, . . . , d−1 d’un élément x dansX`,d(R) à certaines orbites dans
l’espace des réseaux. Nous commençons par le cas plus simple où l’on approche
x par des droites, i.e. k = 1.

3.1 Approximation par des droites
Le groupe G = SLd(R) agit transitivement sur la variété X`,d(R), et le stabi-

lisateur du point base x0 = Vect(e1, . . . , e`) est égal au sous-groupe parabolique

P =

{
g ∈ G | g =

(
A B
0 C

)
, . . .

}
.

Nous utiliserons dans la suite l’identification

P\G → X`,d(R)
Pg 7→ g−1x0

et le sous-groupe diagonal à un paramètre

at = diag(e−
(d−`)t
d , . . . , e−

(d−`)t
d , e−

(d−`)t
d , . . . , e−

(d−`)t
d ).

Proposition 3.1 (Correspondance de Dani, k = 1). Soit x ∈ X`,d(R) et ux ∈ G
tel que x = Pux. L’exposant diophantien pour l’approximation de x par des
droites rationnelles est donné par

β1(x) =
1

d−`
d − γ1(x)

,

où γ1(x) = lim supt→+∞
−1
t log λ1(atuxZd).

Démonstration. Soit β < β1(x). Par définition de β1(x), il existe v ∈ P1(R)
arbitrairement proche de x tel que d(x, v) ≤ H(v)−β . Soit v ∈ Zd un vecteur
primitif tel que v = Rv. On décompose alors uxv suivant les espaces propres de
at :

uxv = v(0)
x + v(1)

x

25
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de sorte que
atuxv = e−

(d−`)t
d v(0)

x + e
`t
d v(1)

x .

À certaines constantes près dépendant du choix de ux, grâce au fait que v est
proche de x, on a

H(v) = ‖v‖ � ‖uxv‖ � ‖v(0)
x ‖

et
d(v, x) = d(v, u−1

x x0) � d(uxv, x0) � H(v)−1‖v(1)
x ‖.

Par conséquent,

‖atuxv‖ � H(v) max
(
e−

(d−`)t
d , e

`t
d d(x, v)

)
.

On choisit alors t > 0 tel que et = H(v)β , ce qui donne

‖atuxv‖ . e−t(
d−`
d −

1
β )

puis γ1(x) ≥ d−`
d −

1
β , i.e. β1(x) ≤ 1

d−`
d −γ1(x)

.

Réciproquement, supposons γ ∈ (0, d−`d ) et pour t > 0 arbitrairement grand,
v ∈ Zd vérifie ‖atuxv‖ ≤ e−γt. Si l’on note v la droite engendrée par le vecteur
v, alors

‖atuxv‖ � H(v) max
(
e−

(d−`)t
d , e

`t
d d(x, v)

)
≤ e−γt,

donc H(v) ≤ e( d−`d −γ)t et

d(x, v) ≤ H(v)−1e−t(γ+ `
d ) ≤ H(v)

−1−
γ+ `

d
d−`
d
−γ = H(v)

− 1
d−`
d
−γ .

Comme première application de cette correspondance, nous pouvons retrou-
ver le théorème de Dirichlet, qui donne la valeur minimale de l’exposant dio-
phantien β1(x).

Corollaire 3.2 (Dirichlet, Minoration de l’exposant diophantien). Pour tout x
dans X`,d(R), β1(x) ≥ d

d−` .

Démonstration. Comme l’action du sous-groupe (at)t∈R préserve le volume, le
réseau atuxZd est de covolume constant, et d’après le premier théorème de
Minkowski, cela implique λ1(atuxZd) . 1. Par conséquent, γ1(x) ≥ 0, puis
β1(x) ≥ d

d−` .

Nous verrons au paragraphe
ss:betapsss:betaps
?? que la correspondance de Dani permet aussi

d’obtenir la valeur presque sûre de l’exposant diophantien. Mais dans le cas
particulier k = 1, il est aussi simple de montrer directement le résultat.

Exercice 23. Vérifier que pour presque tout x dans X`,d(R), β1(x) = d
d−` .
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Solution. Pour v dans P1(Q), l’ensemble

{x ∈ X`,d(R) | d(v, x) ≤ ε}

est un voisinage de taille ε de la sous-variété Ev = {x ∈ X`,d(R) | x ⊇ v}.
La variété Ev est de dimension (`− 1)(d− `) (donc de codimension d− ` dans
X`,d(R)) donc∣∣{x ∈ X`,d(R) | d(v, x) ≤ H(v)−β}

∣∣ � H(v)−β(d−`).

Si β > d
d−` , en utilisant le fait que

∣∣{v ∈ P1(Q) | H(v) ≤ H}
∣∣ . Hd, on trouve∑

v∈P1(Q)

∣∣{x ∈ X`,d(R) | d(v, x) ≤ H(v)−β}
∣∣ < +∞,

et avec le lemme de Borel-Cantelli, cela montre que pour presque tout x, l’in-
égalité d(v, x) < H(v)−β n’a qu’un nombre fini de solutions, i.e. β1(x) ≤ d

d−` .

3.2 Approximation par des sous-espaces
Avec quelques modifications, on peut généraliser la correspondance de Dani

pour comprendre l’exposant βk(x) à partir d’une orbite diagonale dans un espace
de réseaux. Ici encore, on note G = SLd(R), P le stabilisateur du sous-espace
x0 = Vect(e1, . . . , e`), et on utilise l’identification

P\G → X`,d(R)
Pg 7→ g−1x0.

Rappelons que la puissance extérieure ∧kRd est un espace vectoriel engendrée
par une base (eI), où I décrit l’ensemble des parties de {1, . . . , d} à k éléments.
Il existe une unique application k-linéaire alternée

Rd × · · · × Rd → ∧kRd
(v1, . . . , vk) 7→ v1 ∧ · · · ∧ vk

telle que pour tout I = {i1 < i2 < · · · < ik}, ei1 ∧ · · · ∧ eik = eI . Un élément
de ∧kRd de la forme v1 ∧ . . . vk est dit décomposable ; notons que dès que k 6∈
{1, d−1}, il existe des vecteurs non décomposables, par exemple e1∧e2 +e3∧e4

dans ∧2R4.
Le groupe G = SLd(R) agit linéairement sur ∧kRd via la formule

g · (v1 ∧ · · · ∧ vk) = gv1 ∧ · · · ∧ gvk

étendue par linéarité à ∧kRd tout entier.
À un sous-groupe discret Λ = Zv1 ⊕ · · · ⊕ vk dans Rd, on associe le vecteur

wΛ = v1 ∧ · · · ∧ vk, qui, au signe près, ne dépend du choix de la base v1, . . . , vk.
Si l’on munit ∧kRd de la structure euclidienne pour laquelle la base (eI) est
orthonormée, on peut relier covolume et norme dans ∧kRd.

Proposition 3.3. Si Λ est un sous-groupe discret de rang k dans Rd, alors
|Λ| = ‖wΛ‖.
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Démonstration. Montrons d’abord que K = SOd(R) agit par isométries sur
∧kRd. Si J = {j1 < j2 < · · · < jk}, on calcule

geJ = gej1 ∧ · · · ∧ gejk =

d∑
i1,...,ik

gi1j1 . . . gikjkei1 ∧ · · · ∧ eik .

et de même, pour J = {j′1 < · · · < j′k},

geJ′ =

d∑
i1,...,ik

gi1j′1 . . . gikj′kei1 ∧ · · · ∧ eik .

Par conséquent,

〈geJ , geJ′〉 =
∑

i1,...,ik

gi1j1 . . . gikjkgi1j′1 . . . gikj′k = (g tg)j1j′1 . . . (g
tg)jkj′k ,

et si g ∈ SOd(R), g tg = 1 donc 〈geJ , geJ′〉 = δJJ ′ . L’image par g de la base
orthonormée (eI) est orthonormée, donc g induit une isométrie de ∧kRd.

Soit maintenant Λ un sous-groupe discret de rang k dans Rd. Quitte à mul-
tiplier Λ par un élément r ∈ SOd(R) (qui préserve à la fois le covolume et la
norme sur ∧kRd), on peut supposer que l’espace vectoriel engendré par Λ est
égal à Vect(e1, . . . , ek). Soit g1 ∈ GLk(R) tel que Λ = g1Zk, et g ∈ GLd(R) tel
que g = g1 sur Vect(e1, . . . , ek) et g = 1 sur Vect(ek+1, . . . , ed). Alors,

‖wΛ‖ = ‖g · (e1 ∧ · · · ∧ ek)‖ = |det g1|

tandis que par les propriétés de la mesure de Lebesgue sur Rk,

|Λ| = |det g1|.

Cela donne l’égalité souhaitée.

Rappelons que le sous-groupe diagonal (at)t∈R est défini par

at = diag(e−
(d−`)t
d , . . . , e−

(d−`)t
d , e

(d−`)t
d , . . . , e

(d−`)t
d ).

Si k ≤ `, l’élément at agit sur ∧kRd avec pour valeurs propres

e−
k(d−`)
d t, e−( k(d−`)d −1)t, e−( k(d−`)d −2)t, . . .

On note π+ : ∧kRd → ∧kRd le projecteur spectral de at associé à la valeur propre
e−

k(d−`)
d t ; en d’autres termes, π+ est la projection orthogonale sur l’espace

Vect(eI ; I ⊂ {1, . . . , `}).
Si Λ est un sous-groupe additif de Rd, on note ∧kΛ le sous-groupe de ∧kRd

engendré par les vecteurs de la forme v1 ∧ · · · ∧ vk, où les vi sont des éléments
de Λ. On laisse le soin au lecteur de vérifier que si Λ est un sous-groupe discret
(resp. un réseau) de Rd, alors ∧kΛ est un sous-groupe discret (resp. un réseau)
de ∧kRd.

Exercice 24. Vérifier que si Λ est un sous-groupe discret de rang ` dans Rd,
alors, pour tout k ≤ `, ∧kΛ est un sous-groupe discret de ∧kRd de covolume
|∧kΛ| = |Λ|

k
` (
`
k).



3.2. APPROXIMATION PAR DES SOUS-ESPACES 29

Solution. Écrivons Λ = gZ`, où Z` = Ze1 ⊕ · · · ⊕ Ze` et g ∈ GLd(R). L’élé-
ment g peut s’écrire g = k1ak2, avec k1, k2 ∈ Od(R) et a = diag(a1, . . . , ad),
ai > 0. Comme k1 et k2 agissent par isométries sur Rd et toutes ses puissances
extérieures, il suffit de vérifier le résultat lorsque g = a. Or,

|aZ`| =
∏̀
i=1

ai

tandis que le covolume de ∧k(aZ`) est égal au produit des valeurs propres de a
sur ∧kZ`, i.e.

|∧k(aZ`)| =
∏

1≤i1<···<ik≤`

ai1 . . . aik =

(∏̀
i=1

ai

) k
` (
`
k)

.

Cela montre l’égalité souhaitée.

La généralisation de la correspondance de Dani à l’approximation par des
sous-espaces de dimension k fait intervenir les petits vecteurs dans des réseaux
de ∧kRd. Il convient de noter qu’outre la norme de ces petits vecteurs, on doit
aussi contrôler leur direction.

pr:danigen Proposition 3.4 (Correspondance de Dani généralisée). Fixons des entiers 1 ≤
k ≤ ` < d. Soit x dans X`,d(R) et ux ∈ G tel que x = Pux. Alors,

βk(x) =
1

k(d−`)
d − γk(x)

,

où

γk(x) = sup

{
γ ∈ R

∣∣∣∣ ∃t→ +∞ : ∃w ∈ atux ∧k Zd :
‖w‖ ≤ e−γt

et ‖π+(w)‖ ≥ 1
2‖w‖

}
.

Démonstration. Soit β < βk(x). Il existe v ∈ Xk,d(Q) proche de x tel que
d(v, x) ≤ H(v)−β . Soit v ∈ ∧kZd le vecteur associé à v, de sorte queH(v) = ‖v‖.
On décompose uxv suivant les espaces propres de at :

uxv = v(0)
x + v(1)

x + . . .

et donc
atuxv = e−

k(d−`)
d tv(0)

x + e−( k(d−`)d −1)tv(1)
x + . . .

Pour contrôler la norme de atuxv, nous aurons besoin du lemme suivant.

lm:vr Lemme 3.5. Pour tout v ∈ Xk,d(Q) proche de x, à certaines constantes mul-
tiplicatives près dépendant du choix de ux, on a :

(i) ‖v(0)
x ‖ � H(v) ;

(ii) ‖v(1)
x ‖ � H(v)d(v, x) ;

(iii) ∀r ≥ 2, ‖v(r)
x ‖ . H(v)d(v, x)r.
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Démonstration. Tout d’abord,

H(v) = ‖v‖ � ‖uxv‖ � max
r≥0
‖v(r)

x ‖.

Par ailleurs, si Ex = {y ∈ Xk,d(R) | y ⊆ x}, alors d(v, x) � d(v,Ex). Notons
x0 = Vect(e1, . . . , e`) et V + = ∧kx0 ⊆ ∧kRd. Dans le plongement Xk,d(R) ↪→
P(∧kRd), la sous-variété Ex s’envoie sur u−1

x V +, donc

d(v, x) � 1
H(v)d(uxv, V

+)

� 1
H(v) max

r≥1
‖v(r)

x ‖.

Si v est assez proche de x (i.e. d(v, x) assez petit), cela implique que maxr≥1‖v(r)
x ‖

est petit devant H(v) � maxr≥0‖v(r)
x ‖, et donc

‖v(0)
x ‖ = max

r≥0
‖v(r)

x ‖ � H(v).

Ensuite, quitte à permuter les vecteurs de la base canonique, on peut écrire

1

‖v(0)
x ‖

uxv =

 Ik 0 0
0 I`−k 0

(uij) 0 Id−`

 e{1,...,k}.

Alors, d(v, x) � maxi,j |uij |, tandis que

v
(1)
x

‖v(0)
x ‖

=
∑

1≤j≤k
`<i≤d

±uije({1,...,k}\{j})∪{i}

donc
‖v(1)

x ‖ � ‖v(0)
x ‖d(v, x) � H(v)d(v, x).

Enfin, pour r ≥ 2, les coordonnées de v(r)
x

‖v(0)
x ‖

sont des polynômes homogènes de
degré r en les variables uij , donc

‖v(r)
x ‖

‖v(0)
x ‖

.

(
max
i,j
|uij |

)r
puis

‖v(r)
x ‖ . H(v)d(v, x)r.

Avec ce lemme, on majore

‖atuxv‖ . max
(
e−

k(d−`)
d t‖v(0)

x ‖, e−( k(d−`)d −1)t‖v(1)
x ‖, . . .

)
. H(v)e−

k(d−`)
d t max

(
1, e−td(v, x), e−2td(v, x)2, . . .

)
et choisissant t tel que et = H(v)β , on obtient

‖atuxv‖ . H(v)e−
k(d−`)
d t = e−( k(d−`)d − 1

β )t.
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Comme la plus grande coordonnée de atuxv est atteinte le long de V +, on a
aussi (quitte à diminuer t d’une constante) ‖π+(atuxv)‖ ≥ 1

2‖atuxv‖ et donc
γk(x) ≥ k(d−`)

d − 1
β i.e.

βk(x) ≤ 1
k(d−`)
d − γk(x)

.

Réciproquement, supposons que pour t > 0 arbitrairement grand, on puisse
trouver v ∈ ∧kZd tel que

‖atuxv‖ ≤ e−γt et ‖π+(atuxv)‖ ≥ 1
2‖atuxv‖.

D’après le lemme de Mahler ci-dessous, on peut supposer que v est un élément
décomposable de ∧kZd. Soit v ∈ Xk,d(Q) l’élément correspondant à v. Avec les
notations de la première partie de la démonstration, on a alors

max
(
e−

k(d−`)
d t‖v(0)

x ‖, e−( k(d−`)d −1)t‖v(1)
x ‖, . . .

)
. ‖atuxv‖ ≤ e−γt (3.1) eq:gamma

et le maximum doit être essentiellement atteint sur la première coordonnée, i.e.

‖v(0)
x ‖ & max

r≥1
ert‖v(r)

x ‖.

Comme t > 0 est arbitrairement grand, cela implique que d(v, x) ≤ maxr≥1‖v(r)
x ‖

‖v(0)
x ‖

est arbitrairement petit. On peut donc appliquer le lemme
lm:vrlm:vr
?? : ‖v(0)

x ‖ � H(v)

et ‖v(1)
x ‖ � H(v)d(v, x). L’inégalité (

eq:gammaeq:gamma
??) donne alors

H(v) � ‖v(0)
x ‖ . e(

k(d−`)
d −γ)t

tandis que ‖π+(atuxv)‖ ≥ 1
2‖atuxv‖ implique

d(v, x) . e−t . H(v)
− 1
k(d−`)
d

−γ .

Nons démontrons maintenant le lemme de Mahler que nous avons utilisé
dans la démonstration ci-dessus.

lm:mahler Lemme 3.6 (Mahler). Soit ∆ un réseau dans Rd. Les minima successifs du
réseau ∧k∆ dans ∧kRd sont essentiellement égaux aux nombres

λI(∆) = λi1(∆) . . . λik(∆); I = {i1 < i2 < · · · < ik} ⊆ {1, . . . , d}.

De plus, ∧k∆ contient une famille de vecteurs décomposables qui réalisent ces
minima successifs à une constante multiplicative près ne dépendant que de d.

Démonstration. Soit (vi)1≤i≤d une famille de vecteurs linéairement indépen-
dants dans ∆ tels que pour chaque i, ‖vi‖ = λi(∆). Pour I = {i1 < · · · < ik},
le vecteur vI = vi1 ∧ · · · ∧ vik vérifie

‖vI‖ ≤ λi1(∆) . . . λik(∆) = λI(∆).



32 CHAPITRE 3. LA CORRESPONDANCE DE DANI

Mais par ailleurs, d’après le second théorème de Minkowski appliqué au réseau
∆, ∏

I

λI(∆) =

(
d∏
i=1

λi(∆)

) k
d (dk)

� |∆|
k
d (dk) = |∧k∆|.

Les vecteurs vI ∈ ∧k∆ sont linéairement indépendants et vérifient
∏
I‖vI‖ �

|∧k∆| ; le second théorème de Minkowski (dans ∧k∆) implique qu’ils réalisent
les minima successifs de ∧k∆ à une constante près.

Lorsque k ≥ 2, la condition ‖π+(w)‖ ≥ 1
2‖w‖ est indispensable pour définir

γk(x), et on ne peut donc pas appliquer le premier théorème de Minkowski pour
conclure que γk(x) ≥ 0 pour tout x. Cependant, comme nous l’expliquons dans
le paragraphe suivant, la correspondance permet déjà de calculer la valeur de
γk(x) pour presque tout x dans X`,d(R).

3.3 Valeur presque sûre de βk(x)
ss:betaps

Commençons par un corollaire important de la correspondance établie au
paragraphe précédent.

cor:nulextremal Corollaire 3.7 (Taux de fuite nul ⇒ extrémalité). Si x ∈ X`,d(R) vérifie

lim
t→+∞

1
t log λ1(atuxZd) = 0,

alors βk(x) = d
k(d−`) pour tout k = 1, . . . , `.

Démonstration. Soit x ∈ X`(R) tel que limt→∞
1
t log λ1(atsxZd) = 0. Pour tout

ε > 0 on a, pour tout t > 0 suffisamment grand, λ1(atsxZd) ≥ e−εt. Par le
second théorème de Minkowski, cela implique

e−εt ≤ λ1(atsxZd) ≤ · · · ≤ λd(atsxZd) ≤ edεt.

Soient u1, . . . , ud dans atsxZd des vecteurs qui réalisent ces minima successifs.
D’après le lemme

lm:mahlerlm:mahler
?? ci-dessus, les vecteurs

uτ = uτ1 ∧ · · · ∧ uτk , τ = {τ1 < · · · < τk} ⊂ {1, . . . , d}, card τ = k

réalisent les minima successifs de ∧katsxZd à une constante multiplicative près
qui ne dépend que de d. En particulier, en faisant tendre ε vers 0, on trouve
limt→∞

1
t log λ1(∧katsxZd) = 0 ce qui implique γk(x) ≤ 0 i.e. βk(x) ≤ d

k(d−`) .
Pour l’inégalité réciproque, notons que les vecteurs uτ engendrent un sous-

réseau d’indice borné dans ∧katsxZd, et forment une famille essentiellement
orthogonale. Par conséquent, il existe τ tel que le vecteur u = uτ vérifie
‖π+(u)‖ & ‖u‖. Comme on a aussi ‖uτ‖ . ekdε, cela donne

γk(x) & kdε

puis, en faisant tendre ε vers zéro, γk(x) ≥ 0. Par la proposition
pr:danigenpr:danigen
??, cela implique

βk(x) ≥ d
k(d−`) .
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Avec quelques propriétés élémentaires de la mesure de Haar sur l’espace des
réseaux, cette observation permet de démontrer le théorème suivant, qui est
le but de ce paragraphe. Ci-dessous, et dans toute la suite, la variété X`,d(R)
est munie d’une « mesure de Lebesgue », i.e. de n’importe quelle mesure sur
X`,d(R) équivalente à la mesure de Hausdorff en dimension dimX`,d = `(d− `)
pour une métrique riemannienne.

th:beta1ps Théorème 3.8 (Valeur presque sûre de l’exposant diophantien). Soit des en-
tiers 1 ≤ k ≤ ` < d. Pour presque tout x dans X`,d(R), βk(x) = d

k(d−`) .

Comme ci-dessus, on note G = SLd(R) et Γ = SLd(Z). L’espace Ω des
réseaux unimodulaires dans Rd s’identifie à G/Γ et supporte une unique mesure
mΩ invariante à gauche par G telle que

∀f ∈ Cc(G),

∫
G

f =

∫
G/Γ

∑
γ∈Γ

f(gγ)

 dmΩ(gΓ).

Le théorème
th:beta1psth:beta1ps
?? découlera facilement du lemme suivant.

lm:voispointe Lemme 3.9 (Mesure d’un voisinage de la pointe). Étant donné un entier d ≥
1, à certaines constantes multiplicatives près ne dépendant que de d, pour tout
ε > 0,

mΩ({∆ | λ1(∆) < ε}) . εd.

Admettons momentanément ce lemme, et voyons comment en déduire le
théorème

th:beta1psth:beta1ps
??.

Démonstration du théorème
th:beta1psth:beta1ps
??. Comme la mesure mΩ est invariante par G, la

borne du lemme ci-dessus donne, pour tout t > 0,

mΩ({∆ | λ1(at∆) < e−εt}) . e−dεt.

Avec le lemme de Borel-Cantelli, cela implique, pour presque tout ∆ dans Ω,

lim
t→+∞

1

t
log λ1(at∆) = 0.

Or, cette propriété est invariante par translation de ∆ par un élément du sous-
groupe parabolique P = StabG Vect(e1, . . . , e`), puisque pour tout p dans P ,
l’élément atpa−t converge lorsque t tend vers +∞ et qu’on peut écrire atp∆ =
(atpa−t)at∆. Par conséquent, on a aussi, pour presque tout x dans X`,d(R) '
P\G,

lim
t→+∞

1

t
log λ1(atuxZd) = 0

et d’après le corollaire
cor:nulextremalcor:nulextremal
??, cela implique βk(x) = d

k(d−`) pour tout k = 1, . . . , `.

Le dernier paragraphe de ce chapitre a pour but de démontrer l’encadrement
asymptotique donné par le lemme

lm:voispointelm:voispointe
?? ; nous y verrons au passage une importante

formule de Siegel, qui permet de mieux comprendre la mesure mΩ sur l’espace
des réseaux.
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3.4 Formule de Siegel

Si l’on note L le stabilisateur du vecteur e1 dans la représentation standard,
l’espace quotient G/L ' Rd \ {0} supporte une unique mesure invariante mG/L

telle que

∀f ∈ Cc(G),

∫
G

f =

∫
G/L

(∫
L

f(g`) d`

)
dmG/L(gL).

À un facteur près,mG/L coïncide avec la mesure de Lebesgue sur Rd. Exercice.
Calculer le facteur de proportionnalité si mΩ est une mesure de probabilité. Les
mesures mΩ et mG/L sont reliées par le théorème suivant.

Théorème 3.10 (Formule de Siegel). Si f ∈ Cc(Rd), la transformée de Siegel
f̃ de f , définie sur Ω par l’expression

f̃(∆) =
∑

v∈∆ primitif

f(v)

vérifie ∫
Ω

f̃ =

∫
Rd
f.

Démonstration. Notons ΓL = Γ ∩ L, et montrons que si φ ∈ Cc(G/ΓL), alors∫
G/ΓL

=

∫
G/L

(∫
L/ΓL

φ(guΓL) du

)
d(gL).

Comme tout élément φ dans Cc(G/ΓL) peut s’obtenir comme projection d’un
élément de Cc(G) (cf. Raghunathan, Lemma 1.1), il suffit de vérifier l’égalité
lorsque φ est de la forme

φ(gΓL) =
∑
γ∈ΓL

ψ(gγ), avec ψ ∈ Cc(G).

Dans ce cas, la formule découle des définitions des mesures de Haar sur G/L et
L/ΓL.

Le même raisonnement, en échangeant les rôles de Γ et L, montre que

∫
G/ΓL

φ =

∫
G/Γ

∑
Γ/ΓL

φ(gγΓL)

 d(gΓ).

Choisissant φ(gΓL) = f(ge1), on obtient∫
L/ΓL

f(gue1) du = vol(L/ΓL) · f(ge1) = vol(L/ΓL) · f(gU)

tandis que ∑
γ∈Γ/ΓL

f(gγe1) =
∑

v∈∆ primitif

f(v) = f̃(gΓ).
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Si l’on sait que vol(L/ΓL) est fini, cela donne la formule souhaitée. Or, le sous-
groupe L est isomorphe au produit semi-direct SLd−1(R) n Rd−1, donc le quo-
tient L/ΓL est une extension compacte de SLd−1(R)/SLd−1(Z), dont on peut
supposer par récurrence qu’il est de volume fini. Cela achève notre démonstra-
tion.

À l’aide de la formule de Siegel, nous pouvons facilement borner la mesure
de l’ensemble des réseaux contenant un petit vecteur.

Démonstration du lemme
lm:voispointelm:voispointe
??. On applique la formule à la fonction f = 1B(0,ε).

Dans ce cas,

f̃(∆) = |{v ∈ ∆ primitif | ‖v‖ < ε}|
≥ 1{λ1(∆)<ε}

et donc
mΩ({λ1 < ε}) ≤

∫
Ω

f̃ =

∫
Rd
f = cdε

d.

Exercice 25 (Une généralisation de la formule de Siegel).
Une famille de vecteurs (v1, . . . ,vk) d’un réseau Λ est dite primitive si elle se
complète en une base de Λ. Étant donné une fonction f sur (Rd)k, on définit la
k-ième transformée de Siegel f̃k par

f̃k =
∑

(v1,...,vk) primitive

f(v1, . . . ,vk).

1. Montrer que
∫

Ω
f̃k = ck,d

∫
Rdk f , avec cd,k = 1

ζ(d)ζ(d−1)...ζ(d−k+1) .

2. En déduire que mΩ({λ1 < ε}) &d εd.
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Chapitre 4

Approximation des points
algébriques

ch:algebrique
Le théorème de Roth montre que si θ est un nombre algébrique réel irra-

tionnel, alors, pour tout ε > 0, l’inégalité
∣∣∣θ − p

q

∣∣∣ < 1
q2+ε n’a qu’un nombre

fini de solutions p
q dans Q. Nous avons aussi vu au paragraphe

sec:rnsec:rn
?? que pour les

deux formes d’approximation — simultanée ou par formes linéaires — dans Rn,
Schmidt a généralisé ce théorème en calculant l’exposant β1(x) d’un point x
dans Pn(Q) ou l’exposant β1(x∗) d’un hyperplan x∗ dans P∗n(Q). Dans le pré-
sent chapitre, nous montrons que ces résultats sont des cas particuliers d’une
formule générale pour l’exposant βk(x) d’un sous-espace x de dimension ` dans
Rd qui admet une base constituée de vecteurs à coordonnées dans Q.

La démonstration de cette formule repose sur la correspondance établie
au chapitre précédent, et sur l’interprétation du théorème du sous-espace de
Schmidt en termes d’orbites diagonales dans l’espace des réseaux. Nous com-
mençons par développer le formalisme des polygones de Grayson, qui sera com-
mode pour décrire la géométrie de l’espace des réseaux.

4.1 Sous-modularité et polygone de Grayson
Les vecteurs qui réalisent les minima successifs d’un réseau ne sont pas uni-

quement définis, ce qui peut être gênant. Dans ce paragraphe, nous associons
à chaque réseau un drapeau partiel uniquement défini, et étroitement relié aux
vecteurs qui réalisent les minima successifs. Les idées de la construction seront
encore utiles au paragraphe, pour interpréter le théorème du sous-espace de
Schmidt.

Définition 4.1. Les covolumes successifs µ1(∆), . . . , µd(∆) d’un réseau ∆ dans
Rd sont les réels strictement positifs définis pour i = 1, . . . , d par

µi(∆) = min{|V | ; V sous-groupe de rang i dans ∆}.

Exercice 26. Montrer qu’à certaines constantes multiplicatives près ne dépen-
dant que de d, la donnée des covolumes successifs est équivalente à celle des
minima successifs : µi(∆) � λ1(∆) . . . λi(∆).

37
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pr:hn Proposition 4.2 (Filtration de Harder-Narasimhan d’un réseau). Soit ∆ un ré-
seau dans Rd et c∆ : {0, . . . , d} → R la plus grande fonction convexe telle que
c∆(0) = 0 et pour chaque i ≥ 1, c∆(i) ≤ logµi(∆). Si i est un point angulaire
de c∆, il existe un unique sous-groupe Vi de rang i dans ∆ tel que |Vi| = µi(∆).
De plus, si I = {i1, . . . , ik} est l’ensemble des points angulaires de c∆, alors les
sous-espaces Vis , s = 1, . . . , k forment un drapeau partiel de ∆ :

{0} < Vi1 < · · · < Vik < ∆.

La proposition ci-dessus découlera d’un résultat général sur les applications
sous-modulaires sur la variété grassmannienne, le théorème

th:hnth:hn
?? ci-dessous. Rap-

pelons que si K est un corps quelconque et d ∈ N∗, la variété grassmannienne
Grass(Kd) est par définition l’ensemble des sous-espaces vectoriels de Kd.

Définition 4.3 (Sous-modularité). Soit K un corps quelconque. Une applica-
tion τ : Grass(Kd)→ R est dite sous-modulaire si elle vérifie

∀V,W ∈ Grass(Kd), τ(V ∩W ) + τ(V +W ) ≤ τ(V ) + τ(W ).

La fonction covolume sur les sous-groupes d’un réseau de Rd fournit l’exemple
fondamental d’application sous-modulaire.

pr:smcovol Proposition 4.4. Étant donné un réseau ∆ dans Rd, on peut identifier l’en-
semble des sous-groupes primitifs de ∆ à la variété grassmannienne Grass(Qd).
Alors, la fonction définie par τ(W ) = log|W | est sous-modulaire.

Démonstration. Choisissons des éléments décomposables u, v et w dans ∧∗∆
tels qu’avec l’identification d’un sous-groupe primitif avec son représentant dans
∧∗∆,

V ∩W = u, V = u ∧ v, et W = u ∧w.

Il s’agit de voir que les volumes des parallélépipèdes correspondants vérifient

‖u‖‖u ∧ v ∧w‖ ≤ ‖u ∧ v‖‖u ∧w‖.

Pour cela, on remarque que ‖u ∧ v ∧w‖ = ‖u ∧ v‖ · ‖pU⊥(w)‖, où pU⊥ est la
projection orthogonale sur U⊥, tandis que ‖u∧w‖ = ‖u‖·‖pV ⊥(w)‖. L’inégalité
souhaitée découle alors du fait que ‖pV ⊥(w)‖ ≤ ‖pU⊥(w)‖.

L’importance de la notion de sous-modularité provient de la construction
donnée par le théorème suivant, qui généralise la proposition

pr:hnpr:hn
??.

th:hn Théorème 4.5. Soit K un corps de caractéristique nulle et τ : Grass(Kd)→ R
une application sous-modulaire. Soit c : [0, d] → R la plus grande fonction
convexe dont le graphe soit situé en-dessous de tous les points (dimW, τ(W )),
W ≤ Kd. Si I = {i1 < · · · < ik} désigne l’ensemble des points angulaires de c,
il existe un unique drapeau partiel

F : {0} < Vi1 < Vi2 < · · · < Vik < Kd

tel que pour chaque s, dimVis = is et c(is) = τ(Vis). De plus, tout sous-espace
W tel que τ(W ) = c(dimW ) est compatible avec le drapeau F .
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Définition 4.6. La fonction c : [0, d] → R est appelée polygone de Grayson,
et le drapeau partiel F est la filtration de Harder-Narasimhan associée à la
fonction sous-modulaire τ .

La démonstration du théorème
hnhn
?? se fonde sur l’observation géométrique

suivante, dite « règle du parallélogramme » : si V,W sont deux sous-espaces de
Kd, et si on place les points (dimV ∩W, τ(V ∩W )), (dimV, τ(V )) et (dimV +
W, τ(V +W )), alors le point (dimW, τ(W )) est situé sur la demi-droite verticale
au-dessus du quatrième point du parallélogramme.

V ∩W

V

V +W

lieu des valeurs possibles pour W

Figure 4.1 – La règle du parallélogramme

Lemme 4.7 (Lemme de sous-modularité). Soit τ : Grass(Kd) → R une fonc-
tion sous-modulaire telle que τ(0) = 0. L’ensemble des sous-espaces V tels que

τ(V )

dimV
= inf

W

τ(W )

dimW

admet un unique plus grand élément.

Démonstration. Posons

a := inf
V

τ(V )

dimV
.

Si V etW sont deux sous-espaces tels que τ(V )
dimV = τ(W )

dimW = a, la sous-modularité
et la définition de a comme valeur minimale permettent de majorer

τ(V +W ) ≤ τ(V ) + τ(W )− τ(V ∩W )

≤ τ(V ) + τ(W )− adim(V ∩W )

= a dimV + adimW − a dim(V ∩W ) = a dim(V +W ).

L’ensemble des sous-espaces qui réalisent la borne inférieure infW
τ(W )
dimW est

stable par addition, donc la somme de tous ces sous-espaces est l’unique plus
grand élément de cet ensemble.

Exercice 27. Le lecteur attentif aura noté une erreur dans la démonstration
ci-dessus : on ne sait pas a priori que la borne inférieure a = infW

τ(W )
dimW est

atteinte.
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1. Soit Vn une éventuelle suite de sous-espaces de dimension maximale telle
que τ(Vn)→ −∞. Montrer que si D est une droite fixée quelconque, alors
τ(Vn +D)→ −∞. En déduire que τ est nécessairement minorée.

2. Soit k maximal tel qu’il existe V de dimension k approchant la borne
inférieure a = infW

τ(W )
dimW . Justifier qu’il existe ε > 0 tel que pour tout V ′

de dimension strictement supérieure à k, τ(V ′)
dimV ′ ≥ a+ ε.

3. Expliquer comment corriger la démonstration du lemme de sous-modularité.

Démonstration du théorème
th:hnth:hn
??. Le lemme de sous-modularité donne exacte-

ment l’existence du sous-espace Vi1 . On procède ensuite par récurrence. Suppo-
sons définis des sous-espaces Vi1 < · · · < Vis et une fonction c(s) : [0, d]→ R tels
que

1. c(s) est convexe, affine par morceaux, avec pour points angulaires {i1, . . . , is−1} ;
2. c(s) est située au-dessous de tout point de la forme (dimV, τ(V )), V ≤ Kd ;

3. Si τ(V ) = c(s)(dimV ), alors le sous-espace V est compatible avec le dra-
peau partiel Vi1 < · · · < Vis .

Le lemme de sous-modularité appliqué dans l’espace quotient Kd/Vis montre
qu’il existe un unique sous-espace Vis+1

contenant Vis , et qui minimise le rapport
τ(V )−τ(Vis )

dimV−dimVis
parmi tous les sous-espaces contenant Vis . Notons

a =
τ(Vis+1)− τ(Vis)

dimVis+1
− dimVis

.

Pour définir la fonction c(s+1), on ajoute le point (is, τ(Vis)) et on impose une
pente égale à a sur le segment [is, d]. Nous voulons vérifier que c(s+1) vérifie
encore les trois propriétés ci-dessus. La première est claire, par construction.
Comme c(s+1) et c(s) coïncident sur l’intervalle [0, is], les deuxième et troisième
propriétés sont satisfaites si dimV ≤ is. Si dimV > is, on a par construction
de c(s+1) (noter que V + Vis contient Vis)

τ(V + Vis) ≥ c(s+1)(dim(V + Vis))

et
τ(V ∩ Vis) ≥ c(s+1)(dim(V ∩ Vis)).

Les points correspondants à Vis , V ∩ Vis et V + Vis sont tous au-dessus du
graphe de c(s+1). Comme c(s+1) est convexe, la règle du parallélogramme montre
que le point (dimV, c(s+1)(dimV )) est aussi au-dessus du graphe de c(s+1).
Formellement, les pentes de c(s+1) sont croissantes donc

c(s+1)(dim(V + Vis))− c(s+1)(dimVis) ≥ c(s+1)(dimV )− c(s+1)(dim(V ∩ Vis))

puis

τ(V ) ≥ τ(V ∩ Vis) + τ(V + Vis)− τ(Vis)

≥ c(s+1)(dim(V ∩ Vis)) + c(s+1)(dim(V + Vis))− c(s+1)(dimVis)

≥ c(s+1)(dimV ).
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De plus, en cas d’égalité, on doit avoir c(s+1)(dim(V +Vis))− c(s+1)(dimVis) =
c(s+1)(dimV )− c(s+1)(dim(V ∩ Vis)), et comme c(s+1) admet un angle strict en
is, cela force dim(V ∩ Vis) = is i.e. V ⊃ Vis . Mais alors, par définition de Vis+1

,
on a V ⊂ Vis+1

.

Remarque. On peut aussi comprendre les minima successifs d’un réseau ∆ via
la théorie de la réduction : toute matrice g dans GLd(R) admet une décompo-
sition de Siegel

g = kanγ,

où k ∈ Od(R), γ ∈ GLd(Z), n est unipotente triangulaire supérieure et vérifie
|nij | ≤ 1

2 si i < j, et a = diag(a1, . . . , ad), avec ∀i, ai+1 ≥
√

3
2 ai. Alors, pour

chaque i, log λi(∆) � ai. Cela permet notamment de montrer facilement que
si l’espace Ω des réseaux dans Rd est muni d’une distance riemannienne qui
provient d’une métrique riemannienne invariante à droite sur GLd(R), alors,
pour tous réseaux ∆,∆′,

d(∆,∆′) = ‖c∆ − c∆′‖+Od(1).

Exercice 28. Soit ∆ un réseau dans Rd et F∆ : {0} < Vi1 < · · · < Vik < ∆ sa
filtration de Harder-Narasimhan.

1. Justifier que pour tout s, logµis(∆) = c∆(is).
2. Montrer que pour tout i ∈ {1, . . . , d}, logµi(∆) = c∆(i) +Od(1).
3. Justifier que la donnée du polygone de Grayson d’un réseau ∆ est es-

sentiellement équivalente à celle des minima successifs, ou des covolumes
successifs de ∆.

4.2 Le théorème du sous-espace paramétrique
Comme auparavant, nous noterons dans ce paragraphe Q ⊂ R l’ensemble des

nombres réels algébriques. Nous voulons interpréter théorème du sous-espace de
Schmidt en termes d’orbites diagonales de réseaux dans Rd qui admettent une
base constituée de vecteurs à coordonnées dans Q. Le but de cette partie est le
résultat suivant qui décrit le comportement asymptotique d’une telle orbite au
premier ordre.

th:sep Théorème 4.8 (Théorème du sous-espace paramétrique). Soit ∆ un réseau al-
gébrique, i.e. ∆ = LZd avec L ∈ GLd(Q), et (at)t∈R un sous-groupe diagonal à
un paramètre. Alors,

1. le diagramme de Grayson renormalisé 1
t cat∆ converge en +∞ vers une

limite c∞ ;
2. si i1 < · · · < ik désignent les points angulaires de c∞, il existe un drapeau

partiel {0} < Vi1 < · · · < Vik < Zd tel que pour tout t > 0 assez grand,
pour s = 1, . . . , k, les is premiers minima successifs de at∆ dont atteints
dans atLVis .

Les observations de la partie précédente sur les applications sous-modulaires
vont nous permettre de construire facilement la limite c∞ et le drapeau partiel
associé, ce qui sera à la base de la démonstration du théorème.
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Définition 4.9. Le taux d’expansion d’un sous-groupe discret V ≤ Rd par le
flot diagonal (atL)t∈R est la quantité

τL(V ) = lim
t→+∞

1

t
log|atLV |.

Remarque. Cette limite est bien définie, c’est le logarithme de la plus grande
valeur propre de a1 apparaissant dans la décomposition de LV suivant les es-
paces propres de at dans ∧dimV Rd. Elle ne dépend que du sous-espace vectoriel
engendré par V .

Nous déduirons le théorème
th:septh:sep
?? du théorème du sous-espace de Schmidt, que

nous avons déjà utilisé au paragraphe
sec:dimsupsec:dimsup
??, et que nous rappelons ci-dessous.

Théorème 4.10 (Théorème du sous-espace de Schmidt). Soit L ∈ GLd(Q) et
L1, . . . , Ld les formes linéaires sur Rd données par les lignes de L. Pour tout
ε > 0, l’ensemble des solutions v ∈ Zd à l’inégalité

|L1(v) . . . Ld(v)| ≤ ‖v‖−ε

est inclus dans une union finie d’hyperplans.

Exercice 29. Démontrer le théorème de Schmidt dans le cas particulier L ∈
GLd(Q).

Dans un cours plus complet, on démontrerait le théorème de Schmidt, et
alors le théorème

th:septh:sep
?? pourrait apparaître comme un résultat intermédiaire dans

la démonstration. Quoiqu’il en soit, il est bon de savoir que les deux énoncés
sont équivalents.

Démonstration du théorème
th:septh:sep
??. Il découle de la proposition

pr:smcovolpr:smcovol
?? que le taux de

contraction par (atL)t∈R définit une application sous-modulaire sur Grass(Qd).
Notons c∞ le polygone de Grayson et {0} < Vi1 < · · · < Vik < Qd la filtration de
Harder-Narasimhan associés à τL, et montrons que les conclusions du théorème
sont alors satisfaites.

Remarquons que pour s = 1, . . . , k, par définition du taux de contraction,
1
t log|atLVis | = τL(Vis) + o(1). Cela implique que

lim sup
1

t
logµis(atLZd) ≤ τL(Vis) = c∞(is).

En d’autres termes, pour ε > 0, pour t > 0 grand, la fonction convexe 1
t cat∆ est

située au-dessous de c∞+ε en tout point angulaire de c∞, donc 1
t cat∆ ≤ c∞+ε.

Ainsi,

lim sup
1

t
cat∆ ≤ c∞.

Pour montrer la limite souhaitée, il suffit de minorer les pentes de 1
t cat∆ à droite

de chaque point angulaire en montrant que pour s = 1, . . . , k,

lim inf
1

t
log λis+1(atLZd) ≥

τL(Vis+1)− τL(Vis)

is+1 − is
.

Pour fixer les idées, écrivons at = diag(eA1t, . . . , eAdt), avec A1 ≥ · · · ≥ Ad,
ce qui est toujours possible, quitte à permuter les éléments de la base canonique
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de Rd. Commençons par le cas s = 0 ; on veut donc montrer que pour ε > 0, pour

tout t > 0 assez grand, λ1(atLZd) ≥ e(
τL(Vi1

)

i1
−ε)t. Soit V ≤ Zd de dimension

minimale tel que pour t > 0 arbitrairement grand, il existe v ∈ V tel que

‖atLv‖ ≤ e(
τL(Vi1

)

i1
−ε)t. On associe à V un ensemble JV ⊂ {1, . . . , d} de cardinal

dimV de la façon suivante j1 est minimal tel que Lj1 |V 6= 0
j2 est minimal tel que (Lj1 |V , Lj2 |V ) est libre
. . . etc.

Alors,
τL(V ) =

∑
j∈JV

Aj .

Donc, pour tout v ∈ V vérifiant ‖atLv‖ ≤ e(
τL(Vi1

)

i1
−ε)t, on a∏

j∈JV

|Lj(v)| = e−τL(V )t
∏
j∈JV

eAjt|Lj(v)|

≤ e−τL(V )te(dimV )(
τL(Vi1

)

i1
−ε)t

≤ e−(dimV )εt.

Mais ‖v‖ . e−A1t‖atLv‖ ≤ eAt, où A = |A1|+ |Ad|, et donc, pour ε′ = ε dimV
A ,∏

j∈JV

|Lj(v)| ≤ ‖v‖−ε
′
.

D’après le théorème du sous-espace de Schmidt, les solutions de cette inégalité
sont contenues dans un nombre fini de sous-espaces strictsW < V , mais par mi-
nimalité de V , pour t > 0 assez grand, chaque telW ne contient pas de solution à

‖atLv‖ ≤ e(
τL(Vi1

)

i1
−ε)t. Cela montre ce qu’on voulait : lim inf 1

t log λ1(atLZd) ≥
τL(Vi1 )

i1
.

Pour s ≥ 1, on procède par récurrence, en supposant le résultat connu pour
s−1. Soit V ≤ Zd contenant Vis−1

et de dimension minimale tel que pour t > 0
arbitrairement grand, il existe v ∈ V tel que

‖atLv‖ ≤ e
t(
τL(Vis

)−τL(Vis−1
)

is−is−1
−ε)

.

Pour j ∈ JV \ JVis−1
, on peut choisir successivement des éléments αj` ∈ Q tels

que
Mj = Lj −

∑
`∈JVis−1

αj`L` ≡ 0 sur Vis−1 .

Alors, ‖atMv‖ . ‖atLv‖ et donc∏
j∈JV \JVis−1

|Mj(v)| ≤ e−t(τL(V )−τL(Vis−1
))e

t(dimV−is−1)(
τL(Vis

)−τL(Vis−1
)

is−is−1
−ε)

≤ e−tε(dimV−is−1) ≤ ‖v‖−ε
′
.

Le théorème du sous-espace de Schmidt dans l’espace quotient Zd/Vis−1
permet

donc de conclure comme dans le cas s = 0 déjà traité ci-dessus.
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4.3 Application aux variétés grassmanniennes
Comme au chapitre

ch:danich:dani
??, on fixe des entiers 1 ≤ k ≤ ` < d, et on s’intéresse

aux approximations d’un élément x dans X`,d(R) par des points rationnels dans
Xk,d(Q). Rappelons que l’exposant diophantien βk(x) est défini par

βk(x) = sup

{
β > 0

∣∣∣∣ ∃v ∈ Xk,d(Q) :
d(v, x)→ 0
d(v, x) ≤ H(v)−β

}
.

De plus, si sx est un élément de SLd(R) tel que x = s−1
x ·Vect(e1, . . . , e`), et

at = diag(e−
(d−`)t
d , . . . , e−

(d−`)t
d , e

(d−`)t
d , . . . , e

(d−`)t
d ),

la proposition
pr:danigenpr:danigen
?? relie l’exposant βk(x) à l’orbite du réseau atsxZd par la formule

βk(x) =
1

k(d−`)
d − γk(x)

,

où

γk(x) = sup

{
γ ∈ R

∣∣∣∣ ∃t→ +∞ : ∃w ∈ atux ∧k Zd :
‖w‖ ≤ e−γt

et ‖π+(w)‖ ≥ 1
2‖w‖

}
.

Les résultats du paragraphe précédent vont nous permettre de calculer explicite-
ment la quantité γk(x) lorsque x est un sous-espace défini sur Q, i.e. admettant
une base de vecteurs à coordonnées dans Q.

Pour cela, commençons par remarquer qu’avec les notations ci-dessus, le
taux de contraction d’un sous-espace W ≤ Rd sous l’action de atux est donné
par

τx(W ) = −1

d
((d− `) dimx ∩W − `(dimW − dimx ∩W )) ,

donc
τx(W )

dimW
=
`

d
− dimx ∩W

dimW

est minimal si et seulement si dim x∩W
dimW est maximal.

Par conséquent, le drapeau {0} = V0 < Vi1 < · · · < Vik < Vd = Qd du
théorème

th:septh:sep
?? s’obtient par récurrence de la façon suivante : Vi1 est l’unique sous-

espace rationnel de dimension maximale qui maximise le quotient dim x∩Vi1
dimVi1

, et
par récurrence, Vis est l’unique sous-espace rationnel contenant Vis−1

de dimen-

sion maximale et qui maximise
dim x∩Vis−dim x∩Vis−1

is−is−1
. De plus, les pentes

Λi := lim
t→+∞

1
t log λi(atsxZd)

du polygone limite c∞ sont données par

Λi =
`

d
−

dimx ∩ Vis − dimx ∩ Vis−1

is − is−1
si is < i ≤ is+1.

Ces observations permettent déjà d’obtenir l’exposant d’un sous-espace algé-
brique hors de certaines contraintes rationnelles. On rappelle qu’un pinceau
dans X`,d est une sous-variété de la forme

PW,r = {x ∈ X`,d(R) | dimx ∩W ≥ r}
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où W ≤ Rd est un sous-espace vectoriel, et r un entier positif. Un tel pinceau
est dit rationnel si le sous-espaceW est rationnel, et contraignant si r

dimW > `
d .

Théorème 4.11 (Extrémalité d’un sous-espace algébrique non dégénéré). Si
x ∈ X`,d(Q) n’est inclus dans aucun pinceau rationnel contraignant, alors, pour
tout k ∈ {1, . . . , `}, βk(x) = d

k(d−`) .

Démonstration. Si x n’est inclus dans aucun pinceau rationnel contraignant, le
drapeau ci-dessus est réduit à {0} = V0 < Vd = Zd, et pour tout i, Λi = 0.
En particulier, limt→+∞

1
t log λ1(atsxZd) = 0, et d’après le corollaire

cor:nulextremalcor:nulextremal
??, cela

implique βk(x) = d
k(d−`) pour tout k = 1, . . . , `.

Plus généralement, nous allons montrer le théorème suivant, qui donne une
formule explicite pour γk(x) lorsque x appartient à X`,d(Q).

expalg Théorème 4.12 (Exposants d’un sous-espace algébrique). Soit x ∈ X`(Q) et
{0} < Vi1 < · · · < Vik < Zd le drapeau partiel défini ci-dessus. Pour s =
1, . . . , k, posons

js = dimx ∩ Vis .

Alors, pour k = 1, . . . , `, notant ks = min(js, k),

γk(x) = −
r∑
s=0

(ks+1 − ks)Λis+1 =
−k`
d

+

r∑
s=0

(ks+1 − ks)(js+1 − js)
is+1 − is

.

Démonstration. Considérons le sous-réseau de ∧kZd défini par

S = ∧k1Vi1 ∧ (∧k2−k1Vi2) ∧ · · · ∧ (∧kr+1−krVir+1
).

Le théorème
th:septh:sep
?? implique que pour tout ε > 0, pour tout t > 0 suffisamment

grand, le réseau atsxS admet une base de vecteurs dont la norme est majorée
par

exp[t(ε+

r∑
s=0

(ks+1 − ks)Λis+1)].

De plus, par définition des entiers ks, ce sous-espace contient un vecteur pur vx ∈
∧kx. L’élément sxvx appartient à l’image Vect(eI ; I ⊂ {1, . . . , `}), donc il existe
dans atsxS un vecteur v tel que ‖π+(v)‖ & ‖v‖ et ‖v‖ ≤ et(

∑r
s=0(ks+1−ks)Λis+1+O(ε)).

Comme ε > 0 est arbitrairement petit, cela montre déjà l’inégalité

γk(x) ≥ −
r∑
s=0

(ks+1 − ks)Λis+1.

Réciproquement, le théorème
th:septh:sep
?? montre aussi que pour ε > 0, pour tout t > 0

suffisamment grand, tout vecteur v dans ∧kZd tel que

‖atsxv‖ ≤ et(−ε+
∑r
s=0(ks+1−ks)Λis+1)

appartient à un sous-espace

S′ = ∧k
′
1Vi1 ∧ (∧k

′
2−k

′
1Vi2) ∧ · · · ∧ (∧k

′
r+1−k

′
rVir+1

)
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avec pour un certain u, k′u > k ≥ ku. Par définition des entiers ks, s = 1, . . . , r,
le sous-espace S′ ne contient aucun vecteur pur non nul de ∧kx, et donc il existe
c > 0 tel que pour tout vecteur pur v ∈ S′, ‖sxv − π+(sxv)‖ ≥ c‖sxv‖. Cela
implique

‖atsxv‖ ≥ ce−t(
k
`−

1
`−

1
d−` )‖sxv‖

& et(
1
`+ 1

d−` )‖π+(atsxv)‖

et montre que le vecteur atsxv ne saurait satisfaire ‖π+(atsxv)‖ ≥ 1
2‖atsxv‖.

Ainsi, γk(x) ≤ ε−
∑r
s=0(ks+1 − ks)Λis+1. Lorsque ε tend vers zéro, on obtient

le résultat souhaité.

Cette formule permet déjà de montrer que l’exposant diophantien βk(x) d’un
sous-espace défini sur Q est toujours supérieur à l’exposant générique d

k(d−`) , et
donne une condition nécessaire et suffisante pour qu’il y ait une égalité.

Corollaire 4.13. Pour tout x ∈ X`(Q) et tout k ≤ `, on a βk(x) ≥ d
k(d−`) , avec

égalité si et seulement si x n’est inclus dans aucun pinceau rationnel contrai-
gnant.

Démonstration. D’après la proposition
pr:danigenpr:danigen
??, l’exposant diophantien βk(x) est

donné par βk(x) = 1
k(d−`)
d −γk(x)

, et il suffit donc de montrer que γk(x) ≥ 0, avec
égalité si et seulement si x n’est inclus dans aucun pinceau rationnel contrai-
gnant. Lorsque k = `, on a ks = js pour chaque s, et donc

γ`(x) =
−k`
d

+

r∑
s=0

(js+1 − js)2

is+1 − is
.

On écrit alors

d

r∑
s=0

(js+1 − js)2

is+1 − is
= (

r∑
s=0

(is+1 − is)2

is+1 − is
)(

r∑
s=0

(js+1 − js)2

is+1 − is
)

≥ (

r∑
s=0

js+1 − js)2 = `2

et cela montre que γ`(x) ≥ 0. L’inégalité γk(x) ≥ 0 pour k ≤ ` découle du cas
particulier k = `, car comme la fonction s 7→ js+1−js

is+1−is est décroissante,

r∑
s=0

(ks+1 − ks)(js+1 − js)
is+1 − is

≥ k

`

r∑
s=0

(js+1 − js)2

is+1 − is
.

En effet, la fonction constante par morceaux f : x 7→ js+1−js
is+1−is si js < x ≤ js+1 est

décroissante, et l’égalité ci-dessus s’écrit simplement
∫ k

0
f(x)dx ≥ k

`

∫ `
0
f(x)dx.

Si γk(x) = 0, les calculs ci-dessus montrent que γ1(x) = 0, et cela implique
j1
i1

= `
d ce qui par définition de Vi1 n’est possible que si Vi1 = Qd, i.e. x n’est

inclus dans aucun pinceau rationnel contraignant. Réciproquement, si x n’est
inclus dans aucun pinceau rationnel contraignant, on doit avoir Vi1 = Qd, et
donc γk(x) = 0 pour tout k = 1, . . . , `.

Remarque. Nous verrons au chapitre suivant que cette minoration de l’expo-
sant diophantien est encore valable pour tout x dans X`,d(R).


