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Introduction

Le but de ce cours est de mettre en évidence quelques liens entre 'approxi-
mation diophantienne et ’étude des réseaux d’un espace euclidien.

L’ensemble Q des nombres rationnels est dense dans la droite réelle R :
tout élément 6 dans R peut étre approché par une suite de points rationnels
%. Le domaine de I’approximation diophantienne est celui de I’étude de ces
approximations rationnelles.






Chapitre 1

Approximation diophantienne
dans R"

Commengons par le rappel de la théorie classique de 'approximation dio-
phantienne en dimension 1.

1.1 La droite réelle

Le théoréme suivant est un exemple typique des résultats que nous cherche-
rons & établir dans ce cours. On I’énonce parfois de la facon suivante : « Tout
nombre réel est approchable & 'ordre 2 par des rationnels ».

Théoréme 1.1. Pour tout 0 € R, il existe un rationnel % arbitrairement proche

de 0 et tel que ‘0—% <q%.

Démonstration. Nous donnons d’abord une démonstration de ce théoréme qui
repose sur la théorie des fractions continues, et donne en outre un algorithme
pour construire une suite de rationnels approchant 6 et vérifiant I'inégalité du
théoréme.
Sans perte de généralité, on peut supposer 6 > 0. Posons alors 6y = 6, puis
pour tout n > 0,
1

an = 0] et 9n+1:9 —

Notons [é

observe que

. 1
} la droite engendrée par le vecteur ( 0) dans R2. Par récurrence, on

o] = () (o) o] )

0= + . 1.2
Qg ay + 1 ( )

. .
Fant Ont1

et
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On peut définir deux suites d’entiers (p,,)n>0 €t (gn)n>0 par les égalités

dn  4n+1 _ 0 1 0 1
n o Pntl I ag) "\l apy1)
En particulier, prenant 6,1 = +o0o dans (??) ci-dessus, on trouve

1
S S
dn a1 +

4L

an

De plus, (??7) montre que 6 est une fonction monotone de 6,41 € [an+1, +00) et

. < 1 . P . , .
donc appartient a I'intervalle 2’ n —’; ”ii Les bornes ne sont pas nécessairement
n’ qn

dans cet ordre.) On remarque alors que le déterminant de la matrice qui définit
Dn €t qn est

dn dn+1 _ (_1)n
Pn Pn+1
. . Pt pn _ (=D .
Cela implique T a T aan et par suite
1 1
’ ~ Pl < <.
qn dndn+1 dn

Exercice 1 (Théoréme de Hurwitz).

(a) Montrer qu’il existe n arbitrairement grand tel que % > ¢ = 1+2\/5_

1

(b) En déduire que ‘9 — k<L P

dn

(c) Vérifier que si ¢ < 1/4/5, on a ‘q’) — %

> q% pour tout rationnel p/q.

Solution. (a) Les entiers ¢, vérifient la relation de récurrence ¢, +1 = ap4+1qn+
Gn—1- Si a, > 2 pour n arbitrairement grand, alors ¢, 11 > 2¢, > ¢q, et
on a ce quon veut. Si a, = 1 pour tout n suffisamment grand, et si
Gn < PGn—1, Alors ¢ri1 = gn + Gn-1 < (1+1/0)gn = dqy.

(b) Remarquons que si % > ¢, alors q’(;ﬂ + qqﬁ > ¢+ i = /5, et donc
Pn+1 - Iﬁ

1 1 Qn Qn+1 1 1 1
< ) =—7=(
qn+1 dn

< = —(5—+ )
Gnln+1 nni1V5 Gnt1 In VEiad o @

Pn  Pn+1l
n’ qn+1

H — Pn
an

Comme 6 appartient a l'intervalle [ }, on doit avoir <

1
— @ VE

1 Pn+1
ou |0 —
q%\/g ’ qn+1
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(¢) Notons ¢’ = %ﬁ Pour tout rationnel p/q qui approche ¢, on peut écrire,
pour € > 0 arbitrairement proche de 0,

sslo-2e-2

q q q
/ P
s<¢—¢+s>¢—q\

=(W5+e)

p

o
q

Le théoréme 77 ci-dessus peut aussi se démontrer trés simplement a ’aide du

principe des tiroirs de Dirichlet. On obtient méme 1’énoncé un peu plus précis
suivant.

Théoréme 1.2 (Dirichlet). Soit § € R. Pour tout Q@ € N*, il existe ¢ €
{0,...,Q} etp € Z tels que ‘9 — %‘ < é. En particulier, l'inégalité ‘9 — g) < q%
admet une infinité de solutions (p,q) € Z2.

Démonstration. On découpe intervalle [0,1] en @Q tiroirs [%, %[ Comme la
famille {¢g§ mod 1; ¢ =0,...,Q} contient Q+1 éléments, le principe des tiroirs
montre que deux d’entre eux appartiennent au méme tiroir. Par conséquent, il

existe q; > go dans {0,...,Q} et p1,p2 € Z tels que

[(q10 — p1) — (q20 — p2)| < é

Posant ¢ = g1 — g2 et p = p1 — po, on trouve bien ‘9 — 5 < é O

Pour quantifier la qualité des approximations rationnelles & un réel u donné,
on peut lui associer un exposant diophantien.

Définition 1.3. Etant donné § € R, on définit I’exposant diophantien 3(6) €
[2, +oc] par

5(9)_mf{5>0|3c>0:v§e<@,

9—p‘2cqﬁ}.
q

Le lemme de Borel-Cantelli permet de calculer facilement ’exposant dio-
phantien d’un point 6 choisi aléatoirement dans R suivant la mesure de Le-
besgue.

Théoréme 1.4 (Exposant presque str). Pour presque tout 6 dans R au sens
de la mesure de Lebesgue, B(6) = 2.

Démonstration. D’aprés le principe de Dirichlet, 3(6) > 2 pour tout 0, et il
suffit donc de démontrer I'inégalité opposée. Si I est un intervalle borné de R
et € > 0, on pose, pour q € N*,

Ay ={0el|Ipeck: ‘Hz‘nga}.
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Cet ensemble est réunion d’au plus 2¢|I| intervalles de longueur ¢=2~¢, donc
Al Sa 7%

En particulier, Y >1 | A, < 400, et par le lemme de Borel-Cantelli, pour presque
tout @ dans I, il existe gy tel que pour tout ¢ > qo, 8 € A,. Cela montre que
B(0) < 2+¢, et ala limite quand € tend vers 0, on trouve bien 8(#) <2. O

Exercice 2 (Théoréme de Khintchine).
Etant donné une fonction v: N — N, on considére I’équation

‘o _ 2| < (g (Ey)

q

1. Montrer que si >: -, q¥(g) < +oo, alors, pour presque tout ¢ dans R,
I'inégalité (?7) n’a qu'un nombre fini de solutions £ dans Q.

2. (Difficile) Montrer que si 1 est décroissante et vérifie Zq>1 q¥(q) = o0,
alors, pour presque tout # dans R, I'inégalité (??7) admet une infinité de

solutions % )

Solution. 1.
2.

Le dernier résultat que nous voulons mentionner dans cette théorie de I’ap-
proximation des nombres réels par des rationnels est le célébre théoréme de
Roth, qui montre que du point de vue de I'’exposant diophantien, les points
algébriques irrationnels se comportent comme les points génériques pour la me-
sure de Lebesgue.

Théoréme 1.5 (Roth). Si 6 € R\ Q est algébrique, i.e. racine d’un polynome
a coefficients rationnels, alors B(0) = 2.

La démonstration de ce théoréme est difficile, et trop longue pour étre incluse
dans ces notes. Dans le cas particulier ou 0 est algébrique de degré 2, on peut
en donner une démonstration élémentaire, cf. exercice ci-dessous.

Exercice 3 (Théoréme de Liouville).

1. Montrer qu’il existe ¢ > 0 tel que pour tout rationnel %, ‘\[ — % > q%.
En déduire que £(v/2) = 2.
2. Plus généralement, montrer que si 6 est un nombre algébrique de degré d,

alors 3(0) < d. En déduire que 6 =3 -, 10~™ est transcendant.

Solution. 1.
2.

Remarque. S’il existe ¢ > 0 tel que ‘9 — %’ > q% pour tout rationnel %, on dit

que 0 est mal approchable par les rationnels. L’argument de 1’exercice ci-dessus
montre que ’ensemble BA des réels mal approchables contient I’ensemble des
irrationnels quadratiques. On peut par ailleurs montrer que BA est négligeable
pour la mesure de Lebesgue, mais de dimension de Hausdorff égale 4 1. On
ne sait toujours pas si BA contient un nombre algébrique de degré strictement
supérieur a 2.
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1.2 La correspondance de Dani

Rappelons qu'un réseau A dans R? est un sous-groupe discret i 2 généra-
teurs. En d’autres termes, pour une certaine base (u1,us) de R?

A= Zul EBZU,Q

L’action linéaire du groupe GL2(R) des matrices inversibles & coefficients dans
R induit une action transitive sur espace Qs des réseaux de R? ; le stabilisateur
du réseau Z? est égal au sous-groupe GLy(Z) des matrices a coefficients entiers
dont I'inverse est aussi & coefficients entiers. Cela permet d’identifier

Qs ~ GL2(R)/GLy(Z).
Pour décrire la position d’'un élément A de 'espace €25, nous utiliserons deux
quantités :
— la systole A1 (A) = min{||v|| ; v € A\ {0}}
— le covolume pa(A) = ||ug Augll, si A = Zuy & Zus.
Un résultat fondamental de Minkowski montre que le covolume majore le

carré de la systole.

Théoréme 1.6 (Minkowski). Pour tout réseau A dans R?, \j(A)? < %/}Q(A).

Démonstration. Soit u; € A\ {0} de norme minimale, et ug € A minimal tel
que (u1,us) soit libre. Ecrivons us = zuj + yull, ol uf est orthogonal & uq, et
de méme norme. Alors, ||uz||? = |lu1||*(2? + y?) et comme par choix de ug, on
doit avoir ||us|| < |Jug & u1]|, on obtient

24y < (z+1)2 492

d’ou |z| < £ puis |y| > % (Faire un dessin.) Cela implique pa(A) > [Jus Aus|| =
[ylllun > > G2 Aa(A)2. 0

Exercice 4 (Sommes de deux carrés).

1. Soit p un nombre premier impair. Montrer que —1 est un carré modulo p
si et seulement si p =1 mod 4.

2. Soit p=1 mod 4, et a tel que a®>+1 =0 mod p. A 'aide du réseau A =

1

3. En déduire qu’'un entier n est somme de deux carrés si et seulement si
pour tout p =3 mod 4, v,(n) est pair.

Z <a) + pZ?, montrer qu’il existe deux entiers x,y tels que p = 22 + y2.

Solution. 1. Le groupe multiplicatif (Z/pZ)* est cyclique, donc —1 est un
carré si et seulement si (—1)1)%1 =1.

9. Tout élément (*) de A vérifie 22 + y2 = 0 mod p. Le réseau A est de

covolume p, donc, d’aprés le premier théoréme de Minkowski, il contient
un élément tel que 22 + 3% < %p < 2p. Comme 2% 4 y? est un multiple
de p, on doit avoir 22 + 3% = p.
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3. Légalité (22 + 92) (22 + ) = (22 + ty)? + (2t — yz)? montre que I'en-
semble des sommes de deux carrés est stable par produit, et avec la ques-
tion précédente, cela implique qu’il contient tous les entiers n vérifiant
vp(n) = 0 mod 2 pour tout p = 3 mod 4. Réciproquement, supposons
n = z2 + y2. Le lemme chinois montre que pour tout p, ’équation a? +
b> = 0 mod p*»(™) admet une solution (a,b) # 0 mod p’»(™). Ecrivant
a = p“a; et b= pPby, on peut supposer o < S et alors a? —&-pz(ﬁ_“)b% =0
mod p?»(M =2 Si 4, (n) est impair, alors v,(n) —2a # 0, donc 2% +y? =
a une solution non triviale dans Z/p*»(")=2¢Z, et donc aussi dans Z/pZ.
Donc —1 est un carré modulo p, et cela implique p =1 mod 4.

On considére maintenant le sous-groupe & un parameétre (a;)¢cr dans GLa(R)

défini par
_ e"z 0
T\ 0 et)

et on cherche a comprendre le comportement asymptotique d’une orbite (a;A);cr
dans ’espace (25.

Définition 1.7. Le tauz de fuite d’un réseau A sous action de (a;) dans

I’espace des réseaux est défini par

~v(A) = lim sup %1 log A1 (a:A).

t——+o0

Exercice 5. 1. Montrer que pour tout A dans Qs, v(A) € [0,1].

2. En utilisant ’ergodicité de I'action de (a;):er sur 22, montrer que pour
presque tout A dans Qs, v(A) = 0.

Le lien entre 'approximation diophantienne et I’espace des réseaux se fait
grace a la correspondance de Dani, dont une forme est la proposition suivante.

Proposition 1.8 (Correspondance de Dani). Pour 6 € R, posons ug = < ! O)

-0 1
et Ag = ugZ?. Alors,
1

3 —(As)

Démonstration. Supposons ‘9 — %‘ <q B, ie |p—qb| < g Pt Pour t > 0, on

o ()= (65w

et choisissant t > 0 tel que et = ¢, on obtient donc, pour v = (;Z)),

po) =

calcule

B
8+1 _

lagugu]| < g2+ = 7

).

N
Tl

Cela montre déja que v > % — % Réciproquement, si v = <Z> vérifie ||a;ugv|| <

e~ pour ¢ > 0, on en tire ¢ < e(2= puis

'9 _ P' P CAS S S =
q q
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don B > 1. O
5=

no

Exercice 6. Soit A un réseau dans R? admettant une base a coefficients algé-
briques. En admettant le théoréme de Thue-Siegel-Roth, montrer que v(A) =0
sauf si A contient un vecteur sur 'axe des abscisses, auquel cas y(A) = 1.

1.3 Approximation en dimension supérieure

Etant donné un point § = (1, ...,0,) dans R, il existe traditionnellement
deux problémes d’approximation par des rationnels au point 6, qui généralisent
tous deux le cadre de la droite réelle.

(A) Approximation simultanée

On définit 'exposant diophantien §;(#) pour I'approximation simultanée de
la fagon suivante :

ﬂl(a)zsup {6>0 El(qvplv"'7pn):

(B, Bk2) =0 }

_ P -8B
| < g

maxi<i<n ‘ i

Pour la suite, il sera approprié de voir cette approximation dans I’espace pro-
jectif P*(R) des droites vectorielles dans R"*1. Pour x et y dans P"(R), on note
<(z,y) Pangle entre les droites = et y et on définit la distance entre x et y par

d(z,y) = |sin<(x,y)|.

La hauteur d’un point rationnel v € P*(R) — i.e. d’'une droite dans R"*!
engendrée par un vecteur rationnel — est définie par

H(v) =min{|v||; vevnZ"}.

Exercice 7 (Théoréme de Schanuel).
Montrer que le nombre le points rationnels v dans P" tels que H(v) < H est

vol(Bgnt1(0.1) | prn+1 lorsque H tend vers +oo.

équivalent a RGESY

L’exposant diophantien d’un point  dans P"(R) pour I’approximation par
des droites rationnelles est

Bi(x) = sup {ﬁ >0 ‘ Jv e P"(Q) : d(v,x;) zg(v)fﬁ } :

Si x est la droite engendrée par le vecteur (1,6y,...,6,), on retrouve bien l'ex-
posant (1(0) défini ci-dessus. Les résultats du paragraphe 77 se généralisent de
la facon suivante. Ci-dessous, et dans la suite, on note Q I’ensemble des nombres
réels algébriques, i.e. qui sont racines d’un polynéme non nul & coefficients dans
Q. Par P*(Q) on désigne I'ensemble des droites dans R"*! qui contiennent un
vecteur dont toutes les coordonnées sont dans Q.

Théoréme 1.9 (Propriétés de 'exposant diophantien 8; sur P™).
1. (Dirichlet) Pour tout x € P*(R), 31(z) > “L.

n
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2. (Borel-Cantelli) Pour presque tout x € P*(R), By (x) = 2L,

n

3. (Roth-Schmidt) Pour tout x € P*(Q) hors de tout sous-espace rationnel
strict, By (z) = 2L,

Démonstration. (Dirichlet) Quitte & permuter les coordonnées, on peut suppo-
ser que la droite x est engendrée par le vecteur (1,60q,...,6,). Montrons que
pour tout entier ) > 1, il existe des entiers ¢ € {1,...,Q} et p1,...,p, € Z tels
e qC;%.

La démonstration est essentiellement la méme qu’en dimension n = 1 : on
counsidére les @ + 1 points de [0,1)™ obtenus par réduction modulo 1 des points
(¢01,.-.,99,), ¢ = 0,...,Q. Pour des raisons de volume, les cubes (modulo 1)
de coté Q*% centrés en chacun de ces points ne sauraient étre tous disjoints,
donc il existe ¢’ < ¢” tels que pour certains entiers py, ..., pn,

que pour chaque i,

Vie{l,...,n}, |¢"0;—q0;—pi| < in.

Cela donne ce qu’on veut, en posant ¢ = ¢’ — ¢'.

(Borel-Cantelli) Le nombre de points rationnels de hauteur au plus H dans
P+ satisfait

Np«(H) = {v € P*(Q) | H(v) < H}Y| S H"™.
Pour 8 > 0, on peut donc majorer la mesure de I’ensemble

Ag= |J BHD?

veP™(Q):
H<H(v)<2H

par |Ag| < H"T'7". En particulier, si 8 > %t la somme Y, _o|An|
converge, et donc, d’aprés le lemme de Borel-Cantelli, pour presque tout x
dans P*(R), pour tout H = 2* suffisamment grand, » ¢ Ag. Cela implique
Bi(z) < ”TH Par le principe de Dirichlet, I'inégalité opposée est toujours véri-
fice, donc B1(x) = ™ pour presque tout x dans P!(R).

(Roth-Schmidt) Le calcul de 'exposant des points algébriques est plus subtil, il
requiert l'introduction du théoréme du sous-espace de Schmidt, et fait ’objet
du reste de ce paragraphe. [

Nous admettrons le résultat fondamental suivant, qui a justement été démon-
tré par Schmidt dans le but de généraliser le théoréme de Roth en dimension
supérieure.

Théoréme 1.10 (Schmidt, théoréme du sous-espace). Soit d € N* et L un élé-
ment de GL4(Q), dont on note Ly, ..., Ly les lignes. Pour toute > 0, I’ensemble
des v € Z% tels que

|L1(v) ... La(v)| < [[v]~*
est contenue dans une union finie d’hyperplans.

A partir de ce résultat, nous pouvons facilement calculer I’exposant d’un

point = dans P"(Q).
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Démonstration du théoreme 77, 5. On peut supposer que la droite z est en-
gendrée par un vecteur de la forme (1,6s,...,0,41), ou 0; € Q. Notant v =
(¢,p1,--.,pn un élément de R™*1, on définit n+ 1 formes linéaires sur R"*! par

Li(v)=q

Si v désigne la droite engendrée par le vecteur v, on majore

[Li(v)[ < |Iv]
Vi > 2, |Li(v)| S [Iv] - d(v, 2).

En particulier, si d(v,z) < H(v)_":1 —¢, alors

L1 (V) oo Ly (V)| S H(v)"  H(v) 75559 < v e

et d’aprés le théoréme du sous-espace de Schmidt, les solutions v & cette inégalité
sont contenues dans un nombre fini d’hyperplans rationnels. Si V' est un tel
hyperplan, alors x ¢ V', par hypothése, et donc = ne peut pas étre approché par
un élément v = Rv dans V Cela montre que Vinégalité d(v,z) < H(v)~ """
n’a qu'un nombre fini de solutions v € P"(Q), d’ou f1(z) < “H. Ici encore
I'inégalité réciproque découle du principe de Dirichlet. O

—€

(B) Approximation des formes linéaires

Le deuxiéme probléme d’approximation classique associé & un point 6 =
(61,...,0,) dans R™ est celui de la recherche de solutions entiéres (¢, p1,...,pn)
a I'inégalité

—p+1
lg +p161 + -+ pnbn| < <1rgia<xnpi|) : (1.3)

Cette inégalité s’interpréte géométriquement comme un probléme d’approxi-
mation dans U'espace projectif dual P**(R), que l'on identifie & ’ensemble des
hyperplans de R"*1. Si 2* = (1,6y,...,0,)" désigne 'hyperplan orthogonal au
vecteur (1,01,...,6,), et v = Rv, ou v = (q,p1,...,Pn), I'inégalité ci-dessus
peut se réécrire

d(v,z*) < H(v)™"

ot cette fois d(v, z*) désigne la distance du point v a I’hyperplan = dans l’espace
projectif P™(R).

Comme ci-dessus, on définit ’exposant diophantien d’un élément z dans
P**(R) pour 'approximation par des droites rationnelles est

ﬂl(o:*>—sup{ﬁ>o ‘Hveﬂ’m(@: Lo, 00 = Ho)8 }

A titre d’exercice, on laisse le soin au lecteur de vérifier que les résultats du
paragraphe 77 se généralisent aussi & ce cadre.

Théoréme 1.11 (Propriétés de 'exposant diophantien §; sur P*").
1. (Dirichlet) Pour tout z* € P**(R), f1(z*) > n+ 1.
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2. (Borel-Cantelli) Pour presque tout z* € P*"(R), S1(z*) =n + 1.

3. (Roth-Schmidt) Pour tout z* € P**(Q) ne contenant aucun sous-espace
rationnel non trivial, B1(x*) = n+ 1.

Exercice 8 (Approximation par des formes linéaires).

Expliquer comment on peut aussi interpréter I'inégalité (?7) comme un pro-
bléeme d’approximation de la droite z = R(1,61,...,6,) par un hyperplan ra-
tionnel. Si I'on note 8, (x) ’exposant diophantien associé, justifier que 8, (z) =

61(£ZZJ‘).

1.4 Exercices supplémentaires

Exercice 9 (Meilleures approximations).
(a) Montrer que la suite (|¢,0 — pn|)n>0 est décroissante.
(b) Pour tout rationnel g avec ¢ < ¢pn, on a |qg0 — p| > |gn-10 — pn—1|.
(¢) Réciproquement, montrer que si 6 est irrationnel et
0 —pl= min |¢0—p
g0 — pl ¢SQ)pJq Pl

pour un certain @ > ¢, alors g apparait dans la suite (%)nzo.

Solution. (a) La matrice

1 0 dn  4n-—1 _ dn qn—1
-0 1 n  Pn-1 Pn — Qno Pn—1— Qn—le

est de déterminant égal a 1 en valeur absolue. Par suite,

dn—1

1
‘pnfl - Qn710| > ; - |pn - Qn9|

n n

et comme 1 > ¢41]¢n0 — pnl|, on trouve

—1
qn9|(qn+1 _ Qn

|pn71 - C]nfle| 2 |pn - ) = an+1|pn - Qng‘ Z ‘pn - qn9|

n dn

-1
qn O 1 O 2
(5 a) (o 1)

admet une base donnée par

(b) Le réseau unimodulaire

1 anl/Qn >

h“7u2]::<Qn(pn'_qn9) G (Pn—1 — Gn-10).

Les vecteurs u; et ug sont tous deux dans [0,1] x [—1,1], avec des signes
a/an
qn(p — q9)
réseau, avec q < ¢,. En utilisant le fait que la premiére coordonnée de v
appartient a [0, 1), on observe (faire un dessin) que la deuxiéme coordonnée
de v est minorée en valeur absolue par la deuxiéme coordonnée de us, i.e.

opposés sur la seconde coordonnée. Soit v = ( > un élément du

Inlp — 40| > @nlpn—1 — qn-10].
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(¢c) Soit n tel que g,—1 < @ < ¢,. La question précédente montre que |¢f—p| =
maxy<q, p|¢'0 — p| = |¢n-10 — pn—1|, et cela implique ¢ = ¢,,—1 car 6 est
irrationnel. (Si 6 est rationnel, on peut aussi montrer ¢ = ¢,,—1, mais c’est
un peu plus subtil, cf. Khinchin, Continued fractions.)

Exercice 10 (Un théoréme de Legendre).

Montrer que si % n’apparait pas dans la suite (2—")”20, alors ‘9 - %

- 2q2~

Solution. On raisonne par contraposée en supposant |¢(gf —p)| < % Le réseau

unimodulaire
gt 0 1 0 72
0 q -0 1

1
q0 —p)

T q'/q ) . :
autre vecteur v = = du réseau appartenant a [0, 1] x R doit
(y) <Q(¢9‘—PU> PP 0.1]

contient le vecteur u = (q( ), qui appartient a {1} x [-1/2,1/2]. Tout

vérifier
|det(u,v)| = |zq(qg0 —p) +y| > 1

et par conséquent

T 1
IﬂdH—ﬂH:MA21—§>>§2mw0—ML

Cela montre que | — p| = ming <4, |¢'0 — p’|, et d’apres l'exercice précédent,

% doit apparaitre dans la suite des quotients partiels (%)nzo-

n

Exercice 11. Montrer que pour tout rationnel % avec q < ¢y, distinct de g, 1,

1

_ D
ona‘ﬁ q)> T

Solution. De I'égalité

1 qnfl/Qn

=1
Qn(Qn9 - pn) Qn(Qn—le - pn—l)

on déduit
Inl@n-10 — Pn—1] > 1 — ¢n-1]gn0 — pnl.

Ensuite, on reprend le raisonnement de la deuxiéme question de I’exercice pré-
a/n
qn(p — q0
n’est pas égal a ug, donc sa deuxiéme coordonnée est minorée par la somme des

deuxiémes coordonnées de uq et us :

cédent : le vecteur v = ( )> a sa premiére coordonnée dans [0,1) et

@nlq0 — p| = Gnlgn-10 — pn_1| + qnlgnt — pnl
Z 1-— Qn—1|Qn9 _pn| + Qn|Qn9 _pn|
> 1.
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Exercice 12. Montrer que la suite ((cosn)™),>1 ne tend pas vers 0 en U'infini.

Exercice 13 (Monotonie des quotients partiels).

3 P2n P2n+1 :
Montrer que les suites (222),>¢ et (an+1 Jn>0 sont adjacentes.

Solution. Les égalités

G2n42P2n+1 — P2nt2qent1 = —1
G2n+1P2n — Q2nP2n+1 = 1

qon+2 don

impliquent que qay,+1 - = Qan+2 — Qon, €t donc

P2n+2  P2n
P2on+2 _ P2n _ don+2 — q2n S 0.
Qan+2  qon qQ2n+292n+192n
Le. (B22),5¢ est croissante. On montre de méme que (222+1), - est décroissante,
q2n q2n+1

et comme ces deux suites convergent toutes deux vers 6, elles sont adjacentes.

Exercice 14 (Borne inférieure sur erreur d’approximation).

1

_ Pn [ —
dn (Q71+1 +Qn) :

Aqn

Montrer que pour tout n, ‘

Solution. L’intervalle {%, z"ﬁ} contient #. La suite de fractions médianes

2 . . .
PotPnir Prt2Pnit o PatOniiPeil oo monotone. D’apres lexercice précédent,
Antqn+1’ qn+2qn+1 qn+tan4+1qn+1
la, fraction % = Z”i;”% est située du méme coteé de 6 que 2, donc c’est
" ntant1dn
aussi le cas de 2222l Ep particulier,
qnt+dn+1
‘0_1071 N pn+pn+1_& 1
Adn o Adn + dn+1 Adn Qn(Qn + Qn-l-l)

Exercice 15. Le but de cet exercice est de justifier que la systole et le covolume
permettent de décrire & une constante prés la position d’un élément de I'espace
des réseaux du plan euclidien.

1. Justifier qu'une métrique riemannienne invariante a droite sur GL2(R)
induit une distance riemannienne sur {25. Vérifier que pour cette distance,
une suite (A,,),>1 converge vers un élément A = Zuq ®Zus si, et seulement

si, on peut écrire A,, = Zuyl) @ Zuén), avec lim ui”) =y et lim ug”) = Ug.

2. Montrer qu’a certaines constantes multiplicatives prés, pour tous A, A’ €

QQ7
A’ A’
(A7) "loguz( ))'
p(A) pa(A)
3. (Critére de Mahler) Montrer qu’une partie A C 3 est relativement com-

pacte si et seulement si son image par lapplication A — (u1(A), p2(A))
est relativement compacte dans (R*)?.

d(A, A') < max < log




Chapitre 2

Réseaux dans R? et
sous-espaces rationnels

Pour présenter les différents énoncés d’approximation diophantienne dans
R™ dans un cadre unifié, Schmidt a proposé en 1967 le probléme suivant :

Fizons des entiers d, k et { tels que d > 2 et 0 < k,¢ < d. Etant donné un
sous-espace = de dimension £ dans R?, étudier les sous-espaces rationnels v de
dimension k proches de x.

Dans la suite, 'espace R? est muni de sa structure euclidienne usuelle; la
norme est notée ||-|| et le produit scalaire (-, -). Rappelons que la distance entre
un vecteur u et une partie fermée F est définie par d(u, F) = minyer d(u,v).
Pour pouvoir évaluer la qualité d’une approximation rationnelle v de dimension
k au sous-espace x de dimension ¢, on définit aussi

MaXyey;|ulj=1 d(u,z) sik <L
MaXyeq|uf=1 d(a,v) sil<k

d(v,z) = {

Notons que d(+, -) n’est pas & proprement parler une distance, puisque d(v,z) = 0
si et seulement si v C x ou x C v.

Exercice 16. Vérifier qu'on a toujours d(v, z) = d(v', zt).

Solution. Si z est un sous-espace vectoriel de R?, alors pour tout u € R?,
d(u,z) = max{(u,w) ; w € z unitaire}.

Par conséquent,

d(v, z) = max{(u,w) ; u € v unitaire et w € 2 unitaire}

=d(zt,vh) = d(wt, zh),

ou la derniére égalité découle de la symétrie de la distance que nous avons
définie.

17
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On définit aussi la hauteur d’un sous-espace rationnel v comme le volume
d’un domaine fondamental de v sous 1’action de v N Z< :

H(v) =vol (v/vNZ).

Concrétement, si les vecteurs uy, . . ., uj, forment une base de vNZ<, alors H(v)
est égale au volume du parallélépipéde engendré par ces vecteurs. Nous verrons
ci-dessous que pour tout H > 0, il n’y a qu'un nombre fini de sous-espaces
rationnels v tels que H(v) < H. Dans la suite, nous noterons

XpaR) = {z <R? | dimz = £}
la variété grassmannienne des sous-espaces de dimension ¢ dans R?, et
X04(Q) = {z <R?| dimx = £ et x est défini sur Q}.

Les notions de distance et de hauteur ci-dessus permettent d’associer a un élé-
ment = dans Xy 4(R) une famille d’exposants diophantiens S (z), k=1,...,d—
1, définis par

Bu(x) = sup {B >0 ‘ o € Xpa(Q) : Zgzg ;fl(v)_ﬂ } (2.1)

Le but de ce chapitre est d’obtenir les premiéres propriétés élémentaires de
ces familles d’exposants, et d’énoncer les résultats qui seront démontrés dans
la suite du cours. Nous commengons par quelques rappels sur les réseaux de
l’espace euclidien R?.

2.1 Sous-groupes discrets de R?

Proposition 2.1. Tout sous-groupe discret de R? est de la forme A = Zv, &
<o @D ZVy, ot les vecteurs vu, ...,V sont linéairement indépendants sur R.

Démonstration. On procéde par récurrence sur la dimension d. Pour d = 0,
il n’y a rien & démontrer, supposons donc le résultat connu pour d — 1 > 0.
Si A est un sous-groupe discret de R?, on choisit un élément v; € A non nul
de norme minimale. Soit 7: R? — vi la projection orthogonale sur vi. Tout
élément de v/ € 7(A) admet une pré-image v € A telle que d(v,vi) < [|vy]|
et donc ||v]| < ||v/|| + ||v1]|- Comme A est discret, cela montre que 7(A) est un
sous-groupe discret de vi-. Par hypothése de récurrence, on peut écrire,

m(A) =Zn(ve) @ -+ B Zr(vy)

pour certains vecteurs vo,...,vy dans A tels que w(va),...,m(vy) soient li-
néairement indépendants. Si v est un élément de A, on peut écrire w(v) =
Zizz n;7w(v;), avec n; € Z, donc

T V—E nivi | =0

i>2

d’ott v—>)",.,n;Vv; = Avy pour un certain A € R. Mais par minimalité de ||vy]|,
on doit avoir A € Z, ce qui achéve la démonstration. O
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Définition 2.2 (Covolume d’un sous-groupe discret). Si A = Zv®- - -®Zvy, est
un sous-groupe discret de R?, on note |A| le volume du parallélépipéde engendré
par les éléments de la base (vq,...,vg).

Exercice 17.
1. Si A est un sous-groupe discret de RY, on définit le dual A* = {w €
Vectg A | Vv € A, (w,v) € Z}. Montrer que |A*| = |A|71.
2. Si Ay < A est un sous-groupe discret primitif, on pose A/A; = my.(A).
Vérifier que |A/A1| = |A]/|A4].
3. Montrer que pour tout v dans X 4(Q), H(v) = H(v").

Solution. 1.
2.

3. Etant donné un sous-espace rationnel v dans R%, notons A, = v N Z%. On
vérifie facilement que A* D Z%/A, ., et donc

H(w)™' = A7t = A} < ADL = Hv) ™

1.e.

H(vt) < H(v).

En appliquant cette inégalité a v+, on trouve aussi H(v) = H((vt)1) <
H(vt), d’ou I'égalité souhaitée.

2.2 Les théorémes de Minkowski

Définition 2.3 (Réseau dans R?). Un réseau A dans R? est un sous-groupe
discret de rang d. De facon équivalente, il existe une base (vy,...,vq) de R?
telle que

A=7ZviD---DZvy,.

Le résultat le plus fondamental de la géométrie des nombres est le premier
théoréme de Minkowski, qui permet de majorer la norme de la systole A;(A)
d’un réseau en fonction du covolume. Rappelons que A1 (A) est par définition la
norme minimale d’un élément non nul de A.

Théoréme 2.4 (Premier théoréme de Minkowski). Soit A un réseau dans R?
et C' une partie conveze symétrique telle que vol C > 2¢|A|. Alors CNA # {0}.
En particulier,

291A

do 2181
M(A) = vol Bga(0,1)

Démonstration. Soit F' un domaine fondamental pour A dans R?. Le convexe
C’ = 1C vérifie vol(C') = 27%vol(C) > |A| = |F|. Par conséquent,

)= Y10 A (F )| = YHC +0) A F| > |
VEA vEA
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et il doit donc exister v; # vo € A tels que C’ +v; N C’ + vy # &. Cela donne,
pour certains ci,co dans C/, ¢; + v1 = co + v, et comme C est convexe et

symétrique, le vecteur v = vo — v1 = ¢1 — ¢ est un élément non nul de C' N A.
24|A|

Vol Bpa (0,1) alors

le convexe C' = Bpa (0, \) vérifie vol C' > 24|A. O

Pour la deuxiéme assertion, il suffit d’observer que si A\¢ >

Exercice 18 (Théoréme des quatre carrés).

1. Montrer que pour tout nombre premier p, il existe une solution non triviale
(a,b,c) aléquation a? + b*> + ¢ =0 mod p.

2. A l'aide du réseau A = pZ* + Z(a, b, c,0) + Z(0, —c, b, a), montrer que p
est somme de quatre carrés.

3. Conclure que tout entier positif est somme de quatre carrés.

Solution. 1. L’ensemble des carrés modulo p est de cardinal p—;l, de méme

que Pensemble des —1 — b?, donc on peut trouver a et b tels que a? =
—1 — b2, Avec ¢ =1, on trouve bien a® + b +¢> =0 mod p.

2. L’'image du réseau A dans (Z/pZ)* est un sous-groupe d’ordre p?, donc A
est un réseau de covolume p? dans R*. D’aprés le théoréme de Minkowski, il
existe un élément (x,y, z,t) dans A tel que 2% +y?+22+t2 < p- m.

Or, on calcule facilement

VO]B]RAL(O7 1) = /1$2+y2+z2+t2§1 dx d’y dz dt
= 7r/(1 —z? - y2)]lwz+y2§1 dx dy

1
= 271'2/ (1 —rrdr
0

_
=

Par suite, 22 +y? +22 +12 < p- % < 2p. Comme tout élément de A vérifie
22 4+ y? + 22 +t2 =0 mod p, on doit avoir z2 + 3% 4 22 + 2 = p.

3. La multiplicativité de la norme sur ’algébre des quaternions montre que le
produit de deux sommes de quatre carrés est encore une somme de quatre
carrés. Comme I'ensemble des sommes de quatre carrés contient tous les
nombres premiers, il est égal & ’ensemble des entiers naturels.

Pour décrire plus précisément la forme d’un réseau A dans R¢, on pose la
définition suivante.

Définition 2.5 (Minima successifs). Les minima successifs d’un réseau A dans
R? sont les nombres réels positifs A\j(A) < Ag(A) < -+ < A\g(A) définis par

Ai(A) = inf{\ > 0] B(0, \)NA contient i vecteurs linéairement indépendants}.

Le second théoréme de Minkowski exprime le fait que les vecteurs qui réa-
lisent les minima successifs sont toujours presque orthogonaux. Ci-dessous, 1’es-
pace R? est muni de sa norme euclidienne.
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Théoréme 2.6 (Second théoréme de Minkowski). Pour tout réseau A dans RY,
27|A|
Al < (D). A(A) £ ———.
A= Au(A)---AalA) < vol Bga(0,1)

Démonstration. Notons (v;)1<i<q une famille linéairement indépendante d’élé-
ments de A tels que pour chaque i, ||v;]] = A;(A). Comme le réseau A; =
Zvi @ - -+ @ Zvg est inclus dans A, on peut majorer

d
Al < AL < Tloill = M(A) .. Aa(A).

i=1

Pour I'autre inégalité du théoréme, on note (u;)1<i<q une base orthonormée de
R? (obtenue par le procédé de Gramm-Schmidt) telle que pour tout i,

V; := Vect(uq, ..., u;) = Vect(vy, ..., v;).

Soit T': R* — R? I’application linéaire telle que pour tout s = 1,...,d, Tu; =
Ai(A) "y, et A’ = TA. Montrons que A;(A’) > 1. Pour cela, si v € A, on écrit

J
vzg o;v;, avec aj # 0.

i=1
Comme v est linéairement indépendant de (vi,...,vj_1), on a |[v| > A;(A).
Par ailleurs, comme (u;) est orthonormée, ||T7!|y, || = A;(A), et par suite

1
| Tv]| > WHUH >1,

d’ott A;(A’) > 1. Pour conclure, on applique le premier théoréme de Minkowski
dans le réseau A’ :
24| A| 1 24| A

< nd < = : :
L MA)" < vol Bra(0,1)  A1(A)...Aq(A) vol Bra(0,1)

Exercice 19 (Norme et théorémes de Minkowski).
1. Montrer que si espace R% est muni d’une norme arbitraire, on a toujours

2d

vol Bga (0, 1) 1A

%.|A|§)\1(A)...>\d(A)§

2. Vérifier que ces inégalités sont optimales.

Solution. 1.
2.



22 CHAPITRE 2. RESEAUX ET SOUS-ESPACES RATIONNELS

2.3 Sous-espaces rationnels de hauteur bornée

Comme application du second théoréme de Minkowski, nous allons montrer
un encadrement asymptotique du nombre de sous-espaces rationnels de dimen-
sion k et de hauteur inférieure & H.

Proposition 2.7. Pour tout entier d > 1, pour tout k =1,...,d—1, le nombre
Nya(H) = [{v € X34a(Q) | H(v) < H}|
vérifie
N]“d(H) =q Hd.

Démonstration. Montrons d’abord par récurrence sur k que Ny q4(H) S He.
Pour k = 1, le résultat est clair puisque Ny q(H) est égal au nombre de points
primitifs dans Z¢ de norme au plus H. (Voir exercice ?? sur le théoréme de
Schanuel.) Supposons qu’on ait montré que pour tout H, Ny_14(H) <q HE
Par le second théoréme de Minkowski, si v € X;(Q) vérifie H(v) < H, alors
il existe v/ € Xj—1(Q) tel que v < v et H(v') < H% . Sio € Xi—1,4(Q),
les éléments v € X, 4(Q) contenant v’ correspondent aux vecteurs primitifs du
réseau Z2/(v' NZ%), de covolume H(v')~! et de dimension d — k+1; de plus, la
norme du vecteur de Z?/(v' NZ%) correspondant a v est égale & H(v)H (v')™! <
HH(v')~!. Par le cas k = 1, le nombre de tels sous-espaces est donc majoré par
< (HH(U’)_l)d_}H_1 H(v') et par conséquent,

Nk:,d(H) S Z (HH(,UI)—l)dflﬁFl H(UI)

’

k-1
H()SH *

Z Z (HQ_n)d—k'+1 on

: ’
n v

2"§H% 2" <H(v')<2mt!
_n\d—k+1
k—1
n:2n<H &
k—1\K
< ga—k+1, (HT)

< HY

N

La démonstration de l'inégalité réciproque est analogue, par induction rétro-
grade sur k. Remarquons d’abord qu'il existe ¢ > 0 tel que Ny_1q4(H) =
Ny 4(H) > cH?. Supposons Nj 4(H) > cH pour tout H. Le méme raisonnement
que ci-dessus donne pour une constante ¢y = co(d),

S (H%H(v’)—l)

’
v

H(W')<H

d—k+1 dk dk

H(v’) > Nk)d(cH%> > C(?(I;flf’fm

Le calcul ci-dessus, avec la majoration Nj_1 4(H) < H? montre qu’on peut
choisir ¢; = ¢1(d) > 0 tel que

d—k+1 _dk_ X
Z (HﬁH(v’)*) H(W') < Lect TH.

’

v’
HW)<e1H
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Cela permet de conclure

Nira(H)ey FH=T > 37 (HH) ™) H()
clHS?Iﬁv')gH
_dk_
> %ccg_lH%
et donc Ny_1,4(H) 2 He, O

Application : Valeur heuristique de I’exposant diophantien

Supposons pour simplifier 1 < k < ¢ < d. Pour v dans Xy, 4(Q), I'inégalité
d(z,v) < e définit dans X, 4(R) un voisinage de taille ¢ de la sous-variété

E,={z € Xp4(R) | z > v} C Xra(R).

Cette sous-variété est de dimension ({—k)(d—¥), et donc de codimension k(d—?).
Par conséquent, pour une mesure riemannienne sur X, 4(R), on peut évaluer

{z € Xpq(R) | d(z,v) < e} = F4-0.

Comme il y a dans Xj 4(Q) & peu prés HY points de hauteur au plus H, on en
déduit que la somme

> o€ Xea(R) | d(x,v) < H(v)"?}|
vEXy,a(Q)

converge si et seulement si 8 > ﬁ. Cela suggére que ﬁ est une valeur

critique pour l'exposant diophantien Sy (x) défini au début de cette partie, par
la formule (?7).

Le but de la suite de ce cours sera de démontrer le résultat suivant. On
rappelle qu'un pinceau dans X, 4 est une sous-variété de la forme

Pwyr={r € X¢qR) | dimznW >r}

ott W < R? est un sous-espace vectoriel, et 7 un entier positif. Un tel pinceau
est dit rationnel si le sous-espace W est rationnel, et contraignant si 57 > g.

Théoréme 2.8 (Approximation diophantienne dans la grassmannienne). Soient
1<k </l <d des entiers fixés.
(1) Pour tout x dans X, 4(R), Br(x) > W.

(2) Pour presque tout x dans X, q(R), fi(z) = k(%_é).

(3) Pour tout x dans X, 4(Q) non contenu dans un pinceau rationnel contrai-

gnant, Br(x) = ﬁ.

Pour la démonstration de ce théoréme, nous établissons dans la partie sui-
vante une correspondance entre les exposants [j(z) et Pexistence de certains
petits vecteurs le long d’une orbite diagonale dans un espace de réseau bien
choisi.

Exercice 20. Vérifier que sans la restriction & < ¢, I’exposant critique pour
lapproximation d’un élément z € X, 4(R) par des sous-espaces rationnels de
dimension k est égal & EYCHALL d(imax(k’,f))' Expliquer pourquoi on peut déduire

le cas général du cas ou k < /.
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2.4 Exercices supplémentaires

Exercice 21. Le but de cet exercice est de donner une démonstration un peu
différente du premier théoréme de Minkowski. Nous montrerons méme le résultat
un peu plus précis suivant : si A est un réseau de R? et C un convexe symétrique,

€]
29pq(A)”

le cardinal de A N C est minoré par

1. Justifier qu’on peut supposer sans perte de généralité que A = Z.

2. Pour n > 1, notons A,, = %Zd. Donner un équivalent du cardinal de
% N A, lorsque n tend vers l'infini.

3. En déduire que pour n assez grand, ’application % NA, — A, /A admet

. - s lc
une fibre de cardinal supérieur a \le, et conclure.

4. Retrouver le point 7?7 du théoréme ci-dessus.

Exercice 22. 1. Construire un réseau A dans R? tel que le sous-réseau qui
réalise p2(A) ne contienne pas les deux vecteurs qui réalisent les deux
premiers minima A (A) et Ay(A).

2. Justifier que si A est un réseau dans R? et vy,...,vq des vecteurs tels
que pour chaque i, ||v;]] = A;(A), alors le sous-groupe Ag = Zv, @ ... Zvy

vérifie [A : Ag] < %'

3. Construire un réseau A dans R?, d > 4 et des vecteurs vy, ..., vg tels que
pour chaque 4, ||v;]] = A;(A), mais néanmoins A > Zv; @ - - - @ Zvg.



Chapitre 3

La correspondance de Dani

Cette partie est dédiée a la correspondance qui relie les exposants diophan-
tiens S (z), k =1,...,d—1 d’un élément = dans X, 4(R) & certaines orbites dans
I’espace des réseaux. Nous commencgons par le cas plus simple ot 'on approche
x par des droites, i.e. k = 1.

3.1 Approximation par des droites

Le groupe G = SL4(R) agit transitivement sur la variété X, 4(R), et le stabi-
lisateur du point base 2g = Vect(ey, ..., ep) est égal au sous-groupe parabolique

p{geag(g1 g) }

Nous utiliserons dans la suite I'identification

P\G — Xg’d(R)

Pg — gl

et le sous-groupe diagonal & un paramétre

. _(d—o)t _(d=0t _ (d—o)t _(d=o)t
ar =diag(le” @ ,...,e d e 4 ,...,e 4

Proposition 3.1 (Correspondance de Dani, k = 1). Soitx € Xy 4(R) etu, € G
tel que * = Pu,. L’exposant diophantien pour l’approximation de x par des
droites rationnelles est donné par

1
Bi(x) = M

)

o 1 (z) = limsup,_, | o = log A1 (apu, Z%).

Démonstration. Soit 3 < Bi(x). Par définition de (), il existe v € PY(R)
arbitrairement proche de z tel que d(z,v) < H(v)™?. Soit v € Z¢ un vecteur
primitif tel que v = Rv. On décompose alors u, v suivant les espaces propres de
Qg

UV = V;O) + vg(ul)

25
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de sorte que
_ (da=0)t £t
aiuzv=e¢e 4 vg(go) +ed vg).

A certaines constantes prés dépendant du choix de u,, grace au fait que v est
proche de z, on a
H(v) = |v]| < [Jugv] = [vi”]

et
d(v,x) = d(v,u; " wo) < d(uzv, ) < H(v) " viV].
Par conséquent,

llatuy v < H(v) max (67 e ed d(z, v)) .

On choisit alors ¢ > 0 tel que et = H(v)?, ce qui donne
lasuav] < e~ 5)

. d—~ 1 1
puis 'yl(x) e 3 1. 51(35) < T (z)

Réciproquement, supposons v € (0, %) et pour ¢t > 0 arbitrairement grand,
v € Z4 vérifie ||a;u,v| < e~ Si l'on note v la droite engendrée par le vecteur

v, alors

(a-0)
lazusv] =< H(v) max (ei e , e%d(x,v)> <e M,

donc H(v) < (7=t et

d(z,v) < H(v)fleft(7+§) <HW) @ = H(v)_T'*W,

Comme premiére application de cette correspondance, nous pouvons retrou-
ver le théoréme de Dirichlet, qui donne la valeur minimale de I’exposant dio-
phantien (4 (z).

Corollaire 3.2 (Dirichlet, Minoration de ’exposant diophantien). Pour tout x
dans Xy q4(R), p1(z) > dié'

Démonstration. Comme action du sous-groupe (a¢)ier préserve le volume, le
réseau a;u,Z? est de covolume constant, et d’aprés le premier théoréme de
Minkowski, cela implique \;(a;u,Z%) < 1. Par conséquent, v, (x) > 0, puis

Nous verrons au paragraphe 77 que la correspondance de Dani permet aussi
d’obtenir la valeur presque stire de ’exposant diophantien. Mais dans le cas
particulier £ = 1, il est aussi simple de montrer directement le résultat.

d

Exercice 23. Vérifier que pour presque tout x dans X, 4(R), B1(z) = 5%;.
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Solution. Pour v dans P*(Q), Pensemble
{z e XpaR) | d(v,x) < e}

est un voisinage de taille ¢ de la sous-variété E, = {z € X;4(R) | z 2 v}.
La variété E, est de dimension (¢ — 1)(d — ¢) (donc de codimension d — ¢ dans
X&d(R)) donc

{2 € Xpa(R) | d(v,2) < H(v)"P}| =< H(v) P9,
Sig> ﬁ, en utilisant le fait que |{v ePl(Q) | Hw) < H}‘ < H?, on trouve
> Nz e XeaR) | d(v,2) < H(v) 7} < +00,
veP (Q)

et avec le lemme de Borel-Cantelli, cela montre que pour presque tout x, 'in-
égalité d(v,z) < H(v)~? n’a qu'un nombre fini de solutions, i.e. 8;(x) < dié'

3.2 Approximation par des sous-espaces

Avec quelques modifications, on peut généraliser la correspondance de Dani
pour comprendre 'exposant Sy () a partir d’une orbite diagonale dans un espace
de réseaux. Ici encore, on note G = SL4(R), P le stabilisateur du sous-espace
xo = Vect(ey, ..., eq), et on utilise I'identification

P\G — X&d(R)
1

Pg — g 'z
Rappelons que la puissance extérieure AFR? est un espace vectoriel engendrée
par une base (er), ou I décrit I’ensemble des parties de {1,...,d} & k éléments.
Il existe une unique application k-linéaire alternée

Réx...xRY — AFRY
(v1y...,08) = VIA--Avg

telle que pour tout I = {iy < ia < -+ < i}, €;; A-+- Ae;, = er. Un élément
de A*R? de la forme v; A ... v est dit décomposable ; notons que dés que k ¢
{1,d—1}, il existe des vecteurs non décomposables, par exemple e; Aea+e3Aey
dans AZR?.

Le groupe G = SL4(R) agit linéairement sur A*R? via la formule

g (V1 A ANvg) =gug A+ A gug

étendue par linéarité a AFR? tout entier.

A un sous-groupe discret A = Zv, & - - - @ v, dans R%, on associe le vecteur
wp = v1 A - Aug, qui, au signe prés, ne dépend du choix de la base vy, ..., vg.
Si 'on munit AFR? de la structure euclidienne pour laquelle la base (e;) est
orthonormeée, on peut relier covolume et norme dans AFR?.

Proposition 3.3. Si A est un sous-groupe discret de rang k dans R?, alors
Al = [[wall-



28 CHAPITRE 3. LA CORRESPONDANCE DE DANI

Démonstration. Montrons d’abord que K = SO4(R) agit par isométries sur
AFRY. Si J = {j1 < j2 < -+ < ji}, on calcule

d
geyg = gej, N---Ngej, = Z Girgy - Girgn€iy I\ N\ €y

D1yeeeylk

et de méme, pour J = {ji <--- < j.},

d
geg = E glljiglkjl;e“/\/\ezk

D1yl

Par conséquent,

(ges ges) = D Gigr - GininFirs, - Ginis = 9D igr - (9°9) it
i1y yin

et si g € SO4(R), glg = 1 donc (ges,ges) = 655. L’'image par g de la base
orthonormée (er) est orthonormée, donc g induit une isométrie de AFR.

Soit maintenant A un sous-groupe discret de rang k dans R?. Quitte & mul-
tiplier A par un élément r € SO4(R) (qui préserve a la fois le covolume et la
norme sur AFR?), on peut supposer que 'espace vectoriel engendré par A est
égal & Vect(ey,...,ex). Soit g1 € GLi(R) tel que A = g1 Z*, et g € GL4(R) tel
que g = g1 sur Vect(eq,...,ex) et g =1 sur Vect(egi1,...,eq). Alors,

[wall = llg- (ex A+ Ae)l| = [det g1
tandis que par les propriétés de la mesure de Lebesgue sur R,
|A| = |det g1].
Cela donne ’égalité souhaitée. O

Rappelons que le sous-groupe diagonal (at):cr est défini par

_(d—0)t _(d=0t  (d—0)t (d—0)t

a; =diagle” @ ,...,e d e 4 ,....e 4 ).

Si k < ¢, I'élément a; agit sur AFR? avec pour valeurs propres

_(@_1)15 _(@_2)2.“

_ k=0,
d ’e ’e

€

Onnote 71 : AFR? — AFR? le projecteur spectral de a; associé & la valeur propre
o= e ; en d’autres termes, 7T est la projection orthogonale sur I’espace
Vect(er ; I C{1,...,4}).

Si A est un sous-groupe additif de R?, on note AFA le sous-groupe de AFR?
engendré par les vecteurs de la forme v; A -+ A vg, ou les v; sont des éléments
de A. On laisse le soin au lecteur de vérifier que si A est un sous-groupe discret
(resp. un réseau) de R?, alors A¥A est un sous-groupe discret (resp. un réseau)
de AFRY.

Exercice 24. Vérifier que si A est un sous-groupe discret de rang ¢ dans R¢,
alors, pour tout k < ¢, AFA est un sous-groupe discret de A*R?¢ de covolume

INRA| = (A ().
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Solution. Ecrivons A = ¢Z°, ot Z¢ = Ze, ® --- ® Zey et g € GL4(R). Lélé-
ment g peut s’écrire g = kyaks, avec ki,ka € O4(R) et a = diag(as,...,aq),
a; > 0. Comme ky et ko agissent par isométries sur R? et toutes ses puissances
extérieures, il suffit de vérifier le résultat lorsque g = a. Or,

¢
laZt| = H a;
i=1

tandis que le covolume de A*(aZ") est égal au produit des valeurs propres de a
sur AFZf, ie.

¢ ()
INF(aZt)| = H Qiy -y, = (1:[1 ai> .

1<y < <0 <L
Cela montre ’égalité souhaitée.

La généralisation de la correspondance de Dani & 'approximation par des
sous-espaces de dimension k fait intervenir les petits vecteurs dans des réseaux
de AFR?. 11 convient de noter qu’outre la norme de ces petits vecteurs, on doit
aussi controler leur direction.

Proposition 3.4 (Correspondance de Dani généralisée). Fizons des entiers 1 <
k<t <d. Soit x dans X q(R) et u, € G tel que x = Puy,. Alors,

1
Bul@) =
T HE @)

ol

< et
T) = su ER | It — +oo0: Iw e au, N* 727 : Iwl < }
w(e) <o {1 €K e et |+ (w)] = 3w

Démonstration. Soit 8 < fi(x). Il existe v € X 4(Q) proche de z tel que

d(v,z) < H(v)™". Soit v € AFZ9 le vecteur associé a v, de sorte que H (v) = ||v||.
On décompose u, v suivant les espaces propres de a; :

UV = v§0> —|—vg1) +...

et donc
k(d—£)

_ _ k(d—é)_
UV =€ d tvfﬁo) +e ( d 1)

ty (1)
vyl + ...
Pour controler la norme de a;u, v, nous aurons besoin du lemme suivant.

Lemme 3.5. Pour tout v € X, 4(Q) proche de x, & certaines constantes mul-
tiplicatives prés dépendant du choiz de u,, on a :

(i) IV = Hv) ;
(ii) ||V = H(v)d(v, z) ;
(iii) Vr > 2, V| < Hv)d(v,z)".
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Démonstration. Tout d’abord,

H(v) = |[v] = Jupv] = max|[v{|].
r>0

Par ailleurs, si B, = {y € Xi.a(R) | y C 2}, alors d(v,z) < d(v, E,). Notons
zg = Vect(e,...,eq) et VT = AFzg C AFRZ Dans le plongement X 4(R) <
P(AFRY), la sous-variété E, s’envoie sur u; 'V ™+, donc

d(v,z) = H%U) d(uzv, V1)
1

X

H(v) ng;c\l%’”’ I

Siw est assez proche de z (i.e. d(v, x) assez petit), cela implique que max,>1 ||V:(f) I

est petit devant H (v) = max,>o[vi" |, et donc
VO = maxli?) < ).

Ensuite, quitte & permuter les vecteurs de la base canonique, on peut écrire

1 I 0 0
muagv = 0 Iy 0 €{1,....k}+
v (wiy) 0 g

Alors, d(v, x) < max; j|u,;|, tandis que

o)
A2
—T = D FUGE, NG U
[va"|l 1<j<k
¢<id
donc
IV = v |d(v, 2) < H(v)d(v, ).

(r)
Enfin, pour 7 > 2, les coordonnées de W sont, des polynémes homogénes de
vl’

degré r en les variables u;;, donc

v

:
< -
v~ ()

IVl S H(v)d(v,2)".

puis

Avec ce lemme, on majore

k(d—2) _ (k=0 _
lasupv]| S max (e =T O], e (FTE L)
S H(v)e™ S max (1,e " d(v,2),e > d(v,z)?,...)

et choisissant ¢ tel que e = H(v)”?, on obtient

llaguv] < H(v)e_Wt e e )



3.2. APPROXIMATION PAR DES SOUS-ESPACES 31

Comme la plus grande coordonnée de a;u,v est atteinte le long de VT, on a

aussi (quitte a diminuer ¢ d'une constante) || (a;u,v)|| > 3| larugvl| et donc
k(d—f) 1
() = == — 5 lLe.
1
—a — (z)
Réciproquement, supposons que pour ¢t > 0 arbitrairement grand, on puisse
trouver v € A*Z4 tel que

lauav] < e et [t (asupv)| > Hllagu,v]).

D’aprés le lemme de Mahler ci-dessous, on peut supposer que v est un élément
décomposable de AFZ?. Soit v € X}, 4(Q) I'élément correspondant & v. Avec les
notations de la premiére partie de la démonstration, on a alors

max (e_k(ddiz)tnvg(oo)ﬂ, e (B2 _1)t||v3(61)||, . ) < agugv] < et (3.1)

et le maximum doit étre essentiellement atteint sur la premiére coordonnée, i.e.

v 2 maxe[v()].

max,>1 [[vi” |

Comme ¢ > 0 est arbitrairement grand, cela implique que d(v, z) < Qr

lIv
est arbitrairement petit. On peut donc appliquer le lemme 77 : ||v§50)|| = H(v)
et v | < H(v)d(v, ). L'inégalité (7?) donne alors

H(v) = [[v < (" T )1

tandis que ||[7" (asu V)| > %Hatu,:vH implique

_ 1
k(d—¢
@—5_,

dv,z) e ' < H(v)

~

O

Nons démontrons maintenant le lemme de Mahler que nous avons utilisé
dans la démonstration ci-dessus.

Lemme 3.6 (Mahler). Soit A un réseau dans R?. Les minima successifs du
réseau N*A dans ANFR? sont essentiellement égaux aux nombres

)\](A) :)\zl(A)/\zk(A)7 Iz{il <dg < - <ik} - {1,...,d}.

De plus, N*A contient une famille de vecteurs décomposables qui réalisent ces
minima successifs a une constante multiplicative prés ne dépendant que de d.

Démonstration. Soit (v;)1<i<q une famille de vecteurs linéairement indépen-
dants dans A tels que pour chaque i, ||v;]| = Ai(A). Pour I = {iy < -+ < ig},
le vecteur vy = Vig N+ A vy, vérifie

[vrll <Ay (A) . A (A) = Ar(A).
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Mais par ailleurs, d’aprés le second théoréme de Minkowski appliqué au réseau
A

’ . 5(2)
[Tra) = (H MM) = |AJ36) = |akA.
I i=1

Les vecteurs v € AFA sont linéairement indépendants et vérifient [],|v/| =
|AFA|; le second théoréme de Minkowski (dans AFA) implique qu’ils réalisent
les minima successifs de A¥A & une constante prés. O]

Lorsque k > 2, la condition |7+ (w)|| > %||w| est indispensable pour définir
(), et on ne peut donc pas appliquer le premier théoréme de Minkowski pour
conclure que v, (z) > 0 pour tout . Cependant, comme nous 'expliquons dans
le paragraphe suivant, la correspondance permet déja de calculer la valeur de
v () pour presque tout x dans X, 4(R).

3.3 Valeur presque stre de [5;(z)

Commengons par un corollaire important de la correspondance établie au
paragraphe précédent.

Corollaire 3.7 (Taux de fuite nul = extrémalité). Siz € X, 4(R) vérifie

lim %log Al(atude) =0,

t—+oo
alors B (x) = Wﬂ@ pour tout k=1,...,¢.
Démonstration. Soit x € X,(R) tel que lim;_, % log A1 (a;5,7Z%)

e > 0 on a, pour tout ¢ > 0 suffisamment grand, Al(atstd) >
second théoréme de Minkowski, cela implique

0. Pour tout
e ¢ Par le

et < Al(atsde) <. < )\d(atstd) < et

Soient w1, ..., uq dans a:s,Z% des vecteurs qui réalisent ces minima successifs.
D’aprés le lemme 77 ci-dessus, les vecteurs

Ur = Uy Ao AUy, T={n<---<m}C{l,...,d}, cardT =k

réalisent les minima successifs de AFa;s,7% & une constante multiplicative prés
qui ne dépend que de d. En particulier, en faisant tendre e vers 0, on trouve
limy o0 %1og A (A*azs,Z) = 0 ce qui implique 7 (7) < 0 ie. Bip(z) < W.

Pour I'inégalité réciproque, notons que les vecteurs u, engendrent un sous-
réseau d’indice borné dans AFa;s,Z?, et forment une famille essentiellement
orthogonale. Par conséquent, il existe 7 tel que le vecteur u = wu, vérifie
|7 (0)|| Z |lu||. Comme on a aussi [Ju,| < e¥¥, cela donne

V(@) Z kde

puis, en faisant tendre e vers zéro, v (z) > 0. Par la proposition 77, cela implique
d
() 2 7= O
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Avec quelques propriétés élémentaires de la mesure de Haar sur 1’espace des
réseaux, cette observation permet de démontrer le théoréme suivant, qui est
le but de ce paragraphe. Ci-dessous, et dans toute la suite, la variété X, 4(R)
est munie d’une « mesure de Lebesgue », i.e. de n’importe quelle mesure sur
X1 4(R) équivalente a la mesure de Hausdorff en dimension dim X, 4 = 4(d — ¢)
pour une métrique riemannienne.

Théoréme 3.8 (Valeur presque sire de exposant diophantien). Soit des en-
tiers 1 < k < ¢ < d. Pour presque tout x dans X¢q(R), B(z) = ﬁ.

Comme ci-dessus, on note G = SLg(R) et I' = SL4(Z). L’espace €2 des
réseaux unimodulaires dans R? s’identifie & G/T" et supporte une unique mesure
mg invariante a gauche par G telle que

wec@. [ 1= s | amator)

yel’
Le théoréme 7?7 découlera facilement du lemme suivant.

Lemme 3.9 (Mesure d’un voisinage de la pointe). Etant donné un entier d >
1, a certaines constantes multiplicatives prés ne dépendant que de d, pour tout
e >0,

ma({A | M(A) <)) Se

Admettons momentanément ce lemme, et voyons comment en déduire le
théoréme 77.

Démonstration du théoréeme ?7. Comme la mesure mq est invariante par G, la
borne du lemme ci-dessus donne, pour tout ¢t > 0,

mao({A | M(a:A) < e =} < et

Avec le lemme de Borel-Cantelli, cela implique, pour presque tout A dans €2,

1
lim —log Aq(a:A) = 0.
A g logh(@d)
Or, cette propriété est invariante par translation de A par un élément du sous-
groupe parabolique P = Stabg Vect(ey, ..., er), puisque pour tout p dans P,
I’élément aspa_; converge lorsque ¢ tend vers +o0o et qu’on peut écrire a;pA =

(apa—i)aA. Par conséquent, on a aussi, pour presque tout z dans Xy 4(R) ~
P\G,

1 d
tllﬂo n log A1 (atu,Z%) =0
et d’apres le corollaire 77, cela implique SBi(z) = ﬁ pour tout kK =1,...,¢.

O

Le dernier paragraphe de ce chapitre a pour but de démontrer ’encadrement
asymptotique donné par le lemme 77 ; nous y verrons au passage une importante
formule de Siegel, qui permet de mieux comprendre la mesure mg sur ’espace
des réseaux.
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3.4 Formule de Siegel

Si I'on note L le stabilisateur du vecteur ey dans la représentation standard,
l'espace quotient G//L ~ R\ {0} supporte une unique mesure invariante mg /L
telle que

Vf € Cu(), Lf[#(ﬁﬂﬂQOMu@m

A un facteur prés, mg,, coincide avec la mesure de Lebesgue sur R¢. Exercice.
Calculer le facteur de proportionnalité si mgq est une mesure de probabilité. Les
mesures mgq et mg,r, sont reliées par le théoreme suivant.

Théoréme 3.10 (Formule de Siegel). Si f € C.(R?), la transformée de Siegel
f de f, définie sur Q par l’expression

fay= > jw

vEA primitif

Démonstration. Notons I';, = ' N L, et montrons que si ¢ € C.(G/I'L), alors

/G/FL - /G/L </L/FL ¢(guPL)du> d(gL).

Comme tout élément ¢ dans C.(G/T'L) peut s’obtenir comme projection d’un
éléement de C.(G) (cf. Raghunathan, Lemma 1.1), il suffit de vérifier I’égalité
lorsque ¢ est de la forme

vérifie

¢(gTr) = D ¥lgy), avec P € Co(G).

vyel'L

Dans ce cas, la formule découle des définitions des mesures de Haar sur G/L et
L/Ty.

Le méme raisonnement, en échangeant les roles de I' et L, montre que
/G ot /G . F;L ¢(97Tr) | d(gT).
Choisissant ¢(¢gT'z.) = f(ge1), on obtient
/L/F f(guer) du = vol(L/T') - f(gexr) = vol(L/T'L) - f(gU)
L
tandis que

Yo flgve) = D flv)=Ff(gD).

~yel'/T'r vEA primitif
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Si lon sait que vol(L/T'L) est fini, cela donne la formule souhaitée. Or, le sous-
groupe L est isomorphe au produit semi-direct SLy_;(R) x R4~!, donc le quo-
tient L/T'f est une extension compacte de SLy_1(R)/SLg—_1(Z), dont on peut
supposer par récurrence qu’il est de volume fini. Cela achéve notre démonstra-
tion. O

A Daide de la formule de Siegel, nous pouvons facilement borner la mesure
de I’ensemble des réseaux contenant un petit vecteur.

Démonstration du lemme ??7. On applique la formule & la fonction f = 1.
Dans ce cas,

f(A) = |{v € A primitif | [|v] < ¢}|
= L (a)<e
et donc
ma({A1 <e}) < / f=1 f=ca”
Q Rd
O

Exercice 25 (Une généralisation de la formule de Siegel).

Une famille de vecteurs (vq,...,vy) d’'un réseau A est dite primitive si elle se
compléte en une base de A. Etant donné une fonction f sur (R?)*, on définit la
k-iéme transformée de Siegel f* par

fr= Z fva, oo, vi).

(vi,...,vk) primitive

1. Montrer que [, f* = cr.a [gar [, avec cqp = q(d)((d—l).l..g(d—k+1)'

2. En déduire que mo({\ < ¢e}) 24 .
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Chapitre 4

Approximation des points
algébriques

Le théoréme de Roth montre que si 6 est un nombre algébrique réel irra-

tionnel, alors, pour tout ¢ > 0, l'inégalité ‘0 — %’ < q21+5 n’a qu’'un nombre

fini de solutions 2 dans Q. Nous avons aussi vu au paragraphe 77 que pour les
deux formes d’approximation — simultanée ou par formes linéaires — dans R"™,
Schmidt a généralisé ce théoréme en calculant I'exposant £;(z) d’un point x
dans P*(Q) ou I'exposant 8;(z*) d’un hyperplan z* dans P**(Q). Dans le pré-
sent chapitre, nous montrons que ces résultats sont des cas particuliers d’une
formule générale pour 'exposant Sy (z) d’un sous-espace x de dimension ¢ dans
R? qui admet une base constituée de vecteurs a coordonnées dans Q.

La démonstration de cette formule repose sur la correspondance établie
au chapitre précédent, et sur I'interprétation du théoréme du sous-espace de
Schmidt en termes d’orbites diagonales dans ’espace des réseaux. Nous com-
mengons par développer le formalisme des polygones de Grayson, qui sera com-
mode pour décrire la géométrie de I’espace des réseaux.

4.1 Sous-modularité et polygone de Grayson

Les vecteurs qui réalisent les minima successifs d’un réseau ne sont pas uni-
quement définis, ce qui peut étre génant. Dans ce paragraphe, nous associons
a chaque réseau un drapeau partiel uniquement défini, et étroitement relié aux
vecteurs qui réalisent les minima successifs. Les idées de la construction seront
encore utiles au paragraphe, pour interpréter le théoréme du sous-espace de
Schmidt.

Définition 4.1. Les covolumes successifs 1 (A), ..., ua(A) d’un réseau A dans
R? sont les réels strictement positifs définis pour i = 1,...,d par

pi(A) = min{|V| ; V sous-groupe de rang i dans A}.

Exercice 26. Montrer qu’a certaines constantes multiplicatives prés ne dépen-
dant que de d, la donnée des covolumes successifs est équivalente & celle des
minima successifs : p;(A) < A\ (A)... N (AQ).

37
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Proposition 4.2 (Filtration de Harder-Narasimhan d’un réseau). Soit A un ré-
seau dans R? et ca: {0,...,d} — R la plus grande fonction convere telle que
ea(0) = 0 et pour chaque i > 1, ca(i) < logu;(A). Sii est un point angulaire
de ca, il existe un unique sous-groupe V; de rang i dans A tel que |V;| = ui(4A).
De plus, si I = {i1,...,ir} est Uensemble des points angulaires de ca, alors les
sous-espaces V; , s =1,...,k forment un drapeau partiel de A :

{0} <V, <o <V, <AL

La proposition ci-dessus découlera d’un résultat général sur les applications
sous-modulaires sur la variété grassmannienne, le théoréme 77 ci-dessous. Rap-
pelons que si K est un corps quelconque et d € N*, la variété grassmannienne
Grass(K?) est par définition I’ensemble des sous-espaces vectoriels de K.

Définition 4.3 (Sous-modularité). Soit K un corps quelconque. Une applica-
tion 7 : Grass(K?) — R est dite sous-modulaire si elle vérifie

YV, W € Grass(K?9), 7(VAW)+7(V+W)<7(V)+7(W).

La fonction covolume sur les sous-groupes d’un réseau de R? fournit I’exemple
fondamental d’application sous-modulaire.

Proposition 4.4. Etant donné un réseau A dans R?, on peut identifier 'en-
semble des sous-groupes primitifs de A a la variété grassmannienne Grass(Q?).
Alors, la fonction définie par 7(W) = log|W| est sous-modulaire.

Démonstration. Choisissons des éléments décomposables u, v et w dans A*A
tels qu’avec 'identification d’un sous-groupe primitif avec son représentant dans
N*A,

VAW =u, V=uAv, et W=uAw.

Il s’agit de voir que les volumes des parallélépipédes correspondants vérifient

Ay Aw] < uaviiuAwl.

Pour cela, on remarque que [[u A v Aw|| = [[uAv]:|pys(w)], ot pyo est la
projection orthogonale sur U+, tandis que |[uAw|| = |Ju]|-[lpy+ (W)|. L’inégalité
souhaitée découle alors du fait que ||pyo (w)|| < ||py (w)]|. O

L’importance de la notion de sous-modularité provient de la construction
donnée par le théoréme suivant, qui généralise la proposition ?7.

Théoréme 4.5. Soit K un corps de caractéristique nulle et 7 : Grass(K9) — R
une application sous-modulaire. Soit ¢ : [0,d] — R la plus grande fonction
convexe dont le graphe soit situé en-dessous de tous les points (dim W, m(W)),
W < K9 8iI={iy <-- <iy} désigne l’ensemble des points angulaires de c,
il existe un unique drapeau partiel

F: {0}<V, <Viy<-- <V < K¢

tel que pour chaque s, dimV;, =i, et c(is) = 7(V;,). De plus, tout sous-espace
W tel que 7 (W) = ¢(dim W) est compatible avec le drapeau F.
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Définition 4.6. La fonction ¢ : [0,d] — R est appelée polygone de Grayson,
et le drapeau partiel F' est la filtration de Harder-Narasimhan associée a la
fonction sous-modulaire 7.

La démonstration du théoréme 77 se fonde sur l'observation géométrique
suivante, dite « régle du parallélogramme » : si V, W sont deux sous-espaces de
K4, et si on place les points (dim VN W, 7(V NW)), (dim V,7(V)) et (dim V +
W, T(V+W)), alors le point (dim W, 7(W)) est situé sur la demi-droite verticale
au-dessus du quatriéme point du parallélogramme.

VNnw lieu des valeurs possibles pour W

V+Ww

FIGURE 4.1 — La régle du parallélogramme

Lemme 4.7 (Lemme de sous-modularité). Soit 7 : Grass(K?%) — R une fonc-
tion sous-modulaire telle que 7(0) = 0. L’ensemble des sous-espaces V' tels que

(V) T
dimV ~ w dimW
admet un unique plus grand élément.

Démonstration. Posons
(V)
dim V"’

a := inf
Vv

SiV et W sont deux sous-espaces tels que dTle‘), = dTlgxI:VVE/ = a, la sous-modularité

et la définition de a comme valeur minimale permettent de majorer

T(V4+W)<7s(V)+7(W)—-7(VNW)
<7(V)+7(W) —adim(VNW)
=adimV + adimW — adim(VNW) = adim(V + W).
L’ensemble des sous-espaces qui réalisent la borne inférieure infy, ‘;;WM)/ est
stable par addition, donc la somme de tous ces sous-espaces est I'unique plus
grand élément de cet ensemble. O

Exercice 27. Le lecteur attentif aura noté une erreur dans la démonstration
. ] . .. . . (W)
ci-dessus : on ne sait pas a priori que la borne inférieure a = infy, T est
atteinte.
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1. Soit V,, une éventuelle suite de sous-espaces de dimension maximale telle
que 7(V,,) = —oo. Montrer que si D est une droite fixée quelconque, alors
7(V,, + D) — —o0. En déduire que 7 est nécessairement minorée.

2. Soit k maximal tel qu’il existe V' de dimension k approchant la borne

inférieure a = infy, (;EZVV?, Justifier qu’il existe € > 0 tel que pour tout V’
de dimension strictement supérieure a k, % >a-+e.

3. Expliquer comment corriger la démonstration du lemme de sous-modularité.

Démonstration du théoréme ?77. Le lemme de sous-modularité donne exacte-
ment l'existence du sous-espace V;,. On procéde ensuite par récurrence. Suppo-
sons définis des sous-espaces V;, < --- < V;, et une fonction ¢(*): [0,d] — R tels
que

1. ¢ est convexe, affine par morceaux, avec pour points angulaires {i1,. . yts—1};

2. ¢(®) est située au-dessous de tout point de la forme (dim V, 7(V)), V < K¢;

3. Si 7(V) = ¢l*)(dim V), alors le sous-espace V' est compatible avec le dra-
peau partiel V;, < --- <V, .

Le lemme de sous-modularité appliqué dans I’espace quotient K<¢/V; montre

qu’il existe un unique sous-espace V; ., contenant V;_, et qui minimise le rapport
T(V)—7(Viy)

Tmv—dim v~ parmi tous les sous-espaces contenant V; . Notons

(Vi) (A
dimV;,, , —dimV; ~

s+1

Pour définir la fonction ¢(**1), on ajoute le point (iy,7(V;,)) et on impose une
pente égale a a sur le segment [i,,d]. Nous voulons vérifier que c(*T1) vérifie
encore les trois propriétés ci-dessus. La premiére est claire, par construction.
Comme c(5T1) et ¢(*) coincident sur Uintervalle [0, ], les deuxiéme et troisiéme
propriétés sont satisfaites si dimV < i,. Si dimV > i,, on a par construction
de (5T (noter que V + V;_ contient V;,)

T(V + Vi) > D (dim(V + Vi)

et
TV NV;,) = P (dim(V N V).

Les points correspondants & V;_, VNV, et V + V;_ sont tous au-dessus du
graphe de ¢(**1) Comme c(511) est convexe, la régle du parallélogramme montre
que le point (dimV, et (dim V)) est aussi au-dessus du graphe de c(s+1),
Formellement, les pentes de ¢(**1) sont croissantes donc

A (dim(V +V4,)) — Y (dim V;,) > G (dim V) — ¢S (dim(V N VL))
puis
T(V)>7(VV)+7(V+V;,)—7(Vi,)

> D (dim(V N ;) + B (dim(V + V) — S (dim V)
> D (dim V).
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De plus, en cas d’égalité, on doit avoir ¢t (dim(V +V;,)) — &+t (dim V;,) =
St (dim V) — ¢+ (dim(V N V;,)), et comme ¢*+Y) admet un angle strict en
is, cela force dim(V NV;,) =i, i.e. V D V;_ . Mais alors, par définition de V;_
onaV CV

+1

O

s+1°

Remarque. On peut aussi comprendre les minima successifs d’un réseau A via
la théorie de la réduction : toute matrice g dans GL4(R) admet une décompo-
sition de Siegel

g = kanvy,

ou k € O4(R), v € GL4(Z), n est unipotente triangulaire supérieure et vérifie
Inij;| < % sii < j, et a = diag(ay,...,aq), avec Vi, a;41 > @ai. Alors, pour
chaque i, log A;(A) < a;. Cela permet notamment de montrer facilement que
si 'espace 0 des réseaux dans RY est muni d’une distance riemannienne qui
provient d’une métrique riemannienne invariante a droite sur GL4(R), alors,
pour tous réseaux A, A/,

d(A,A') = lea = carll + Oa(1).

Exercice 28. Soit A un réseau dans R% et Fa: {0} <V, <--- <V, <Asa
filtration de Harder-Narasimhan.

1. Justifier que pour tout s, log p;, (A) = ca(is).
2. Montrer que pour tout i € {1,...,d}, log u;(A) = ca(i) + Oq(1).
3. Justifier que la donnée du polygone de Grayson d’un réseau A est es-

sentiellement équivalente a celle des minima successifs, ou des covolumes
successifs de A.

4.2 Le théoréme du sous-espace paramétrique

Comme auparavant, nous noterons dans ce paragraphe Q C R I'ensemble des
nombres réels algébriques. Nous voulons interpréter théoréme du sous-espace de
Schmidt en termes d’orbites diagonales de réseaux dans R? qui admettent une
base constituée de vecteurs a coordonnées dans Q. Le but de cette partie est le
résultat suivant qui décrit le comportement asymptotique d’une telle orbite au
premier ordre.

Théoréme 4.8 (Théoréme du sous-espace paramétrique). Soit A un réseau al-
gébrique, i.e. A = LZ% avec L € GL4(Q), et (at)ier un sous-groupe diagonal
un parameétre. Alors,

1. le diagramme de Grayson renormalisé Lcg, A converge en +0o vers une
¢ Cay
limite ¢ ;

2. sii] < - < i désignent les points angulaires de coo, il existe un drapeau
partiel {0} < V;, < --- < V;, < Z% tel que pour tout t > 0 assez grand,
pour s =1,... k, les is premiers minima successifs de a;A dont atteints
dans a;LV;,.

Les observations de la partie précédente sur les applications sous-modulaires
vont nous permettre de construire facilement la limite co, et le drapeau partiel
associé, ce qui sera a la base de la démonstration du théoréme.
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Définition 4.9. Le tauz d’expansion d’un sous-groupe discret V < R¢ par le
flot diagonal (a;L)icr est la quantité

. 1
(V) = t~1>l+moo n log|a, LV|.

Remarque. Cette limite est bien définie, c’est le logarithme de la plus grande
valeur propre de a; apparaissant dans la décomposition de LV suivant les es-
paces propres de a; dans AY™VR?, Elle ne dépend que du sous-espace vectoriel
engendré par V.

Nous déduirons le théoréme 77 du théoréme du sous-espace de Schmidt, que
nous avons déja utilisé au paragraphe 77, et que nous rappelons ci-dessous.

Théoréme 4.10 (Théoréme du sous-espace de Schmidt). Soit L € GL4(Q) et
L1,...,Lg les formes linéaires sur R données par les lignes de L. Pour tout
€ >0, l’ensemble des solutions v € Z¢ a 'inégalité

[L1(v) ... La(v)] < Jlvf|™=
est inclus dans une union finie d’hyperplans.

Exercice 29. Démontrer le théoréme de Schmidt dans le cas particulier L €

GL4(Q).

Dans un cours plus complet, on démontrerait le théoréme de Schmidt, et
alors le théoréme 77 pourrait apparaitre comme un résultat intermédiaire dans
la démonstration. Quoiqu’il en soit, il est bon de savoir que les deux énoncés
sont équivalents.

Démonstration du théoréme 77. Il découle de la proposition 77 que le taux de
contraction par (a;L)er définit une application sous-modulaire sur Grass(Q?).
Notons ¢, le polygone de Grayson et {0} < V;, < --- < V;, < Q? la filtration de
Harder-Narasimhan associés & 77, et montrons que les conclusions du théoréme
sont alors satisfaites.

Remarquons que pour s = 1,...,k, par définition du taux de contraction,
2logla;LV;,| = 7(V;,) 4 o(1). Cela implique que

1
lim sup - log p1;, (a, LZ) < 71(V;,) = oo (is)-

En d’autres termes, pour € > 0, pour ¢t > 0 grand, la fonction convexe %cat A est
située au-dessous de ¢, +¢€ en tout point angulaire de ¢, donc %cat A < cCoote.
Ainsi,

. 1

lim sup EcatA < Coo-

Pour montrer la limite souhaitée, il suffit de minorer les pentes de %ca . A adroite
de chaque point angulaire en montrant que pour s =1,...,k,

TL(Vierl) - TL(‘/is)
Z‘erl - is '

1
lim inf n log A, +1(a: LZY) >

Pour fixer les idées, écrivons a; = diag(e'?,... eddt) avec A; > --- > Ay,
ce qui est toujours possible, quitte & permuter les éléments de la base canonique
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de R?. Commencons par le cas s = 0 ; on veut donc montrer que pour € > 0, pour
7L (Vig)

tout ¢ > 0 assez grand, \;(a;LZ%) > T O Soit V < 74 de dimension
minimale tel que pour ¢ > 0 arbitrairement grand, il existe v € V tel que
L (Viy)

|las Lv|| < e~ 79" On associe & V un ensemble Jy, C {1,...,d} de cardinal
dim V de la facon suivante

J1 est minimal tel que Lj, |y # 0

Jjo2 est minimal tel que (Lj, |v, Lj,|v) est libre

. etc.

Alors,
TL(V) = Z Aj.

JjeJv

L (Vig)
Donc, pour tout v € V' vérifiant ||a;Lv|| < el T ot

I 1) =e ™" I e®'|Lj(v)|

je€Jv jeJVv

on a

. 7L (Viq)
< e*TL(V)te(dlm V)(Liill—f)t

< e—(dim V)Et.
Mais ||v| < e~ A4ta; Lo < eAt, ot A = |A;y| + |A4|, et donc, pour ¢/ = £4mV

A
IT 1L < ol ==
Jj€Jv
D’aprés le théoréme du sous-espace de Schmidt, les solutions de cette inégalité
sont contenues dans un nombre fini de sous-espaces stricts W < V', mais par mi-
nimalité de V', pour ¢t > 0 assez grand, chaque tel W ne contient pas de solution a

7L (Vig)
lla, Lo < 6(41'1 1 _e)t

TL(_Vzil)'

. Cela montre ce qu’on voulait : liminf 4 log Ay (a, LZ%) >

11

Pour s > 1, on procéde par récurrence, en supposant le résultat connu pour
s—1. Soit V < Z4 contenant V;,_, et de dimension minimale tel que pour ¢ > 0
arbitrairement grand, il existe v € V' tel que

TLVig)=mn (Vi _q)

(

ls—lg—1 _E)'

la:Lo| < €'

Pour j € Jy \ Jy; _ , on peut choisir successivement des éléments oy € Q tels
que

M; =1L, — Z ajely =0 surV;

ey,

Alors, |laiMv|| < ||lacLv|| et donc

s—1°

—1

TL(Vig)=m (Vi _ 1)

H 1M (v)] < et (V)= (Vi ) HAim Vi) (—— === —¢)
jedv\dv; |

< e—ts(dimV—is_l) S ||'UH_€I.

Le théoréme du sous-espace de Schmidt dans l’espace quotient Z¢/V;__, permet
donc de conclure comme dans le cas s = 0 déja traité ci-dessus. O
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4.3 Application aux variétés grassmanniennes

Comme au chapitre 77, on fixe des entiers 1 < k < ¢ < d, et on s’intéresse
aux approximations d’un élément = dans X, 4(R) par des points rationnels dans
X,a(Q). Rappelons que I'exposant diophantien Sy (z) est défini par

B ~d(v,z) =0
Br(x) = sup {ﬁ>0 ‘ Jv € X q4(Q) : d(v,z) < H(v)~P }
De plus, si s, est un élément de SL4(R) tel que x = s % - Vect(ey, ..., er), et

_(d—0)t _(@d=0t  (d—O)t (d—0)t

ap =diagle” @ ,...,e d ,e 4 ,....e 4 )

la proposition ?? relie 'exposant By () a I'orbite du réseau a;s,Z? par la formule

1
Br(@) = 1o
* k(dd a_ 'Yk(w)

ou

. . kod . [wil < e

Yi(z) = bup{v cR ‘ It — 4+oo: IW E apu, A¥Z ot |7+ (w)| > %||w|| }
Les résultats du paragraphe précédent vont nous permettre de calculer explicite-
ment la quantité v, (z) lorsque 2 est un sous-espace défini sur Q, i.e. admettant
une base de vecteurs & coordonnées dans Q.

Pour cela, commengons par remarquer qu’avec les notations ci-dessus, le
taux de contraction d’un sous-espace W < R¢ sous 'action de a;u, est donné
par

(W) = fé ((d=4)dimzNW — (dim W — dimzNW)),

donc
(W) ¢ dimznW

dmW d_ dmW

est minimal si et seulement si % est maximal.

Par conséquent, le drapeau {0} = V5 < Vi, < --- < V;, < Vg = Q% du
théoréme 77 s’obtient par récurrence de la fagon suivante : V;, est I'unique sous-
dim zNV;,

dim V;;
par récurrence, V;, est 'unique sous-espace rationnel contenant V;, , de dimen-
dim 2NV;, —dim zNV;

ts—1

espace rationnel de dimension maximale qui maximise le quotient , et

sion maximale et qui maximise . De plus, les pentes

ts—ls—1
: d
Ai = tl}I-lpoo % log )\i (ats$Z )

du polygone limite ¢, sont données par

A—Z dimxNV,, —dimzNV;

d Z‘s - is—l

s—1

Siig <i<igs1.

Ces observations permettent déja d’obtenir I'exposant d’un sous-espace algé-
brique hors de certaines contraintes rationnelles. On rappelle qu'un pinceau
dans Xy 4 est une sous-variété de la forme

Pwyr={r € XpqR) | dimznW >r}
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ou W < R? est un sous-espace vectoriel, et » un entier positif. Un tel pinceau

est dit rationnel si le sous-espace W est rationnel, et contraignant si 37 > g.

Théoréme 4.11 (Extrémalité d’un sous-espace algébrique non dégénéré). Si

x € X¢,a(Q) nest inclus dans aucun pinceau rationnel contraignant, alors, pour
tout k € {17 e ’E}, Bk(:ﬂ) = ﬁ.

Démonstration. Si x n’est inclus dans aucun pinceau rationnel contraignant, le
drapeau ci-dessus est réduit a {0} = Vo < V; = Z%, et pour tout i, A; = 0.
En particulier, lim;_, 1 o % log A\ (a¢s,Z%) = 0, et d’aprés le corollaire 77, cela
implique B (z) = W pour tout k=1,...,74. O

Plus généralement, nous allons montrer le théoréme suivant, qui donne une

formule explicite pour ~y(z) lorsque x appartient & X, 4(Q).

Théoréme 4.12 (Exposants d’un sous-espace algébrique). Soit x € X,(Q) et
{0} < Vi < -+ <V, < Z% le drapeau partiel défini ci-dessus. Pour s =
1,...,k, posons

Js =dimaxNV,_.

Alors, pour k =1,...,£, notant ks = min(js, k),

T —k’ﬂ T ks _ k/’s .S _ .S
() = _Z(kerl —ks)Ai 41 = a + (Fat Uora =] )-

s=0 s=0

7:s+1 - Zs
Démonstration. Considérons le sous-réseau de AFZ4 défini par
S = AV A (AR A A (N TRy )

Le théoréme 77 implique que pour tout £ > 0, pour tout ¢ > 0 suffisamment
grand, le réseau a;s,S admet une base de vecteurs dont la norme est majorée
par

explt(e + Z(kerl — ko)A 1))
s=0

De plus, par définition des entiers kg, ce sous-espace contient un vecteur pur v, €
AFz. 1’8lément s, v, appartient a 'image Vect(er; I C {1,...,£}), donc il existe
dans a;5, S un vecteur v tel que |77 (v)|| = [|v]| et ||v]| < etCoizo(Fori=ke)Ais11+0(e),
Comme € > ( est arbitrairement petit, cela montre déja 'inégalité

T

(@) > = (koyr = ks)Ai 11

s=0

Réciproquement, le théoréme 77 montre aussi que pour € > 0, pour tout t > 0
suffisamment grand, tout vecteur v dans A*Z? tel que

|ags.v| < et(—e+2 i o (ko1 —ks)Aig 1)
appartient a un sous-espace

8= NV, A(NSTRV) A A (N TR



46 CHAPITRE 4. APPROXIMATION DES POINTS ALGEBRIQUES

avec pour un certain u, ki, > k > k,. Par définition des entiers ks, s =1,...,r,
le sous-espace S’ ne contient aucun vecteur pur non nul de A*z, et donc il existe
¢ > 0 tel que pour tout vecteur pur v € S’, [[s,v — w1 (s5,v)| > ¢||s.v]. Cela
implique

lagsov]| > ce™ E 1770 ||, v||
> et 7) || nt (ays,v)||

et montre que le vecteur a;s,v ne saurait satisfaire |77 (a;s,v)|| > 3| lars.v].
Ainsi, y(z) <e =30 (ksy1 — ks)As, 1. Lorsque € tend vers zéro, on obtient
le résultat souhaité. O

Cette formule permet déja de montrer que I'exposant diophantien S (x) d'un
sous-espace défini sur Q est toujours supérieur a 'exposant générique ﬁ, et
donne une condition nécessaire et suffisante pour qu’il y ait une égalité.

Corollaire 4.13. Pour tout x € X,(Q) et tout k < ¢, on a By(z) > ﬁ, avec
égalité si et seulement si x n’est inclus dans aucun pinceau rationnel contrai-
gnant.

Démonstration. D’aprés la proposition 77, I'exposant diophantien [i(x) est

donné par i (x) = W, et il suffit donc de montrer que v, (z) > 0, avec
EID

k()
égalité si et seulement si x n’est inclus dans aucun pinceau rationnel contrai-
gnant. Lorsque & = ¢, on a ks = j,; pour chaque s, et donc

—kl | U1 — Js)?

) = S
5—0 s+1 s
On écrit alors

T . . 2 ks . . 2 i . . 2

_ Gl — i _

dz (J§+1 ]'s) _ (Z ( s+l .s) )(Z (J_s+1 J_s) )
5—0 ls4+1 — s 5—0 ls+1 — s 5—0 ls+1 — s

2 (st+1 _js)2 = 62
s=0

et cela montre que y¢(x) > 0. L’inégalité v (x) > 0 pour k < ¢ découle du cas
particulier k£ = ¢, car comme la fonction s — 15117:39 est décroissante,

zr: (ks+1 — ks)(Jst1 — (Js+1—Js)*
s—0 Z‘erl - Zs € 'Ls+1 - Zs
En effet, la fonction constante par morceaux f: x — Zﬁij sijs <@ < sy est
décroissante, et 1'égalité ci-dessus s’écrit simplement f() (z)dx > 7 fo
Si vk (x) = 0, les calculs ci-dessus montrent que 1 (z) = 0, et cela implique
Ji _ £

o = g ce qui par définition de V;, n’est possible que si V;, = Q%, i.e. x n’est
inclus dans aucun pinceau rationnel contraignant. Réciproquement, si z n’est
inclus dans aucun pinceau rationnel contraignant, on doit avoir V;, = Q% et
donc ¢ (z) = 0 pour tout k =1,...,¢. O

Remarque. Nous verrons au chapitre suivant que cette minoration de I’expo-
sant diophantien est encore valable pour tout x dans X, 4(R).



