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Abstract

We study the diophantine exponent of analytic submanifolds of m × n real matrices, answering questions of
Beresnevich, Kleinbock and Margulis. We identify a family of algebraic obstructions to the extremality of such a
submanifold, and give a formula for the exponent when the submanifold is algebraic and defined over Q. We then
apply these results to the determination of the diophantine exponent of rational nilpotent Lie groups.
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Résumé

Approximation diophantienne métrique dans les matrices et les groupes de Lie.
Nous étudions l’exposant diophantien des sous-variétés analytiques de matrices réelles m × n et répondons à

certaines questions posées par Beresnevich, Kleinbock et Margulis. Nous identifions une famille d’obstructions
algébriques à l’extrémalité d’une telle sous-variété, et donnons une formule pour l’exposant lorsque celle-ci est
définie sur Q. Enfin nous appliquons ces résultats à la détermination de l’exposant diophantien des groupes de Lie
nilpotents rationnels.
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Introduction

In their breakthrough paper [KM98], Kleinbock and Margulis have solved a long standing conjecture of
Sprindzuk regarding metric diophantine approximation on submanifolds of Rn, stating roughly speaking
that non-degenerate submanifolds are extremal in the sense that almost every point on them has similar
diophantine properties as a random vector in Rn (i.e. it is not very well approximable, see below). Doing
so they used new methods coming from dynamics and based on quantitative non-divergence estimates
(going back to early work of Margulis [Mar71] and Dani [Dan85]) for certain flows on the non-compact
homogeneous space SLn(R)/ SLn(Z). They suggested at the end of their paper to extend their results
to the case of submanifolds of matrices Mm,n(R), a natural set-up for such questions. This was studied
further in [KMW10], [BKM14] and the problem appears in Gorodnik’s list of open problems [Gor07].

In this note we announce a set of results [ABRdS14b], which give what we believe is a fairly complete
picture of what happens in the matrix case as far as extremality is concerned. We identify a natural family
of obstructions to extremality (Theorem 3.1) and show that they are in some sense the only obstructions
to be considered (Theorem 3.3). Our results also extend to the matrix case previous work of Kleinbock
[Kle03,Kle08] regarding degenerate submanifolds of Rn. When the submanifold is algebraic and defined
over Q we obtain a formula for the exponent (Theorem 4.1).

In a second part of this note, we state new results regarding diophantine approximation on Lie groups, in
the spirit of our earlier work [ABRdS14a]. These results, which are applications of the theorems described
in the first part of this note, concern the diophantine exponent of nilpotent Lie groups and were our initial
motivation for studying diophantine approximation on submanifolds of matrices. The submanifolds to be
considered here are images of certain word maps. Depending on the structure of the Lie algebra and
its ideal of laws, these submanifolds can be degenerate. The relevant obstructions can nevertheless be
identified and this leads to a formula for the diophantine exponent of an arbitrary rational nilpotent Lie
group (Theorem 6.2). A number of examples are also worked out explicitly.

1. Diophantine approximation on submanifolds of Rn.

A vector x ∈ Rn is called extremal (or not very well approximable), if for every ε > 0 there is cε > 0
such that

|q · x+ p| > cε
‖q‖n+ε

for all p ∈ Z and all q ∈ Zn \ {0}. Here q · x denotes the standard scalar product in Rn and ‖q‖ :=
√
q · q

the standard Euclidean norm.
As is well-known (Borel-Cantelli) Lebesgue almost every x ∈ Rn is extremal. An important question in

metric diophantine approximation is that of understanding the diophantine properties of points x that are
allowed to vary inside a fixed submanifold M of Rn. The submanifold M is called extremal if Lebesgue
almost every point on M is extremal. A key result here is

Theorem 1.1 (Kleinbock-Margulis, [KM98]) Let U be an open connected subset of Rk and M :=
{f(x);x ∈ U}, where f : U → Rn is a real analytic map. Assume that M is not contained in a proper
affine subspace of Rn, then M is extremal.
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This answered a conjecture of Sprindzuk. The proof made use of homogeneous dynamics via the so-
called Dani correspondence between diophantine exponents and the rate of escape to infinity of a diagonal
flow in the space of lattices. We will also utilize these tools.

2. Diophantine approximation on submanifolds of matrices.

It is natural to generalize this setting to that of submanifolds of matrices, namely submanifolds M⊂
Mm,n(R). The diophantine problem now becomes that of finding good integer approximations (by a vector
p ∈ Zm) of the image M · q of an integer vector q ∈ Zn under the linear endomorphism M ∈ Mm,n(R).
The case m = 1 corresponds to the above classical case (that of linear forms), while the dual case n = 1
corresponds to simultaneous approximation.

It turns out that it is more natural to study the slightly more general problem of approximating 0 by
the image M · q of an integer vector q. One can pass from the old problem to the new by embedding M
inside Mm,m+n(R), via the embedding (Im denotes the m×m identity matrix)

Mm,n(R)→Mm,m+n(R)

M 7→ (Im|M)

From now on, we will consider an arbitrary connected analytic submanifold M ⊂ Mm,m+n(R), given
as M := {f(x);x ∈ U}, where f : U →Mm,m+n(R) is a real analytic map from a connected open subset
U in some Rk.

Definition 2.1 (Diophantine exponent) We say that a matrix M ∈ Mm+n,n(R) has diophantine expo-
nent β(M) ≥ 0, if β(M) is the supremum of all numbers β ≥ 0 for which there are infinitely many
q ∈ Zm+n such that

‖M · q‖ < 1

‖q‖β
.

3. The pigeonhole argument and the obstructions to extremality.

By the pigeonhole principle (Dirichlet’s theorem), the lower bound β(M) ≥ m
n holds for all M . Indeed

one compares the number of integer points in a box of side length T in Zm+n with the volume occupied
by the image of this box under M in Rm. Furthermore, instead of considering the full box of side length
T in Zm+n, we could have restricted attention to the intersection of this box with a rational subspace
W ≤ Rm+n. The same argument would have then given the lower bound

β(M) ≥ dimW

dimMW
− 1.

Of course it may happen, given M , that for some exceptional subspace W , dimW
dimMW − 1 > n

m = n+m
m − 1.

And this may well also happen for all M ∈M, providedM lies in the following algebraic subvariety PW,r
of Mm,m+n(R)

PW,r := {M ∈Mm,m+n(R); dimMW ≤ r}, (1)

where W is a fixed rational subspace of Rm+n and r a non-negative integer such that

dimW

r
− 1 >

n

m
. (2)
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By convention, we agree that (2) is satisfied if r = 0. We will call the subvariety PW,r of Mm,m+n(R)
a pencil of endomorphisms with parameters W and r (defined also for arbitrary, non rational, subspaces
W ). Note that when m = 1, and r = 0, this notion reduces to the notion of linear subspace (the orthogonal
of W ) of Rn+1 (or affine subspace of Rn). Hence asking that the submanifoldM be not contained in any
of those pencils PW,r satisfying (2) is analogous in the matrix context to the condition of Theorem 1.1
thatM be not contained in an affine subspace. The following result is close in spirit to that of [BKM14],
which gave a sufficient geometric condition for strong extremality. Our condition is strictly weaker, but
only implies extremality:

Theorem 3.1 (Extremal submanifolds) Let M⊂Mm,m+n(R) be a connected real analytic subman-
ifold. Assume that M is not contained in any of the pencils PW,r, where W, r range over all non-zero
linear subspaces W ≤ Rm+n and non-negative integers r such that (2) holds. Then M is extremal, i.e.
β(M) = n

m for Lebesgue almost every M ∈M.

3.1. Non extremal submanifolds

A general result of Kleinbock [Kle10] implies that the diophantine exponent of a random point of M
is always well-defined. Namely there is β = β(M) ∈ [0,+∞] such that for Lebesgue almost every x ∈ U ,

β(f(x)) = β(M).

Our first result is a general upper bound:

Theorem 3.2 (Upper bound on the exponent) Let M ⊂ Mm,m+n(R) be an analytic submanifold
as defined above. Then

β(M) ≤ max{dimW

r
− 1;PW,r ⊃M}.

Of course Theorem 3.1 is an immediate consequence of this bound.

In [Kle03,Kle08] Kleinbock showed that the diophantine exponent of an analytic submanifold of Rn
depends only on its linear span. Our next result is a matrix analogue of this fact. Note that the dio-
phantine exponent of a matrix M depends only on its kernel kerM . As M varies in the submanifold
M ⊂ Mm,m+n(R), consider the set of these kernels as a subset of the Grassmannian and take its linear
span in the Plücker embedding. Denote by H(M) the matrices M whose kernel lies in this linear span.
The set H(M) is an algebraic subvariety containing M and contained in every pencil containing M.

Theorem 3.3 (Optimality of the exponent) We have:

β(M) = β(H(M)).

In particular β(M) = β(Zar(M)), where Zar(M) denotes the Zariski closure of M, and β(M) = β(Ω)
for any open subset Ω ⊂M.

In particular M is extremal if and only if H(M) is extremal.
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4. Lower bounds on the exponent and rationality

Theorem 3.2 gives a general upper bound on the exponent. The pigeonhole argument described at the
beginning of §3 yields a lower bound on β(M) in terms of the exponents of the rational obstructions in
which M is contained, i.e. the pencils PW,r with W a rational subspace of Rm+n. Hence, for a general
analytic submanifold M⊂Mm,m+n(R), we only have the following general upper and lower bound:

max
PW,r⊃M,W rational

dimW − r
r

≤ β(M) ≤ max
PW,r⊃M

dimW − r
r

. (3)

For a submanifold M in general position the upper and lower bound are typically distinct. However
we will prove:

Theorem 4.1 (Subvarieties defined over Q) Assume that the Zariski-closure of the connected real
analytic submanifold M ⊂ Mm,m+n(R) is defined over Q. Then the upper and lower bounds in (3)
coincide, and hence are equal to β(M). In particular β(M) ∈ Q.

The proof of Theorem 4.1 is based on the following combinatorial lemma, which is used here with
G = Gal(C|Q) and will be used once again later on in the applications to nilpotent groups with G = GLk.

Let V be a finite dimensional vector space over a field and φ : Grass(V ) → N ∪ {0} a function on the
Grassmannian, which is non-decreasing (for set inclusion) and submodular in the sense that for every two
subspaces W1 and W2 we have

φ(W1 +W2) + φ(W1 ∩W2) ≤ φ(W1) + φ(W2).

Lemma 4.2 (Submodularity lemma) Let G be a group acting by linear automorphisms on V . If φ is
invariant under G, then the following minimum is attained on a G-invariant subspace

min
W∈Grass(V )\{0}

φ(W )

dimW
.

5. Diophantine approximation on Lie groups

Inspired by work of Gamburd-Jakobson-Sarnak [GJS99] and Bourgain-Gamburd [BG08] on the spectral
gap problem for finitely generated subgroups of compact Lie groups, we defined in a previous article
[ABRdS14a] the notion of diophantine subgroup of an arbitrary Lie group G. The definition is as follows.
Any finite symmetric subset S := {1, s±11 , . . . , s±1k } in G generates a subgroup Γ ≤ G. If for all n ∈ N

inf{d(1, γ); γ ∈ Sn \ {1}} > 1

|Sn|β
,

then we say that (Γ, S) is β-diophantine. And we say that Γ is diophantine if it is β-diophantine for
some finite β. Here d(·, ·) denotes a fixed Riemannian metric on G and |Sn| is the cardinality of the n-th
product set Sn := S · . . . · S. It is easily seen that being diophantine does not depend on the choice of S
or d(·, ·). And if G is nilpotent this is also true of being β-diophantine.

The connected Lie group G is said to be diophantine on k letters if for almost every choice of k group
elements s1, . . . , sk chosen independently with respect to the Haar measure, the subgroup they generate
is diophantine. Finally one says that G is diophantine if it is diophantine on k letters for every integer k.
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While it is conjectured that all semisimple Lie groups are diophantine, there are examples of non-
diophantine Lie groups. Indeed a construction was given in [ABRdS14a] for each integer k ∈ N of a
connected Lie group which is diophantine on k letters, but not on k+ 1 letters. Our examples are certain
nilpotent Lie groups without a rational structure. We showed in that paper that the first examples arise
in nilpotency class 6 and higher. In fact every nilpotent Lie group G with nilpotency class at most 5, or
derived length at most 2 (i.e. metabelian), is diophantine.

6. Diophantine exponent of nilpotent Lie groups

If G is nilpotent, |Sn| grows like nαS , where αS is an integer given by the Bass-Guivarc’h formula. If
the k elements si’s forming S are chosen at random with respect to Haar measure, then αS is almost
surely a fixed integer, which is a polynomial in k (see [ABRdS14a]).

Proposition 6.1 (Zero-one law) Let G be a simply connected nilpotent Lie group, and pick an integer
k ≥ dimG/[G,G]. There is a number βk ∈ [0,+∞], such that if β > βk (resp. β < βk), then with respect
to Haar measure almost every (resp. almost no) k-tuple in G generates a β-Diophantine subgroup.

The proof of this is based on the ergodicity of the group of rational automorphisms of the free Lie algebra
on k letters acting on (Lie(G))k. When the nilpotent Lie group G is rational (i.e. admits a Q-structure)
the exponent βk can be computed explicitly using Theorem 4.1. We have:

Theorem 6.2 (A formula for the exponent) Assume that G is a rational simply connected nilpotent
Lie group. There is a rational function F ∈ Q(X) with coefficients in Q such that for all large enough k,

βk = F (k).

In particular βk ∈ Q. When k →∞, βk converges to a limit β∞ with 0 < β∞ ≤ 1.

For example, if G is the (2m + 1)-dimensional Heisenberg group and k ≥ 2m, then βk = 1 − 1
k −

2
k2 .

More generally if G is any 2-step nilpotent group not necessarily rational, then βk = (1− 1
k ) 1

dim[G,G] −
2
k2

for k ≥ dimG/[G,G].

We also obtain closed formulas for βk in the case when G is the group of n × n unipotent upper-

triangular matrices, e.g. if n = 4, and k ≥ 3, then βk = k3−k−3
k3+k2−k . And in the case when G is an s-step

free nilpotent group on m generators, e.g. if m = 2 and s = 3, then βk = k3−k−6
2(k3+k2−k) . These formulas

involve the dimensions of the maximal (for the natural partial order on Young diagrams) irreducible
GLk-submodule of the free Lie algebra on k generators modulo the ideals of laws of G.

The reduction to Theorem 4.1 proceeds as follows. Since k is large, one can restrict attention to the
last term G(s) in the central descending series. Given a Z-basis e1, . . . , em+n of the s-homogeneous part
of the relatively free Lie algebra of G on k generators Fk,G (see [ABRdS14a]), the submanifold Mk,G of
matrices to be considered is the image of (Lie(G))k under the (polynomial) map sending x ∈ (Lie(G))k

to the (n + m) ×m matrix whose columns are the ei(x). Here m = dimG(s). Computing the exponent
amounts to first identify the pencils PW,r in whichMk,G sits and then compute the maximum of the ratios
dimW
r . Using the submodularity lemma (Lemma 4.2) applied for the GLk action of linear substitutions

we may restrict attention to those pencils corresponding to subspaces W of Fk,G that are fully invariant
ideals. Determining those ideals is usually possible, depending on G, thanks to the known representation
theory of the free Lie algebra viewed as a GLk-module.
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