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ORDER IN Rn

PRASUNA BANDI AND NICOLAS DE SAXCÉ

Abstract. Given a non-increasing function ψ : N→ R+ such that s
n+1
n ψ(s)

tends to zero as s goes to infinity, we show that the set of points in Rn that are
exactly ψ-approximable is non-empty, and we compute its Hausdorff dimen-

sion. For n ≥ 2, this answers questions of Jarńık and of Beresnevich, Dickinson

and Velani.

1. Introduction

Given a non-increasing function ψ : N→ R∗+, one defines the set of ψ-approximable
points in Rn as

W (ψ) =

{
x ∈ Rn | there exists infinitely many

p

q
∈ Qn with

∥∥∥∥x− p

q

∥∥∥∥ < ψ(q)

}
,

where the norm on Rn is given by ‖x‖ = max1≤i≤n|xi| if x = (x1, . . . , xn). It
follows from Dirichlet’s celebrated theorem that for the function

ψn+1
n

(s) = s−
n+1
n

one has W (ψn+1
n

) = Rn. On the other hand, for τ > 0 and ψτ (s) = s−τ , Jarńık [13]

showed the following theorem.

Theorem 1 (Jarńık, 1930). Let n ≥ 1 be an integer. For every τ ≥ n+1
n , one has

dimHW (ψτ ) =
n+ 1

τ
.

This shows in particular that if τ ′ > τ , then the set W (ψτ ′) is strictly smaller
than W (ψτ ). In fact, for τ large enough Jarńık was able to sharpen this result, as
he observed that for every τ > 2 and every c < 1, one even has a strict inclusion

W (cψτ ) (W (ψτ ).

For n > 1, the condition τ > 2 is unnatural, and Jarńık’s remarks at the end of his
paper suggest that the result should hold for any τ > n+1

n . One goal of this paper
is to show that this is indeed the case.

More precisely, defining the set of exact ψ-approximable vectors in Rn by

E(ψ) = W (ψ) \
⋃
c<1

W (cψ),

we shall prove the following result generalizing Jarńık [13, Satz 6].
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Theorem 2 (Existence of exact ψ-approximable vectors). Let n ≥ 1 be an integer.

If ψ : N → R∗+ is non-increasing and satisfies lims→∞ s
n+1
n ψ(s) = 0, then E(ψ) 6=

∅.

In the particular case n = 1, Yann Bugeaud [3, 4] and then Bugeaud and Mor-
eira [5] studied the sets E(ψ) from the point of view of Hausdorff dimension, and
showed that dimH E(ψ) = dimHW (ψ) provided s2ψ(s) tends to zero at infinity.

Under the assumption that lims→∞− logψ(x)
log(x) exists and is at least 2, Reynold Fre-

goli [12] was able to compute the Hausdorff dimension of E(ψ) in the case n ≥ 3 but
as Jarńık himself already observed, the condition ψ(s) = o(s−2) is too restrictive

when n ≥ 2, and should be replaced by ψ(s) = o(s−
n+1
n ). In [1] Bandi, Ghosh, and

Nandi studied the exact approximation problem in the abstract set-up of Ahlfors
regular metric spaces but again, their assumptions imply in particular that the
abstract rational points satisfy a certain well-separatedness property, which the ra-
tionals in Rn do not satisfy for n ≥ 2. A variant of the problem was studied by
Beresnevich, Dickinson, and Velani [2] who showed that the set

D(ψ1, ψ2) = W (ψ1) \W (ψ2)

satisfies dimH D(ψ1, ψ2) = dimHW (ψ1) under certain assumptions that imply in

particular that ψ1(s)
ψ2(s) tends to infinity as s goes to infinity. They observed however

that their techniques completely fail if one takes ψ2 = cψ1, and that new ideas
and methods would be needed to cover this case. Our approach allows us to give
a satisfactory answer to this problem, by showing that Bugeaud’s result is in fact
valid in any dimension. The next theorem is the main result of our paper.

Theorem 3 (Hausdorff dimension of exact approximable vectors). Let n ≥ 1 be an

integer. Assume that ψ : N→ R∗+ is non-increasing and satisfies ψ(s) = o(s−
n+1
n ).

Then the set of exact ψ-approximable vectors in Rn satisfies

dimH E(ψ) = dimHW (ψ).

In [2], the authors also define the set of ψ-badly approximable points

Bad(ψ) = W (ψ) \
⋂
c>0

W (cψ)

and suggest to study the Hausdorff dimension of this set. We obtain a complete
answer to that problem as an immediate corollary of Theorem 3.

Corollary 1 (Hausdorff dimension of ψ-badly approximable points). Let ψ : N→ R∗+
be a non-increasing function such that ψ(s) = o(s−

n+1
n ). Then

dimH Bad(ψ) = dimW (ψ)

We note however that this corollary can be obtained more easily using the varia-
tional principle in the parametric geometry of numbers of Das, Fishman, Simmons
and Urbański [6]. This alternative argument is sketched in paragraphs 2.2 and 2.3,
as an introduction to the tools and techniques that will be further developed for
the proof of Theorem 3. In the particular case of ψ(s) = s−λ, Corollary 1 was ob-
tained independently by Koivusalo, Levesley, Ward and Zhang [16] using different
methods.

Theorem 3 above is new for n ≥ 2 even in the case of the elementary function
ψ(s) = s−λ for λ > n+1

n . In that case, the formula for the Hausdorff dimension
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is particularly simple: The set Eλ of points x in Rn for which there exist infin-

itely many rationals p
q such that

∥∥∥x− p
q

∥∥∥ < q−λ, but only finitely many satisfying∥∥∥x− p
q

∥∥∥ < cqλ if c < 1, satisfies

dimH Eλ =
n+ 1

λ
.

More generally, one defines the lower order at infinity of ψ, denoted λψ, to be

λψ := lim inf
s→∞

− logψ(s)

log s

A result of Dodson [9] shows that if λψ ≥ n+1
n , the dimension of W (ψ) is given by

dimHW (ψ) =
n+ 1

λψ
.

In Theorem 3, only the lower bound dimH E(ψ) ≥ dimHW (ψ) requires a proof,
and for that we shall construct inside E(ψ) a Cantor set with the required Hausdorff
dimension n+1

λψ
.

To construct that Cantor set, the general strategy is similar to the one developed

by Bugeaud in [3], using balls of the form B(yk,
ψ(H(vk)

k ), where vk is a rational

point and yk is chosen so that d(yk, vk) = (1 − 1
k )ψ(H(vk)). It is clear that any

point x lying in infinitely many such balls is ψ-approximable, but not approximated
at rate cψ by the sequence (vk) if c < 1.

The difficult point in the proof is to control also the quality of the approxima-
tions to x by rational points v that do not appear among the points vk. Bugeaud’s
argument for that is based on continued fractions, and uses an elementary sepa-
ration property for rational points on the real line: If v1 and v2 are two rational
numbers with denominator at most q, then d(v1, v2) ≥ q−2. This property is of
course also true for rational points in Rn, n ≥ 2, but one would need the stronger

inequality d(v1, v2) ≥ q−
n+1
n if one wanted to use Bugeaud’s approach to study

E(ψ) for any function ψ such that ψ(s) = o(s−
n+1
n ). And of course, this stronger

separation does not hold for n ≥ 2.
In order to bypass this problem, the first step is to apply the celebrated Dani

correspondence, which allows us to translate the exact approximation property of a
point x in terms of the behavior of a diagonal orbit of a lattice ∆x in Rn+1 associated
to x. After that, the main ideas we use are borrowed from the parametric geometry
of numbers developed by Schmidt and Summerer [19] and Roy [17], and in particular
to the remarkable preprint of Das, Fishman, Simmons and Urbański [6], in which
the authors explain how to compute the Hausdorff dimension of the set of points
whose associated orbits follow a given trajectory in the space of lattices. We note
however that the study of exact approximation requires a precise understanding
(see subsection 2.3) of the behavior of an orbit in the space of lattices, whereas
the results in [6] only deal with trajectories up to a bounded error term. For that
reason, we need to adapt their methods to our particular problem; what is left is
that the branching of our Cantor set is best understood through a certain template,
encoding the behavior of the diagonal orbits in the space of lattices.
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2. Diagonal orbits in the space of lattices

For the construction of the Cantor set in E(ψ), it will be convenient to inter-
pret the property of exact ψ-approximability through the asymptotic behavior of
a diagonal orbit in the space of lattices. This interpretation is given by the Dani
correspondence [Theorem 8.5, [14]]. To make our proof self-contained, we briefly
recall and prove the statement that will be used later on.

Note that given any non-increasing function ψ : N → R∗+, one may always con-

struct a strictly decreasing function ψ1 : N→ R∗+ satisfying (1− 1
s )ψ(s) ≤ ψ1(s) ≤

ψ(s), and then interpolate ψ1 to obtain a decreasing function on R+. Then, the
lower order of ψ1 is λψ1 = λψ, and E(ψ1) ⊂ E(ψ). So, in order to prove the de-
sired lower bound on the Hausdorff dimension of E(ψ), it suffices to prove it for
E(ψ1). This shows that for the proof of Theorem 3, we may assume without loss of
generality that ψ extends to a decreasing (and continuous) function on R+. This
assumption makes the statement of Dani’s correspondence slightly simpler, so we
shall always make it in the sequel.

2.1. Dani’s correspondence. To any point x = (x1, . . . , xn) in Rn we associate
the unipotent matrix

ux :=


1
−x1 1

...
. . .

−xn 1


and the unimodular lattice

∆x = uxZn+1 ⊂ Rn+1.

The diophantine properties of x are encoded in the asymptotic behavior of the orbit
of ∆x under the diagonal semigroup (at)t>0 given by

at :=


e−t

et/n

. . .

et/n

 .

To state the precise correspondence, we associate to each rational point v = (p1q , · · · ,
pn
q )

in Qn the primitive integer vector v = (q, p1, · · · , pn) in Zn+1, where the coordi-
nates (q, p1, . . . , pn) are relatively prime. We shall also use the distance on Rn given
by

d(x, v) = max
1≤i≤n

∣∣∣∣xi − pi
q

∣∣∣∣
and the height on Qn defined by

H(v) = max {|q|, |p1|, . . . , |pn|} .
In the following, the space Rn+1 is endowed with the norm equal to the maximal
coordinate in absolute value:

‖w‖ = max
1≤i≤n+1

|〈ei,w〉|.

In particular, the equality ‖w‖ = |〈e1,w〉| appearing in item (b) below means that
the largest component of the vector w is along the e1 coordinate.
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Proposition 1 (Dani’s correspondence). Let ψ : R+ → R+ be a decreasing function

and set Ψ(s) := ψ(s)−
n
n+1 . Then,

(a) If d(x, v) ≤ ψ(H(v)) for some v ∈ Qn ∩ [0, 1]n and t is such that et =
Ψ(H(v)), then |〈e1, atuxv〉| = ‖atuxv‖ and ‖atuxv‖ ≤ e−tΨ−1(et).

(b) If ‖atuxv‖ ≤ e−tΨ−1(et) and |〈e1, atuxv〉| = ‖atuxv‖ for some v ∈ Zn+1,
then the rational point v satisfies H(v) ≤ Ψ−1(et) and d(x, v) ≤ ψ(H(v)).

Proof. Suppose d(x, v) ≤ ψ(H(v)) and let t be such that

et = Ψ(H(v)). (1)

Since v ∈ [0, 1], the vector v = (q, p1, . . . , pn) satisfies q ≥ max1≤i≤n|pi|, so H(v) =
q and by definition of the height and distance on Rn+1,

‖atuxv‖ = max{e−tH(v), et/nH(v)d(x, v)}
and from the definition of Ψ and our choice of t,

et/nH(v)d(x, v) ≤ et/nH(v)ψ(H(v))

≤ et/nH(v)Ψ(H(v))−
n+1
n

(1)
= e−tΨ−1(et).

It follows that |〈e1, atuxv〉| = e−tH(v) = e−tΨ−1(et) = ‖atuxv‖ and

‖atuxv‖ ≤ e−tΨ−1(et).

For the second item of the proposition, assume that

‖atuxv‖ = max{e−tH(v), et/nH(v)d(x, v)} ≤ e−tΨ−1(et).

Then clearly, H(v) ≤ Ψ−1(et), and the condition |〈e1, atuxv〉| = ‖atuxv‖ translates
to

et/nH(v)d(x, v) ≤ e−tH(v)

whence
d(x, v) ≤ e−

n+1
n t ≤ Ψ(H(v))−

n+1
n = ψ(H(v)).

�

Remark. If one assumes the stronger condition that θ : H 7→ Hψ(H) is non-
increasing, one does not need the condition on 〈e1, atuxv〉 in item (b). Indeed, in
that case

θ(Ψ−1(et)) = Ψ−1(et)e−
n+1
n t ≤ θ(H(v)) = H(v)ψ(H(v)).

Hence
d(x, v) ≤ H(v)−1e−

n+1
n tΨ−1(et) ≤ ψ(H(v)).

The above remark in particular allows us to formulate a particularly simple
corollary of Dani’s correspondence, giving a necessary and sufficient condition on
the orbit of the lattice ∆x for the point x to belong to the set E(ψ) of exact
ψ-approximability, under the slightly more restrictive monotonicity condition on ψ.

Corollary 2. Given ψ : R+ → R+ such that s 7→ sψ(s) is non-increasing and

s
n+1
n ψ(s) tends to zero as s goes to infinity, set Ψ(s) = ψ(s)−

n
n+1 and

rψ(t) := −t+ log Ψ−1(et).

Assume x in Rn satisfies
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(a) For every 0 < c < 1, for all t > 0 large enough, log λ1(atuxZn+1) ≥ rcψ(t);
(b) For arbitrarily large values of t > 0, one has log λ1(atuxZn+1) ≤ rψ(t).

Then x ∈ E(ψ).

Proof. By the first item in Proposition 1 the first condition ensures that x does not
belong to W (cψ), for any c < 1. The second item together with the above remark
shows that x is in W (ψ). �

2.2. A template for λ1. In order to simplify the presentation of this introductory
paragraph, we shall assume that the map s 7→ sψ(s) is decreasing. Recall from the

preceding section that Ψ(s) = ψ(s)−
n
n+1 and

rψ(t) = −t+ log Ψ−1(et).

Together with the condition ψ(s) = o(s−
n+1
n ), our monotonicity assumption on

sψ(s) ensures that

(1) t 7→ rψ(t)− t
n is decreasing;

(2) t 7→ rψ(t) + t is increasing;
(3) limt→+∞ rψ(t) = −∞.

Given a point x in Rn, we define the function

cx : R+ → R
t 7→ cx(t) = log λ1(atuxZn+1).

It follows from Corollary 2 that in order to prove Theorem 2 under the additional
assumption that s 7→ sψ(s) is decreasing, it suffices to construct a point x in Rn
for which the function cx satisfies the two conditions{

∀c < 1, ∀t > 0 sufficiently large, cx(t) ≥ rcψ(t)
∃t > 0 arbitrarily large : cx(t) = rψ(t).

(2)

The parametric geometry of numbers, introduced by Schmidt and Summerer [19],
gives a combinatorial description of the function cx on R+. It implies in particular
that there exists a continuous affine by parts function Tx : R+ → R−, with slopes
in {−1, 0, 1

n} such that the difference cx− Tx remains bounded on R+. Conversely,
one may start from such a template T and try to construct a point x in Rn such
that cx stays at bounded distance from T ; Schmidt and Summerer gave necessary
combinatorial conditions on T for the existence of such a point x, and Roy [17]
showed that these conditions are also sufficient. Finally, Das, Fishman, Simmons
and Urbański [6] gave a formula for the Hausdorff dimension of the set of points x in
Rn following a given template T . Our proof of Theorems 2 and 3 is much inspired
by this parametric geometry of numbers: We shall give ourselves a template T
satisfying conditions (2) above and then construct points that follow closely this
model trajectory. The general picture can be seen in Figure 1 below.

Observe also that the lower order at infinity λψ of the function ψ can be read-off
rψ through the formula

γψ := lim inf
−rψ(t)

t
=
nλψ − n− 1

nλψ
.

Moreover, if qk is an increasing sequence of denominators such that λψ = lim log 1/ψ(qk)
log qk

,

then, setting tk = log Ψ(qk), one has

γψ = lim
−rψ(tk)

tk
.



HAUSDORFF DIMENSION AND EXACT APPROXIMATION ORDER IN Rn 7

0
t

rψ(t)

T (t)

t+k−1 t−k tk

Figure 1. Template T above the graph of rψ.

We now fix such an increasing sequence (tk)k≥1 and, taking a subsequence if nec-
essary, we shall also assume that it tends to infinity sufficiently fast. We also let

t−k = tk + rψ(tk) and t+k = tk − nrψ(tk).

Provided (tk) increases fast enough, one always has

0 < t−1 < t1 < t+1 < t−2 < . . .

and we define a function T : R+ → R− with slopes in {−1, 0, 1
n} by T (0) = 0 and

dT

dt
(t) =


0 if t+k−1 < t < t−k
−1 if t−k < t < tk
1
n if tk < t < t+k .

Note that this function is continuous and satisfies T (tk) = rψ(tk) for each k ≥ 1.
Moreover, it follows from the properties of rψ listed at the beginning of this para-
graph that T (t) ≥ rψ(t) for all t > 0.

2.3. The variational principle and beyond. By Proposition 1, if x is a point
in Rn such that cx remains at bounded distance from the template T constructed
above, then there exist constants C and c > 0 such that x lies in W (Cψ) but not
in W (cψ). By a result of Damien Roy [17, Theorem 1.3], there exists a point x
in Rn such that cx(t) = T (t) + O(1) and this shows that the set W (Cψ) \W (cψ)
is non-empty if C is large and c > 0 small enough. Replacing the template T by
T − R0, where R0 is some large positive constant, this argument can be modified
slightly to show that if c > 0 is small enough, then

W (ψ) \W (cψ) 6= ∅.

In fact, the variational principle of Das, Fishman, Simmons and Urbański [6, The-
orem 2.3] can be used to compute the Hausdorff dimension of the set DT of points
x in Rn such that cx follows the template T up to some bounded error: If the
sequence (tk) tends to infinity fast enough, one finds

dimH DT = n

(
1− lim

k→+∞

−rψ(tk)

tk

)
=
n+ 1

λψ
= dimHW (ψ).

Again, the Dani correspondence allows one to translate this into the following
slightly weaker version of Corollary 1 from the introduction. Since this theorem
can also be seen as an immediate consequence of Theorem 3, we do not include full
details for the proof sketched above.
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Corollary 3 (Hausdorff dimension of ψ-badly approximable points). Assume ψ : R+ →
R+ is such that s 7→ sψ(s) is decreasing and ψ(s) = o(s−

n+1
n ). Then, the set of

badly approximable numbers in Rn, defined as

Bad(ψ) = W (ψ) \
⋂
c>0

W (cψ)

satisfies dimH Bad(ψ) = dimW (ψ).

Unfortunately, the available results from parametric geometry of numbers, such
as the above-cited [17] or [6], only give information on the behavior of cx up to
some bounded additive constant. In contrast, to construct a point in E(ψ), the
Dani correspondence shows that one needs to understand cx(t) within an error
term that goes to zero as t tends to infinity, at least at the times t where cx(t)
approaches rψ(t). In order to do so, we shall use a Cantor set construction, similar
in spirit to the one used [6], but with better control on cx(t) when it takes large
negative values.

3. A Cantor set in E(ψ)

Our goal is now to prove Theorem 3. Throughout this section, ψ : R+ → R+

denotes a decreasing function with lower order at infinity equal to λψ, and we
assume without loss of generality that λψ < +∞. We shall construct a Cantor set
E∞ inside E(ψ) with Hausdorff dimension n+1

λψ
. The definition of the level sets

of E∞ is based on the behavior of the maps cx. But before turning to the actual
construction, we explain what important properties of that map we need in order
to ensure that E∞ is indeed included in E(ψ).

3.1. Main properties of E∞. Just as in the previous section, the sequence of
times (tk) is assumed to satisfy

lim
k→∞

rψ(tk)

tk
= lim sup

t→∞

rψ(t)

t
:= −γψ

where Ψ(s) = ψ(s)−
n
n+1 and rψ(t) = −t+ log Ψ−1(et).

Let

Mk = − sup
t≥tk−1

rψ(t).

Note that this definition implies that Mk ≤ −rψ(tk−1). We shall assume that
tk is sufficiently large compared to tk−1 in order to ensure that Mk is very small
compared to −rψ(tk); this parameter Mk will then be used to define small intervals
around tk or rψ(tk).

In the sequel, we use three constants:

• R0 ≥ 1 depending only on n;
• R1 depending on γψ and R0;
• R2 depending on n, R0 and R1.

Then we define t−k < tk and t+k > tk by

t−k = tk + rψ(tk) and t+k = tk +R2Mk.

We shall construct a Cantor set E∞ of points x for which the trajectory cx has the
following two properties:
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(A) For all t ∈ [t+k−1, t
−
k − 4R0Mk], cx(t) ≥ −Mk;

(B) For each k, there exists vk = vk(x) ∈ Zn+1 such that

∀t ∈ [t−k , t
+
k ], cx(t) = log‖atuxvk‖

and moreover, the point vk in Qn corresponding to vk satisfies (i) et
−
k −5R0Mk ≤ H(vk) ≤ et

−
k −3R0Mk

(ii)
(
1− 1

k

)
ψ(H(vk)) < d(vk, x) < ψ(H(vk))

(iii) tk −R1Mk < txk := − n
n+1 log d(vk, x) < tk + 1.

t

rψ(t)

tkt−
k

t−
k
−5R0Mkt+

k−1 t+
ktxk

−Mk

−Mk+1

cx(t)

Figure 2. Graph of cx on the interval [t−k , t
+
k ].

Let us first use Dani’s correspondence to check that the two conditions above
ensure that E∞ will be a subset of E(ψ).

Lemma 1. Let x in Rn be such that cx satisfies (A) and (B) for all k ≥ 1. Then
x ∈ E(ψ).

Proof. By construction, d(vk, x) < ψ(H(vk)) for all k, so x lies in W (ψ). Let us
show that if c < 1, then x does not belong to W (cψ). We use the precise form
of Dani’s correspondence given by Proposition 1 and show that for all t > 0 large
enough, if v ∈ Zn+1 satisfies |〈e1, atuxv〉| = ‖atuxv‖, then

‖atuxv‖ ≥ e−tΨ−1
c (et),

where ψc(s) = cψ(s) and Ψc(s) = ψc(s)
− n
n+1 .

If t belongs to some interval [t+k−1, t
−
k − 4R0Mk], this follows from (A) and the

definition of Mk, since
cx(t) ≥ −Mk ≥ rψ(t).

We can then easily extend this property to a lower bound on the interval [t−k − 4R0Mk, t
−
k ]

for which one has

cx(t) ≥ cx(t−k − 4R0Mk)− 4R0Mk ≥ −5R0Mk ≥ rψ(t)

provided the sequence (tk) was chosen to increase sufficiently fast in order to ensure
that supt≥t−k −4R0Mk

rψ(t) < −5R0Mk.

Now assume t ∈ [t−k , t
+
k ]. Note that

cx(t) = −t+ logH(vk) + max
(
0, n+1

n t+ log d(vk, x)
)
.

Therefore, the condition |〈e1, atuxvk〉| = ‖atuxvk‖ is met only if t ≤ − n
n+1 log d(vk, x).

For any such t, one has
cx(t) = −t+ logH(vk).



10 PRASUNA BANDI AND NICOLAS DE SAXCÉ

From d(vk, x) ≥ (1 − 1
k )ψ(H(vk)), we infer that t ≤ − n

n+1 log
(
(1− 1

k )ψ(H(vk))
)

i.e.

H(vk) ≥ Ψ−1
(1− 1

k )
(et).

Thus, we find

cx(t) ≥ −t+ Ψ−1
(1− 1

k )
(et) = r(1− 1

k )ψ(t).

If k is large enough so that 1− 1
k ≥ c, this shows that the condition |〈e1, atuxvk〉| =

‖atuxvk‖ implies ‖atuxvk‖ ≥ e−tΨ−1
c (et). Moreover, for any integer vector v

linearly independent with vk, one can use Minkowski’s second theorem to bound,
for t−k ≤ t ≤ txk := − n

n+1 log d(vk, x),

log‖atuxv‖ ≥ log‖at−k uxv‖+
1

n
(t− t−k )−On(1)

≥ −5R0Mk −On(1)

≥ rψ(t) ≥ rcψ(t).

Then, we note that item (iii) of condition (B) and the definition of t+k imply t+k −txk ≤
(R1 +R2)Mk so that for txk ≤ t ≤ t

+
k ,

log‖atuxv‖ ≥ log‖atxkuxv‖ − (t− txk)

≥ −5R0Mk −On(1)− (R1 +R2)Mk

≥ rψ(t) ≥ rcψ(t)

assuming again that the (tk) increase sufficiently fast to ensure that −(5R0 +R1 +
R2)Mk −On(1) ≥ rψ(t) for all t ≥ tk −R1Mk.

This proves the desired inequality, and by the first part of Proposition 1, we
obtain that for every c < 1, any rational point v sufficiently close to x satisfies

d(v, x) ≥ cψ(H(v)).

�

3.2. Construction of the Cantor set. Having fixed some large M > 0 such

that N = e
n+1
n M is an integer, the Cantor set E∞ will be obtained as a decreasing

intersection

E∞ :=

∞⋂
`=0

E`

where E`, the `-th level of the Cantor set, is a finite union of disjoint cubes of
sidelength N−`. Each set E` is defined inductively so that for all x in E`, the above
properties (A) and (B) are satisfied up to time t = `M . More precisely, we shall
check that for arbitrarily large `, for every x in E` and every k ≥ 1, we have:

(A`) For all t ∈ {0, . . . , `M} ∩ [t+k−1, t
−
k − 4R0Mk], then cx(t) ≥ −Mk +M ;

(B`) For each k, there exists vk = vk(x) ∈ Zn+1 such that

∀t ∈ [0, `M ] ∩ [t−k , t
+
k ], cx(t) = log‖atuxvk‖

and moreover, the point vk in Qn corresponding to vk satisfies (i) et
−
k −5R0Mk ≤ H(vk) ≤ et

−
k −3R0Mk

(ii)
(
1− 1

k

)
ψ(H(vk)) < d(vk, x) < ψ(H(vk))

(iii) tk −R1Mk < txk = − n
n+1 log d(vk, x) < tk + 1.
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Remark. In (A`), it is enough to consider times in {0, . . . , `M}, because for kM ≤
t < (k + 1)M , one has cx(t) ≥ cx(kM)−M .

Let us first show that condition (iii) follows from (i) and (ii) if R1 and the
sequence (tk) are chosen appropriately. Recall that we assumed λψ < +∞, which
is equivalent to

γ := lim inf −1

t
rψ(t) < 1.

Lemma 2. Let R1 = 10R0

1−γ and assume that tk is chosen so that

rψ(tk −R1Mk) ≤ rψ(tk) +
1 + γ

2
R1Mk. (3)

Then condition (iii) from (B`) above is implied by (i) and (ii).

t
tkt−

k
t−
k
−5R0Mk

slope −1 slope − 1+γ
2

tk − R1Mk

A

Figure 3. Controlling txk.

Proof. First, observe that since d(vk, x) ≥ (1− 1
k )ψ(H(vk)) and H(vk) ≤ et

−
k , one

has

txk = − n

n+ 1
log d(vk, x)

≤ log Ψ(H(vk)) +
n

n+ 1
log

k

k − 1

≤ log Ψ(et
−
k ) + 1 = tk + 1.

For the other inequality, we use Figure 3 above. By (3) the graph of rψ passes

below the point A = (tk −R1Mk, rψ(tk) + 1+γ
2 R1Mk) and therefore remains below

the line of slope −1 passing through A on the interval [0, tk−R1Mk]. On the other
hand, on the interval [t−k , t

x
k], one has

log‖atuxvk‖ = −t+ logH(vk)

so the graph of t 7→ log‖atuxvk‖ follows a line of slope −1 that intersects the t-
axis between t−k − 5R0Mk and t−k , by (B`)(i). Now R1 = 10R0

1−γ was chosen so that

the line of slope −1 intersecting the t-axis at t−k − 5R0Mk passes through A, so
we may conclude that the graphs of rψ and t 7→ log‖atuxvk‖ cannot meet before
time tk − R1Mk. But from d(x, vk) < ψ(H(vk)) we know that log‖atxkuxvk‖ =
−txk + logH(vk) < rψ(txk) and thus txk ≥ tk −R1Mk. �
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We now justify that it is indeed possible to choose the times tk inductively so
that (3) is always satisfied. In fact, for the proof of Theorem 3, in addition to the

condition lim
−rψ(tk)

tk
= γψ, we shall need to control rψ(t) on all times after tk,

and on times shortly before tk as well. For this the times tk, k ≥ 1 are chosen
inductively so that, with −Mk = supt≥tk−1

rψ(t), one has,

(I) −γψ − 1
k ≤

rψ(tk)
tk
≤ −γψ + 1

k ;

(II) ∀t ≥ tk, rψ(t) ≤ rψ(tk) +R1Mk;

(III) rψ(tk −R1Mk) ≤ rψ(tk) + 1+γ
2 R1Mk.

The lemma below ensures that it is indeed feasible to choose (tk) in the desired
way.

Lemma 3. Assume γψ = γ < 1 and tk−1 has been defined. Given R > 0 (possibly
depending on tk−1), we may always choose tk arbitrarily large so that

− γψ −
1

k
≤ rψ(tk)

tk
≤ −γψ +

1

k
(4)

and

rψ(tk −R) ≤ rψ(tk) +
1 + γ

2
R (5)

and for all t ≥ tk,

rψ(t) ≤ rψ(tk) +R. (6)

Proof. Let 0 < εk < min( 1
k ,

1
8 ), and start with t

(0)
k such that

∀t ≥
t
(0)
k

3
,

rψ(t)

t
< −γ + εk and

rψ(t
(0)
k )

t
(0)
k

≥ −γ − εk.

Replacing t
(0)
k by the largest time t for which rψ(t) = rψ(t

(0)
k ) if necessary, we may

also assume that

∀t ≥ t(0)
k , rψ(t) ≤ rψ(t

(0)
k ).

For i ≥ 1, we define inductively t
(i)
k in the following way. Assuming, t

(i−1)
k has

been defined, if rψ(t
(i−1)
k −R) ≤ rψ(t

(i−1)
k )+ 1+γ

2 R, then we stop and let tk = t
(i−1)
k .

Otherwise, let

t
(i)
k = t

(i−1)
k −R.

This procedure must stop for some i ≤ 4εkt
(0)
k

R , otherwise we would have, for i =

d 4εkt
(0)
k

R e,

rψ(t
(i)
k ) ≥ 1+γ

2 iR− (γ + εk)t
(0)
k

= ( 1+γ
2 + γ + εk)iR− (γ + εk)t

(i)
k

≥ 2εkt
(0)
k − (γ + εk)t

(i)
k

≥ −(γ + εk)t
(i)
k

while t
(i)
k = t

(0)
k −Rd

4εkt
(0)
k

R e > 1
3 t

(0)
k , contradicting our choice of t

(0)
k .

By construction, (5) holds for tk = t
(i)
k when the procedure stops, and since

tk = t
(i)
k ≥

t
(0)
k

3 , the right-hand side inequality in (4) also holds.
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Moreover, by induction, for all i ≥ 0,

rψ(t
(i)
k )

t
(i)
k

≥ −γ − εk.

Indeed,

rψ(t
(i)
k ) ≥ rψ(t

(i−1)
k ) +

1 + γ

2
R

≥ −(γ + εk)(t
(i)
k +R) +

1 + γ

2
R

> −(γ + εk)t
(i)
k .

So (4) holds.
And by induction again,

∀t ≥ t(i)k , rψ(t) ≤ rψ(t
(i)
k ) +R.

Indeed, for t ≥ t
(i−1)
k , one has rψ(t) ≤ rψ(t

(i−1)
k ) + R ≤ rψ(t

(i)
k ) + R, while for t in

[t
(i)
k , t

(i−1)
k ], since t 7→ t+ rψ(t) is increasing, we may bound

rψ(t) ≤ rψ(t
(i−1)
k ) + t

(i−1)
k − t ≤ rψ(t

(i−1)
k ) +R ≤ rψ(t

(i)
k ) +R.

This proves (6). �

Now we may proceed with the definition of our Cantor set. Set E0 = [0, 1)n,
and assume that E`−1 has been defined so that the above properties (A`−1) and
(B`−1) hold. We fix a cube C in E`−1, divide it into Nn subcubes of sidelength
N−` and explain which among those subcubes will belong to E`. Denote by E`(C)
the collection of these subcubes.

Letting R0 = max(4n, n2), R1 = 10R0

1−γ and R2 = 2n(R1 + 6R0) + 1, we define

`−k = d
t−k − 4R0Mk

M
e, and `+k = b tk +R2Mk

M
c.

We shall distinguish two cases:

Case 1: `+k−1 < ` ≤ `−k
Set E`(C) to be the set of subcubes C ′ ⊂ C such that for all x in C ′,

cx(`M) ≥ −Mk +M.

Case 2: `−k < ` ≤ `+k
Let xk denote the center of the unique cube C`−k

of level `−k containing C,

and note that λ1(a`−kM
uxkZn+1) ≥ e−Mk . By Lemma 4 below applied at

time t = `−kM and with parameter R = 2Mk, there exists a rational point
vk ∈ C`−k such that

e`
−
kM−2Mk ≤ H(vk) ≤ e`

−
kM+4nMk .

With our choice of R0 and the definition of `−k , this implies

et
−
k −5R0Mk ≤ H(vk) ≤ et

−
k −3R0Mk .

Pick yk ∈ C`−k such that

d(vk, yk) = (1− 1

2k
)ψ(H(vk)).
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For each ` ∈ {`−k , . . . , `
+
k }, take

E`(C) = {C`(yk)}
where C`(yk) denotes the unique cube of level ` containing yk.

C`−k

xk

vk
C`(yk)

d(vk, yk) = (1 − 1
2k

)ψ(H(vk))

yk

Figure 4. Choice of E`(C) for ` ∈ {`−k , . . . , `
+
k }

Let us check by induction that if E`(C) is chosen as explained above, then
properties (A`) and (B`) hold for ` arbitrarily large.

Case 1: Condition (A`) is satisfied by our choice of E`(C), and (B`) is satisfied
because it coincides with (B`−1).

Case 2: Assuming that (A`−k
) and (B`−k

) hold for C in E`−k
, let us show that (A`+k

)

and (B`+k
) hold for every x in E`+k

(C) = C`+k
(yk). Let us start with (B`+k

).

By construction,

et
−
k −5R0Mk < H(vk) < et

−
k −3R0Mk .

Let vk be a vector in Zn+1 corresponding to the rational point vk in C`−k
.

For x in C`+k
(yk), one has

d(x, vk) ≤ d(x, yk) + d(yk, vk)

≤ e−
n+1
n `+kM + (1− 1

2k
)ψ(H(vk)).

Recalling that H(vk) ≤ et
−
k = Ψ−1(etk), one finds e−

n+1
n tk ≤ ψ(H(vk)),

and since `+kM ≥ tk +Mk this yields

d(x, vk) ≤ e−Mkψ(H(vk)) + (1− 1

2k
)ψ(H(vk)) < ψ(H(vk)),

provided we chose tk large enough to ensure e−Mk < 1
2k . Similarly,

d(x, vk) ≥ (1− 1

2k
)ψ(H(vk))− e−Mkψ(H(vk)) ≥ (1− 1

k
)ψ(H(vk)).

We have checked that conditions (i) and (ii) in (B`+k
) hold, and by Lemma 2

and our choice of the sequence (tk), condition (iii) follows automatically.
It remains to show that vk achieves the first minimum of atuxZn+1 for t

in [t−k , t
+
k ]. At time T = t−k − 4R0Mk, we have λ1(aTuxZn+1) ≥ e−Mk and

therefore, by Minkowski’s second theorem,

λn+1(aTuxZn+1) . enMk .
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Since the largest eigenvalue of as is equal to e
s
n , we infer, for all s ≥ 0,

λn+1(aT+suxZn+1) . enMk+ s
n .

On the other hand, for T + s ≤ txk,

λ1(aT+suxZn+1) ≤ ‖aT+suxvk‖ = e−s‖aTuxvk‖ ≤ e−s+R0Mk .

Since one always has λ2 & λ
−1
1 λ−n+1

n+1 , this yields

λ2(aT+suxZn+1) & es−R0Mke−n(n−1)Mk− (n−1)s
n ≥ e sn−2R0Mk ,

and if s > 3R0Mk, we find

λ2(aT+suxZn+1) ≥ e−2R0Mk > e−s+R0Mk ≥ ‖aT+suxvk‖.

This implies that for t in [t−k , t
x
k], the vector vk achieves the first minimum

of atuxZn+1. Note also that at time txk = T + sxk,

λ2(atxkuxZ
n+1)

λ1(atxkuxZ
n+1)

≥ e
n+1
n sxk−3R0Mk > e

n+1
n (R1+R2)Mk

so vk continues to achieve λ1(atuxZn+1) on the interval [txk, t
x
k + (R1 +

R2)Mk], which contains [txk, t
+
k ]. Indeed, for s ∈ [0, (R1 +R2)Mk],

λ2(atxk+suxZn+1) ≥ e−sλ2(atxkuxZ
n+1)

≥ e−se
n+1
n (R1+R2)Mkλ1(atxkuxZ

n+1)

≥ e sn ‖atxkuxvk‖
≥ ‖atxk+suxvk‖.

Finally, to prove that (A`+k
) holds, we only need to check that for all t in

[t+k , `
+
kM ], cx(t) > Mk+1. Write, for t in [t+k , `

+
kM ],

cx(t) = cx(txk) +
t− txk
n

≥ rψ(tk)− 5R0Mk +
t− tk
n

≥Mk+1 −R1Mk − 5R0Mk +
R2Mk

2n
> Mk+1 +M

since we chose R2 > 2n(R1 + 6R0).

We conclude this paragraph with the lemma used in Case 2 above, to obtain a
rational point of controlled height inside any cube C from E`−k

.

Lemma 4 (Rational points near badly approximable points). Given parameters
t > 0 and R ≥ 1, assume x ∈ [0, 1)n is such that λ1(atuxZn+1) ≥ e−R. Then there
exists a rational point v = v(x) such that:

(1) et−R ≤ H(v) ≤ et+2nR;

(2) d(x, v) ≤ 1
2e
−n+1

n t.

Proof. By Minkowski’s first theorem applied to the lattice at+2nRuxZn+1, there
exists v in Zn+1 such that

‖at+2nRuxv‖ ≤ 1.
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The point v in Rn corresponding to v satisfies

H(v) ≤ et+2nR and d(x, v) ≤ e− t
n−2RH(v)−1. (7)

On the other hand, our assumption that λ1(atuxZn+1) ≥ e−R implies that

‖atuxv‖ = H(v) max(e−t, e
t
n d(x, v)) ≥ e−R

and since d(x, v) ≤ e− t
n−2RH(v)−1, we must have

H(v) ≥ et−R.

Going back to (7) this yields

d(x, v) ≤ e− t
n−2Re−t+R <

1

2
e−

n+1
n t.

�

3.3. Branching and Hausdorff dimension. It now remains to compute the
Hausdorff dimension of E∞. For that, we first need to obtain a good lower bound
on the branching of the Cantor set at each level ` between t+k−1 and t−k . This will
be a consequence of Lemma 5 below, whose proof uses a variant of the well-known
Simplex Lemma originating in the works of Davenport and Schmidt [18, page 57].

Recall that the Cantor set E∞ is obtained as a decreasing intersection E∞ =⋂
`≥1E`, where each E` is a finite union of disjoint cubes of side length N−`, where

N is a large integer given as

N = e
(n+1)M

n .

Lemma 5 (Large branching for `+k−1 < ` ≤ `−k ). There exists a constant R3

depending on n such that for all large enough k, if `+k−1 < ` ≤ `−k and C is any
cube in E`−1, then

cardE`(C) ≥ Nn −R3N
n− 1

n+1 .

Proof. Set t = (`− 1)M . Since `+k−1 < ` ≤ `−k and C belongs to E`−1, we have

∀x ∈ C, λ1(atuxZn+1) > e−Mk+M .

Let x0 be the bottom left corner of C, and define

SC := {v ∈ Zn+1 : ‖atux0
v‖ < e−Mk+3M}.

We claim that there exists some hyperplane HC in Rn+1 such that SC ⊆ HC . (This
statement can be viewed as a version of the Simplex Lemma.) Otherwise, there
would exist linearly independent vectors v1, . . . ,vn+1 ∈ Zn+1 such that

‖atux0
vi‖ < e−Mk+3M for 1 ≤ i ≤ n+ 1.

But atux0Zn+1 is a lattice of covolume 1, hence it cannot have n + 1 linearly
independent vectors of norm less than 1. This yields the desired contradiction and
proves our claim as soon as Mk > 3M .

Now let

AC = {x ∈ C ; d([e1], atuxHC) ≤ e−Mn }.
Let x be a point in C \ AC and v any non-zero vector in Zn+1. If v ∈ SC , then

v ∈ HC so the projection of atuxv to e⊥1 has norm at least e−
M
n ‖atuxv‖, and since
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this coordinate is expanded by a factor e
s
n under the action of as, we have

‖at+Muxv‖ ≥ e
M
n e−

M
n ‖atuxv‖

≥ e−Mk+M .

On the other hand, if v 6∈ SC , we can bound

‖at+Muxv‖ ≥ e−M‖atuxv‖ ≥ e−2M‖atux0v‖ ≥ e−Mk+M .

This shows that
∀x ∈ C \AC , cx(`M) ≥ −Mk +M.

To conclude the proof, we show that AC is included in a neighborhood of size

N−`e−
M
n of a hyperplane in Rn. For x in C, we let y = e

n+1
n `M (x − x0) in [0, 1)n

so that
atux = uyatux0

.

Let φt,C be a linear form of norm 1 vanishing on Ht,C = atux0
HC ; then

d([e1], [atuxHC ]) = d([e1], [uyHt,C ]) � d([u−ye1], Ht,C) � φt,C(u−ye1).

Therefore x ∈ AC implies φt,C(u−ye1) . e−
M
n , and this inequality means that y

lies in a neighborhood of size O(e−
M
n ) of the affine hyperplane of Rn defined by the

equation φt,C(e1− y1e2− · · · − ynen+1) = 0. Equivalently, x lies in a neighborhood

of size O(N−`e−
M
n ) of an affine hyperplane in Rn . The number of subcubes of C

that meet this neighborhood is bounded above by

.n N
ne−

M
n

so
cardE`(C) ≥ Nn(1−On(e−

M
n )) = Nn −On(Nn− 1

n+1 ).

�

The lower bound on the branching given by the above lemma is all that is
needed to get a good lower bound on the Hausdorff dimension of E∞, and therefore
on E(ψ).

Proof of Theorem 3. To get a lower bound on the Hausdorff dimension of E∞, we
use the Mass distribution principle [10, §4.2], but first we replace E∞ by a more
regular Cantor subset, to simplify later computations.

For ` ≥ 1, define

b` =

{
bNn(1−R3e

−Mn )c if `+k−1 < ` ≤ `−k
1 if `−k < ` ≤ `+k .

Removing some cubes in E` at each step, one obtains a Cantor subset F∞ ⊂ E∞
given as

F∞ =
⋂
`≥1

F`,

where each cube C in F`−1 contains exactly b` subcubes in F`. By [10, Proposi-
tion 1.7], there exists a probability measure µ supported on F∞ such that for any
level ` cube C ⊂ F`,

µ(C) = (b1 . . . b`)
−1.

We claim that for α < lim inf`→∞
log(b1...b`)
` logN , there exists C = Cn,N,α such that

∀x ∈ R, ∀r > 0, µ(B(x, r)) ≤ Crα.
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Indeed, picking ` so that N−` < r ≤ N−`+1, the ball B(x, r) meets at most (3N)n

cubes from F`, and therefore

µ(B(x, r)) ≤ (3N)n(b1 . . . b`)
−1 ≤ (3N)nN−`α ≤ (3N)nrα

provided ` is large enough, or equivalently r small enough in terms of n, N and α.
By the Mass distribution principle, this implies

dimH F∞ ≥ α.
To conclude, observe that

lim inf
`→∞

log(b1 . . . b`)

` logN
= lim
k→∞

log(b1 . . . b`+k
)

`+k logN
= lim
k→∞

log(b1 . . . b`−k
)

`+k logN

and if the sequences (`±k )k≥1 satisfies `+k−1 = o(`−k ) — this can always be ensured
by taking a sequence (tk) increasing sufficiently fast — this limit is bounded below
by

lim
k→∞

`−k logbNn −R3N
n− 1

n+1 c
`+k logN

=
logbNn −R3N

n− 1
n+1 c

logN
lim
k→∞

t−k
tk

=
logbNn −R3N

n− 1
n+1 c

logN

n+ 1

nλψ
.

Thus

dimH E(ψ) ≥ dimH F∞ ≥
logbNn −R3N

n− 1
n+1 c

logN

n+ 1

nλψ
and as N (or equivalently M) tends to +∞, this yields the desired result

dimH E(ψ) ≥ n+ 1

λψ
.

�

Theorem 2 is now an easy consequence of Theorem 3, and of Jarńık’s results.
We even get the following slightly more precise result.

Theorem 4 (Existence of exact ψ-approximable vectors). Let n ≥ 1 be an integer.

If ψ : R+ → R+ is non-increasing and satisfies lims→∞ s
n+1
n ψ(s) = 0, then the set

E(ψ) is uncountable.

Proof. If λψ < +∞, then Theorem 3 shows that dimH E(ψ) = n+1
λψ

> 0, so the

result is clear. If λψ = +∞, then lims→∞ s2ψ(s) = 0 and so we may use Jarńık’s
construction to get that E(ψ) is uncountable, see also [5, Theorem J]. �

Conclusion

The method developed here to study exact approximation of points in Rn is
robust, and can be adapted to study a number of similar problems.

Other norms on Rn. In the definition of the set W (ψ) of ψ-approximable points
in Rn, we used the norm on Rn given by ‖x‖ = max1≤i≤n|xi|, because this is the
standard setting for simultaneous diophantine approximation, and the one studied
by Jarńık in his foundational paper [13]. But one could also use the Euclidean
norm on Rn, or any other norm N , and study the corresponding notion of exact
ψ-approximability. It is not difficult to check that Theorems 2 and 3 are still valid
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in this slightly more general context. The main difference lies in the fact that for
the Dani correspondence, one should endow the space Rn+1 with the norm

‖x′‖ = max(|x0|, N(x)),

if x′ = (x0, x) in the identification Rn+1 ' R× Rn.

Approximation of linear forms and matrices. Given a non-increasing function
ψ : R+ → R+ and positive integers m and n, one defines

W (m,n;ψ) =

{
X ∈Mm×n(R) :

‖qX − p‖ < ψ(‖q‖)‖q‖
for infinitely many(p,q) ∈ Zn × Zm.

}
The matrices in W (m,n;ψ) are usually called ψ-approximable m × n matrices.
For a decreasing function ψ, Dodson [9] showed that W (m,n;ψ) has Hausdorff
dimension (m− 1)n+ m+n

λψ
provided λψ ≥ m+n

n . This general setting is in fact the

one used by Beresnevich, Dickinson and Velani [2] to study exact approximability.

The techniques of the present paper can be used to show that if s
m+n
n ψ(s) tends to

zero as s goes to infinity, then the set E(m,n;ψ) of m×n matrices that are exactly
ψ-approximable has the same Hausdorff dimension as W (m,n;ψ).

Intrinsic diophantine approximation on manifolds. Let X be an algebraic
variety defined over Q and such that X(Q) is dense in X(R). Having fixed a distance
on X(R) and a height on X(Q), one may study the quality of approximation by
points in X(Q) to points in X(R). This problem is usually referred to as intrinsic
diophantine approximation on X.

In a number of cases, it has been shown that Jarńık’s theorem holds in this
context; this is so for instance when X is a quadric hypersurface [15, 11] or when
X is a Grassmann variety [8] or any flag variety [7]. In all those cases, there exists
some version of the Dani correspondence that interprets diophantine properties in
terms of diagonal orbits in spaces of lattices, so it is natural to expect that the
analog of Theorem 3 holds, and can be obtained by methods similar to the ones
used here.
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