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Résumé

Aprés quelques millénaires de tAtonnements, I’écriture décimale s’est
peu a peu imposée pour les nombres entiers et réels : I’apprentissage du
calcul en base 10 est maintenant un point essentiel de I'instruction a 1’école
primaire. Il est assez naturel de se demander & quoi ressembleraient les
nombres dont ’écriture décimale nous est si familiére, s’ils étaient écrits
dans une autre base. Le but de cet article est de présenter certaines ques-
tions posées par Furstenberg & ce propos dans les années 60, et les progrés
récents de Hochman, Shmerkin et Wu dans ce domaine.

Introduction

Tout nombre réel x € [0,1] peut se définir par son écriture en binaire : il
existe une suite d’entiers a,, € {0,1} tels que

T = Z an,27".

n>1
On écrit alors x = 0,ajaza3 ..., en base 2. Bien que cette écriture soit parti-
culiérement adaptée & I'informatique, nous préférons pour notre usage courant
le systéme décimal, suivant lequel on peut écrire x = 0,b1b2b3 ... en base 10,
c’est-a-dire, pour certains entiers b; € {0, ..., 9},
=Y b,107".
n>1

Ainsi par exemple, nous avons plus I’habitude de
m=3,14... en base 10

que de
m=11,001001... en base 2.

De fagon plus générale, si p et ¢ sont deux entiers distincts — par exemple p = 2
et ¢ = 3 — on peut s’intéresser a I’écriture d’un réel z dans chacune de ces deux
bases, et chercher & comprendre les liens entres ces deux écritures.



Naturellement, si p et ¢ sont des puissances d’'un méme entier, c’est-a-dire si
I'on peut écrire p = ¥ et ¢ = 7! pour un certain entier r, les écritures dans les
bases p et ¢ correspondent simplement aux blocs de longueur k et [ de ’écriture
en base r, de sorte qu’elles sont trés similaires. Par exemple, si peu de chiffres
(ou de blocs de chiffres de longueur donnée) apparaissent dans 1’écriture de x
en base p = r¥, ce sera aussi le cas en base ¢ = r!. Lorsque p et ¢ ne sont
pas des puissances d’'un méme entier — on dit qu’ils sont multiplicativement
indépendants — le probléme est beaucoup plus subtil.

Dans les années 1960, Furstenberg [5, 4] a obtenu les premiers résultats
remarquables sur ce sujet, et énoncé une série de conjectures dont 1’étude a ou-
vert de nouvelles voies & explorer, a 'interface entre la théorie géométrique de
la mesure et les systémes dynamiques. Nous nous proposons dans cet article de
donner une introduction & ces problémes, depuis les observations fondatrices de
Furstenberg, et jusqu’aux travaux récents de Hochman et Shmerkin [6], puis de
Shmerkin [10] et Wu [11], qui ont résolu par laffirmative plusieurs des conjec-
tures de Furstenberg.

Mais commengons par décrire le probléme de facon plus géométrique. Si I'on
identifie le segment [0, 1] au cercle T = R/Z des réels modulo 1, I'écriture en base
p décrit V'orbite du point = par la multiplication par p modulo 1. Concrétement,
si I’on découpe le cercle en p intervalles d’égale longueur T = IoU L, U---UT,_q,
le développement x = 0,ajas ... donne la suite des positions des éléments de
Vorbite (p™x),>0 dans cette partition.
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FIGURE 1 — Orbite par x3 de x = 0,0121... en base 3 (z = 0,197... en base 10)

Par exemple, dire que tout bloc de chiffres apparait dans I’écriture de x
en base p revient a dire que l'orbite de & par xp est dense dans T. A I'opposé,
I’écriture de = en base p est périodique & partir d’un certain rang si et seulement
si 'orbite de x par xp est finie ; cela équivaut d’ailleurs & ce que z soit rationnel.

Evidemment, de facon analogue, I’écriture en base g correspond a I’opération
xq de multiplication par ¢. D’un point de vue dynamique, on cherche donc
& comprendre comment interagissent les deux transformations xp et xg sur



le cercle T. La premiére observation remarquable de Furstenberg concerne les
fermés invariants simultanément par ces deux transformations.

Théoréme 1 (Furstenberg). Sip et g sont multiplicativement indépendants, le
cercle T est l'unique fermé infini invariant par les opérations Xp et Xq.

Au vu de cet énoncé, Furstenberg a aussi formulé une conjecture analogue
pour les mesures invariantes. Rappelons qu’une mesure p est dite diffuse si elle
est sans atome, i.e. si pour tout « dans T, p({z}) = 0.

Conjecture 1 (Furstenberg). Si p et g sont multiplicativement indépendants,
la mesure de Lebesgue est ['unique probabilité diffuse invariante par Xp et Xq.

Cette conjecture reste aujourd’hui un des problémes ouverts les plus impor-
tants en systémes dynamiques. Sous une hypothése supplémentaire d’entropie
strictement positive, cette conjecture a été résolue par Rudolph [9] lorsque p et
g sont premiers entre eux, puis par Johnson [7] lorsque p et g sont seulement
multiplicativement indépendants.

Il n’est pas évident d’expliciter les conséquences des énoncés ci-dessus sur les
écritures en base p et en base ¢ d’'un nombre réel, et il pourrait donc sembler &
premiére vue que cette approche dynamique du probléme nous a sensiblement
éloignés de notre probléme initial. En fait, les deux énoncés ci-dessus manifestent
une forme d’indépendance entre les deux transformations 7}, = xp et T, = xq.
Rappelons que I'écriture en base p correspond a I’'orbite (T, ) de x sous Iaction
de T}, tandis que l'orbite (T, z) de x sous 'action de T} est encodée par 1’écriture
en base ¢g. La conjecture ci-dessous, dans le méme esprit que le théoréme 1,
exprime que si x est irrationnel, et p, g multiplicativement indépendants, les
écritures de x dans les bases p et ¢ ne peuvent pas étre simultanément trop
simples. La situation serait donc presque a 'opposé du cas ol p et ¢q sont deux
puissances d’'un méme entier ! Rappelons que la dimension de Hausdorff dimg A
d’une partie A dans R peut prendre n’importe quelle valeur entre 0 et 1. Cette
notion, dont la définition précise sera donnée au paragraphe 2.1, donne une
indication de la taille des ensembles fractals, dont la mesure de Lebesgue est
nulle, mais qui peuvent néanmoins contenir beaucoup de points.

Conjecture 2. Soient p et q deux entiers multiplicativement indépendants.
Pour tout x dans T, Uinégalité dimy (T, z) + dimy (T, z) < 1 implique que
x est rationnel.

La dimension de Hausdorff o = dimpy (7},, ) mesure en quelque sorte la
complexité de lécriture de x en base p. Plus précisément, si 'on note N,(x,n)
le nombre de blocs de longueur n qui apparaissent dans l’écriture de x en base
p, alors

Ny(ar,m) = "o,

De plus, on peut montrer que 'égalité dimy (T, z) = 1 implique en fait que
Vorbite (¢"x)n>0 est dense dans T. Par conséquent, si la conjecture est vérifiée,



et si  est un irrationnel tel que le nombre Ny(x,n) de blocs de longueur n dans
I’écriture de x croit sous-exponentiellement, tous les blocs de chiffres doivent
apparaitre dans I’écriture de x en base g. Par exemple, I'écriture décimale de

T = Z 272" =0,11010001... en base 2
n>0

doit faire apparaitre tous les chiffres de 0 4 9, et méme tous les blocs de chiffres.
Pour donner un deuxiéme exemple concret, cette conjecture implique que si
x ne contient que des 0 et des 1 & la fois en base 3 et en base 10, alors x
est rationnel. Une autre conséquence amusante de cette conjecture, mentionnée
par Furstenberg, concerne I’écriture de 2™ en base 10. Rappelons que le cri-
tére d’équirépartition de Weyl permet de calculer la fréquence d’apparition du
premier chiffre (ou bloc de chiffres) de 2" lorsque n varie, et donc de montrer
que tous les blocs de chiffres apparaissent dans ’écriture de certains 2™, pour
n arbitrairement grand. La conjecture ci-dessus impliquerait que tous les blocs
apparaissent dans tout 2", pourvu que n soit suffisamment grand .

Conjecture 3. Sin est suffisamment grand, tous les chiffres (ou tous les blocs
de chiffres d’une longueur fizée) apparaissent dans l’écriture de 2™ en base 10.

A T’heure actuelle, ces trois conjectures de Furstenberg sont encore ouvertes,
mais une version faible de la conjecture 2 a été récemment résolue par Shmer-
kin [10] et Wu [11], indépendamment. Commengons par reformuler cette conjec-
ture 2 : si A et B sont deux fermés de T invariants respectivement par T, et Tj,
et vérifiant dimy A +dimyg B < 1, alors AN B C Q. Comme premiére étape vers
cette conjecture, Furstenberg suggérait de montrer que sous ces hypothéses, on
a toujours dimy (A N B) = 0. Notons que si A et B sont des sous-espaces vec-
toriels transverses dans R?, la dimension de Iintersection est toujours majorée
par

dim(A N B) < max(0,dim A + dim B — d).

Bien stir, cette inégalité n’est pas toujours valable pour les ensembles fractals,
mais I'idée de Furstenberg est que I’hypothése d’invariance de A et B par T}, et T},
nous assure d’une forme de transversalité. C’est le résultat qui a été démontré en
2016 par Shmerkin [10] et Wu [11], indépendamment. Une autre démonstration,
plus courte, a aussi été proposée récemment par Austin [1].

Théoréme 2 (Transversalité de T), et T,). Soient p,q deux entiers multiplica-
tivement indépendants, et A, B deux fermés de T invariants par T, et T,, res-
pectivement. Alors, pour tous réels s,t, t # 0,

dimg (AN (s +tB)) < max(dimyg A + dimyg B — 1,0).

Cet article se compose de trois parties. La premiére partie est consacrée au
théoréme de Furstenberg sur les fermés invariants par xp et xq; aprés quelques

1. On renvoie le lecteur intéressé a l'article original [4, Conjecture 2’| pour largument
élémentaire qui permet de déduire cette conjecture de la précédente.



exemples introductifs, nous en donnerons la démonstration, suivie d’une bréve
discussion de son analogue conjecturel pour les mesures, la conjecture 1. La
seconde partie traite de problémes de théorie géométrique de la mesure, et a
pour but d’expliquer les liens entre le probléme de l'intersection d’ensembles
invariants et celui des projections de mesures invariantes. Nous y esquisserons
au passage une démonstration, due & Hochman et Shmerkin, du résultat de
Rudolph-Johnson sur les mesures invariantes par Xp et xq. Enfin, la troisiéme
partie présente succintement deux ingrédients importants de la démonstration
de Shmerkin : la notion de mesure dynamiquement auto-similaire, et les théo-
rémes inverses en combinatoire additive.

1 Fermés invariants

Donnons d’abord quelques exemples de fermés invariants par I’application de
multiplication 7},. Bien siir, pour commencer il existe des orbites finies, qui pro-
viennent toutes de points rationnels. Cela n’est qu’une reformulation d’un point
bien connu, que I'on découvre souvent en apprenant l'algorithme de division
avec « chiffres aprés la virgule » : un nombre réel est rationnel si et seulement
si son développement décimal est périodique & partir d’un certain rang.

Mais il existe aussi de nombreux fermés invariants infinis. Par exemple, si S
est une partie de {0,...,p — 1}, Pensemble

Fs={z = Zaip_i ; Vi, a; € S}
i>1

définit un fermé invariant, infini dés que S contient au moins deux éléments;
c’est I’ensemble des éléments dont une écriture en base p ne contient que des
éléments de S. Ces ensembles s’appellent les ensembles de Cantor p-adiques, le
plus célébre est sans doute I’ensemble de Cantor triadique, invariant par T3, et
constitué des réels dont I’écriture en base 3 ne contient pas de 1. On peut encore
obtenir d’autres fermés invariants en imposant des conditions sur les différents
blocs de chiffres, et il n’est pas difficile de voir a l’aide de ces constructions que
I'ensemble des fermés invariants par T, n’est pas dénombrable.

Cela montre bien que I’énoncé du théoréme de Furstenberg que nous voulons
démontrer est remarquable : parmi tous ces fermés invariants par 7}, les seuls
qui sont invariants par multiplication par un entier g indépendant de p sont les
orbites finies et le cercle T tout entier!

1.1 Le théoréme de Furstenberg

Nous donnons maintenant les grandes lignes de la démonstration du théo-
réme 1 proposée par Boshernitzan [2], suivant la présentation de Malicet [§]. On
renvoie d’ailleurs & cette derniére note pour les preuves détaillées des résultats
intermédiaires.

Un sous-groupe additif de R qui n’est pas monogéne est dense. La démons-
tration du théoréme de Furstenberg utilise une variante de cette observation



pour les semi-groupes, i.e. les parties stables par addition : un semi-groupe ad-
ditif ¥p de RT = [0, +oo[ qui n’est pas contenu dans un semi-groupe monogene
est non-lacunaire. Cela signifie que les points de ¥ sont de plus en plus denses
au voisinage de l'infini. Précisément, pour tout € > 0, il existe R > 0 tel que
pour tout x > R, il existe s dans 3¢ tel que |z — s| <e.

Dans la suite, nous nous intéresserons a un semi-groupe multiplicatif % de
I’ensemble N des entiers naturels. La partie X9 = logX est un semi-groupe
additif de RT, et le résultat ci-dessus montre donc que si ¥ n’est pas monogéne,
alors ¥ est non lacunaire, au sens ou le quotient de deux éléments successifs de
¥ converge vers 1 en Uinfini : si ¥ = {51 < s2 < ...}, alors

lim Sntl _ g,

n—o00 S,
Dans toute la suite, on considére un fermé infini F' invariant par multiplication
par deux entiers indépendants p et ¢, et on cherche & montrer que F' = T. Nous
noterons ¥ = {s1 < s2 < ...} le semi-groupe de (N, x) engendré par p et ¢. Si
I’on dispose d’un élément u dans F' arbitrairement proche de 0, la propriété de
non lacunarité de ¥ permet d’encadrer un point quelconque x dans T par des
intervalles de la forme [s,u, sp+1u], dont les extrémités appartiennent a F', et
dont la longueur est arbitrairement petite. Cette observation élémentaire permet
d’obtenir le premier lemme important en direction du théoréme de Furstenberg.

Lemme 1. Si 0 est point d’accumulation de F', alors F =T.

Notons que la conclusion du lemme ci-dessus est encore valable si I'on sup-
pose seulement que F' a un point d’accumulation rationnel 7. En effet, dans
ce cas, le fermé invariant F' = bF admet 0 comme point d’accumulation, donc
F’ =T. Cela implique T = b~ (F’) = Uogk:<b F+ %, et par suite, il existe k tel
que F' + % contient un ouvert non vide. Donc F' contient un ouvert non vide, et
comme F' est invariant par X, on trouve bien que F' = T.

La suite de la démonstration consiste & construire dans F' un autre fermé
invariant F” qui satisfait une propriété supplémentaire d’invariance par trans-
lation. Pour a € T, nous noterons 7,: T — T 'application de translation par
a, définie par 74(x) = x + «. Si 7, commute aux opérations de multiplication
T, et T,, on procede de la facon suivante : partant de I’ensemble Fy des points
d’accumulation de F', on définit une suite de fermés invariants par la relation

Fn = Fn,1 mTa(anl), Vn 2 1.

Sans perte de généralité, supposons que Fy ne contient aucun point rationnel ;
cela implique en particulier que Fj est infini. Ensuite, si F;,_; est infini, le lemme
précédent montre que 'ensemble F,,_; — F,,_; (dont 0 est point d’accumulation)
est égal & T tout entier, ce qui qui implique que F;, est non vide, et donc infini,
puisqu’il ne contient aucun point rationnel. La suite (F},),>0 est donc une suite
décroissante de fermés non vides, et par compacité, 'intersection décroissante

F’:ﬂFn

n>0



définit un fermé invariant non vide stable par 7,. C’est exactement le contenu
du second lemme dont nous aurons besoin.

Lemme 2. Si I est un fermé invariant infini et si 7, commute a T, et T,
alors F' contient un fermé invariant infini F' stable par 7.

Le théoréme 1 s’obtient simplement & I'aide des deux lemmes ci-dessus. En
effet, si F' est un fermé infini invariant par 7, et T,, on peut choisir un entier
arbitrairement grand k puis un entier m tel que k divise a la fois p™ — 1 et
g™ — 1. La translation 7y, commute alors a T;m et Sym, donc F' contient un
fermé F’ non vide stable par 7y /5. Cela implique que F' est 1/k-dense dans T,
et comme k peut étre arbitrairement grand, on trouve bien F' = T.

Nous concluons ce paragraphe en mentionnant une version quantitative de
I’énoncé de Furstenberg, due & Bourgain, Lindenstrauss, Michel et Venkatesh [3].

Théoréme 3. Soient p et q deux entiers multiplicativement indépendants. Si x
est un point diophantien de T, i.e. satisfait, pour un certain k > 1, pour tout
(a,b) dans Z x N, |z — §| > b=k, alors il existe k > 0 tel que pour tout entier
N suffisamment grand, ’ensemble

{(P’d'z ;5 s,t <N}
est dense a l’échelle (loglog N)™" dans T.

La démonstration de ce théoréme utilise des versions quantitatives du résul-
tat partiel de Rudolph-Johnson concernant la conjecture de Furstenberg sur les
mesures invariantes.

1.2 Mesures invariantes

Nous présentons maintenant le théoréme de Rudolph-Johnson sur les me-
sures invariantes. Rappelons que 1'entropie pour T, d’une mesure p invariante
par T}, est définie par

hu(Tp) = lim — Y~ (1) log u(1),

n—oo N
1eDi™

ol Dé.") = {[p%, 1;—"1[ ; 0 < i < p"} désigne la partition de T en intervalles
p-adiques de niveau n. Il existe de nombreuses interprétations de ’entropie, no-
tamment en termes d’information ; nous verrons ci-dessous que I’entropie d’une
mesure est aussi étroitement reliée a sa dimension de Hausdorff.

Le théoréme de Rudolph-Johnson exprime que la mesure de Lebesgue est
essentiellement 'unique mesure d’entropie strictement positive invariante par
T, et T,. Evidemment, une combinaison convexe de la mesure de Lebesgue
avec une mesure invariante a support fini aura encore cette propriété, et pour
s’assurer 'unicité, il faut donc interdire de telles combinaisons. On dit qu’une
probabilité p invariante par T}, est ergodique si j1 ne peut pas s’écrire comme
combinaison convexe non triviale de deux probabilités invariantes par 7.



Théoréme 4 (Rudolph-Johnson). Soient p et q deuz entiers multiplicativement
indépendants, et u une probabilité invariante sous l'action de T, et T, et ergo-
dique pour T,,. Si u est d’entropie strictement positive pour T, alors p est égale
G la mesure de Lebesgue sur T.

Certaines démonstrations de ce résultat ne sont pas sans lien avec celle que
nous avons présentée du théoréme de Furstenberg sur les fermés invariants,
et relient l'invariance par le semi-groupe multiplicatif engendré par T}, et T,
a des propriétés de récurrence pour certains sous-groupes additifs. Une autre
démonstration, due & Hochman et Shmerkin, passe par une inégalité sur la
dimension des convolutions de mesures invariantes par multiplication, que nous
décrivons dans la partie suivante.

2 Dimension, projection et intersection

Le but de cette partie est de ramener le théoréme 2 & un énoncé plus géo-
métrique, qui porte sur la régularité de certaines projections de mesures. Cette
dualité entre intersection et projection, déja observée par Furstenberg, est a la
base de la démonstration de Shmerkin [10].

2.1 Dimension et invariance

Commengons par rappeler quelques notions élémentaires pour définir la di-
mension d’une partie bornée A dans R. La définition la plus simple est sans
doute celle de Minkowski : pour une échelle § > 0 arbitrairement petite, on note
N(A,J) le cardinal minimal d’un recouvrement de A a I’aide de boules de rayon
4, et on pose

dimy; A = lim sup w.
50 log 5
Cette définition a un inconvénient majeur : elle n’est pas stable par union dé-
nombrable. Méme un ensemble discret peut avoir une dimension strictement
positive, par exemple dimM{% ;n>1} = % On préfére donc souvent utiliser la
dimension de Hausdorff, qui met en jeu des recouvrements par des boules dont
le rayon peut étre arbitrairement petit :

dimpy A = inf {s >0 | Ve >0, 3w, 6:)ien : AC|JB(i,0:), > 65 < s} .
i i
Fort heureusement, si A est un fermé invariant par multiplication par un entier
p > 2, il n’est pas difficile de vérifier que ces deux notions coincident
dimM A= dlmH A. (1)
Pour une mesure p, on définit sa dimension de Hausdorff inférieure par

dimy p = inf{dimg 4 ; u(A) > 0}.



Lorsque p est invariante et ergodique par multiplication par un entier p > 2,
le théoréme de Shannon-McMillan-Breiman permet de démontrer une formule
analogue & (1). En effet, ce théoréme affirme que pour presque tout z au sens
de la mesure u, le quotient w converge vers la valeur limite hfo(gz;”),
indépendante de z. On dit que u est de dimension exacte égale &

h(Tp)
logp

dimp =

Insistons sur le fait que cette propriété n’est pas valable en général, mais découle
de I'invariance et de ’ergodicité pour 7),. Un exemple important est celui des
ensembles de Cantor p-adiques, et des mesures de Cantor qui leur sont associées.

Exemple (Ensembles et mesures de Cantor). Soit .S une partie de {0,...,p—1},
et Fg ’ensemble de Cantor p-adique associé, ¢’est-a-dire ’ensemble des éléments
dont I’écriture en base p ne contient que des éléments de S. La dimension de
Hausdorff de F§g, égale a sa dimension de Minkowski, est égale &

log | 5|

dimH FS = logp .

En outre, on peut définir sur Fg une mesure canonique pg, qui correspond &
un choix uniforme parmi les éléments de S de chaque chiffre du développement
en base p. Cette mesure vérifie une propriété de régularité importante : il existe
une constante C' > 0 telle que pour tout  dans Fg et tout 6 € ]0, 1],

%éﬁimH Fg < NS(B(xvé)) < C5dimH FS. (2)

On obtient par un calcul facile la valeur de I’entropie h,4(T},) = log|S], ce qui
permet de retrouver dans ce cas particulier la formule annoncée par le théoréme
de Shannon-McMillan-Breiman.

2.2 Projection de mesures invariantes

Comme dans le théoréme 2, nous considérons maintenant deux fermés A, B
dans [0, 1[. Pour s,t dans R, V'intersection AN (s+tB) coincide avec la fibre au-
dessus de s de application 7;: (a,b) — a—tb. Or, en général, entre la dimension
des fibres et de 'image, on s’attend a la relation

dim(A x B) = dimm;(A x B) + supdim7; ' ({s}). (3)

Cette identité n’est pas toujours valable pour les ensembles fractals, mais elle
a sans doute permis & Furstenberg d’entrevoir la relation entre le probléme des
intersections d’ensembles invariants & celui des projections d’ensembles inva-
riants, et de formuler une conjecture étroitement reliée au théoréme 2 : lorsque
A et B sont respectivement invariants par multiplication par p et ¢, deux entiers
multiplicativement indépendants, on a, pour tout t # 0,

dimy (A + ¢tB) = min(1, dimyg A + dimy B).



De facon équivalente, on peut formuler cette conjecture a I'aide des projections
orthogonales de A x B sur des droites, qui correspondent naturellement aux ap-
plications ;. Cette conjecture a été résolue en 2011 par Hochman et Shmerkin,
qui ont méme obtenu une version plus générale, pour les projections de mesures
invariantes.

Théoréme 5 (Hochman-Shmerkin). Soient p, ¢ deuz entiers multiplicativement
indépendants. Soient u et v deux probabilités sur [0, 1] invariantes par T, et Ty,
respectivement. Pour toute projection orthogonale w sur une droite distincte des
azes de coordonnées,

dimpg 7(p ® v) = min(1, dimyg g ® v).

Pour retrouver le théoréme de Rudolph-Johnson, supposons maintenant que
{4 soit une mesure invariante & la fois par T}, et T, ergodique pour 7}, et d’en-
tropie h,(T}) strictement positive. Nous avons déja vu que p est de dimension
et
sieurs fois) a la projection (x,%) — z + y montre que dimg ** = 1 pour k
suffisamment grand. Il n’est pas trop difficile de voir que la mesure de Lebesgue
est I'unique mesure invariante par 7, de dimension exacte égale a 1, et donc
p*¥ = Leb. Mais alors, les coefficients de Fourier de p vérifient fi(n)* = 0 si
n # 0, d’ou fi(n) =0 et p est bien la mesure de Lebesgue.

exacte égale a , strictement positive. Le théoréme ci-dessus appliqué (plu-

2.3 De la projection a l’intersection

La relation heuristique (3) est fausse en général, et il n’est pas possible
de déduire la dimension de A N (s + tB) de celle de A + tB, donnée par le
théoréme 5. Cependant, 'idée générale de la démonstration de Shmerkin est
tout de méme de démontrer un théoréme de projection suffisament précis pour
pouvoir en déduire I'inégalité souhaitée sur les intersections. On commence par
remarquer qu’il suffit de démontrer le théoréme lorsque les ensembles A et B
sont des ensembles de Cantor p-adique et g-adique, respectivement. Cela n’est
pas difficile a voir, car si A est un ensemble invariant par T}, pour tout € > 0,
il existe un entier N et un ensemble de Cantor pN-adique A contenant A et
tel que dimyg A < dimg A + €. En appliquant alors I'inégalité du théoréme a
des ensembles de Cantor A et B qui approchent A et B, on obtient le résultat
souhaité pour les ensembles A et B.

Le coeur du probléme consiste donc & démontrer le théoréme pour les en-
sembles de Cantor. Pour cela, nous démontrerons un analogue du théoréme de
projection de Hochman-Shmerkin, mais pour une autre notion, plus fine, de
dimension.

Pour r > 1, on définit la dimension L™ d’une mesure v en étudiant le compor-
tement de la densité de v & I’échelle 4, lorsque ¢ tend vers 0. Plus précisément,
si g5 = %1[075} désigne une unité approchée a I’échelle §, on pose

: : log [V * @s]|7
dim, v =1 — limsup ————-"_.
50" (r—1)log1/s
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C’est une mesure de 'étalement de la mesure v, qui varie entre 0 (lorsque v
est concentrée autour de peu de points) et 1 (pour la mesure de Lebesgue,
par exemple). Donnons maintenant la propriété importante de cette dimension
qui permet de rendre rigoureuse l'intuition donnée par (3) : si A et B sont
des ensembles de Cantor, n4,np les mesures canoniques associées, et m une
projection sur une droite, on a toujours l'inégalité

1
Yy € R, dimy 7t (y) < dimg A + dimg B — (1 — =) dim, 7. (14 ® 1B)-
T

Si I’on dispose de ’analogue du théoréme 5 pour la dimension L", il suffira pour
démontrer le théoréme 2 de faire tendre r vers 'infini dans I'inégalité ci-dessus.
C’est justement ce qu’affirme le théoréme ci-dessous, dit & Shmerkin.

Théoréme 6. Soient A, B deux ensembles de Cantor associés a des entiers
multiplicativement indépendants, et na,np les mesures canoniques associées.
On note aussi p =n4 @np la mesure produit sur A x B. Pour toute projection
m sur une droite non paralléle aux axes de coordonnées, on a, pour tout r > 1,

dim, 7,p > min(1, dimyg A 4+ dimg B).

Cette inégalité dimensionnelle provient d’une propriété remarquable d’auto-
similarité dynamique satisfaite par la mesure m, i, qui sera étudiée dans la partie
suivante, ot nous donnerons quelques idées de la démonstration du théoréme
ci-dessus.

3 Projection de mesures de Cantor

Un ensemble auto-similaire dans R est un ensemble qui est égal a la réunion
de plusieurs images de lui-méme par des contractions. Tout ensemble de Cantor
p-adique Fg a cette propriété, puisqu’on peut écrire

Fg = U il + ng.
ses p
On dit de méme qu’une mesure v est auto-similaire s’il existe une famille de
contractions (¢s)scs et des réels positifs (ps)ses tels que Y ps = 1 et v =
Y scs Ps(@s)«v. Clest le cas pour la mesure pu5 sur 'ensemble de Cantor F, si
lon prend ¢4(x) = % + % et ps = % pour chaque s. Cette équation vérifiée par
s peut s’écrire simplement grace au produit de convolution :

Hns = AS * (Sp—lp,s),

ou Ag désigne la mesure & support fini I—é‘ Y oecs (5%, tandis que S; est 'appli-
cation de contraction par le facteur ¢. En itérant I’égalité ci-dessus, on obtient
is sous la forme d’un produit de convolution infini de mesures a support fini

Hs = *?iosp*iAS“ (4)
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Cette équation exprime que la géométrie de pg & chaque échelle p~* est controlée
par une unique mesure Ag, indépendante de i. La géométrie des mesures auto-
similaires a été assez bien étudiée depuis les travaux fondateurs de Mandelbrot,
Hutchinson et Mattila au début des années 1980. Plus récemment, en 2012,
Hochman a méme obtenu une formule pour la dimension de Hausdorff d’un
ensemble auto-similaire général, sous une condition de séparation assez faible.
La stratégie utilisée par Shmerkin pour démontrer le théoréme 6 consiste a
développer les idées de Hochman pour pouvoir les appliquer aux projections
de mesures invariantes. Cela sera possible car la géométrie de ces projections a
toutes les échelles est controlée par une structure simple, déja mise en évidence

par Furstenberg.

3.1 Mesures dynamiquement auto-similaires

On considére maintenant deux mesures de Cantor 774 et 17 sur des ensembles
de Cantor A et B associés a des entiers p et ¢ multiplicativement indépendants,
et on s’intéresse a une projection de p = 4 ® np sur une droite non paralléle
aux axes de coordonnées. A un changement affine de coordonnées prés, nous
pouvons écrire cette projection sous la forme

. RZ = R
(a,b) — a+e®b

Pour décrire la structure presque auto-similaire de la mesure p, = (7)., nous
commencons par reformuler ’équation (4) pour 14 en termes probabilistes.

p
la probabilité uniforme associée. De méme la partie Sp C {0,...,¢ — 1} et la

mesure Ap sont associés & B. Si (X;);>o est une suite de variables aléatoires
indépendantes identiquement distribuées de loi A4, alors n4 est la loi de la

variable aléatoire
oo
S
i=0

Naturellement, on dispose d’une écriture analogue pour 7np : si les variables
aléatoires (Y;);>0 sont indépendantes et identiquement distribuées de loi Ap, la

variable aléatoire
o0
>
§=0

est de loi 7. Supposons p < ¢. Pour rendre ces deux sommes plus compatibles,

on peut noter que
(oo} o0
D = v
j=0 i=0

Onnote S4 C {0,...,p—1} la partie finie qui définit Aet Ay = Is—lA‘ Y oses, 02

v [ Y sipt <gf <p™!
v 0 sinon.
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I apparait que la suite des indices 7 tels que la variable aléatoire Y; n’est pas
identiquement nulle est codée par le systéme dynamique X = [0, log ¢[, muni de

la transformation

T: X — X
r +— x+logp mod logg.

On introduit une famille (A(z)),cx de mesures a support fini, définies par

| AxxSe=Ap size[0,logp]
Alw) = { Ay si x € [logp,logq]

et les observations qui précédent montrent que p, = 7, est la loi d’une variable
aléatoire Z?; p~"Z;, ou les Z; sont des variables aléatoires indépendantes de
loi A(T%x). En d’autres termes,

fe = #521S,—i A(T'z).

Shmerkin démontre une formule générale pour la dimension de Hausdorff des
mesures définies par un systéme dynamique comme ci-dessus. L’espace métrique
X est supposé compact, et la transformation 7: X — X continue. Le taux de
contraction peut étre un réel A € |0, 1[ arbitraire, non nécessairement de la forme
% pour p entier, mais certaines hypothéses sont nécessaires :

1. T: X — X est uniquement ergodique, i.e. admet une unique probabilité
invariante, notée P.

2. Les mesures pu, sont diffuses, supportées par un intervalle compact fixé,
et & — p, est continue (pour la topologie faible) P-presque partout.

3. Pour tout z, la mesure A(z) est une probabilité sur R a support fini de
cardinal borné, et Papplication x — A(x) est continue P-presque partout.

4. Pour presque tout z, il existe R > 0 tel que, pour n arbitrairement grand,
les atomes de iy, ~ 2?21 \'Z; sont distincts et \F"-séparés.

Si ces conditions sont satisfaites — c’est bien le cas dans l’exemple qui nous
intéresse — la dimension L" de la mesure p, est la méme pour tout = dans X,
et donnée par la formule

Sy log | A=)y dP(w)) , (5)

dim; p; = min | 1,
Hilr fla = THIT ( (r—1)log A

ol |A@)IIF = X, esupp A (A(x)({y}))r Le lecteur scrupuleux vérifiera par
lui-méme que cette formule redonne bien le théoréme 6.
3.2 Combinatoire additive

La démonstration de la formule (5) est 'aboutissement de méthodes d’ana-
lyse multi-échelle des mesures développées depuis le début des années 2000 par
Bourgain, puis par Hochman. Un aspect important de ces méthodes est leur
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lien avec la combinatoire additive. Ce domaine des mathématiques, qui a connu
un essor remarquable ces derniéres décennies, a pour objet les liens entre la
combinatoire et la structure de groupe. Etant donnée une partie A dans R, on
s’intéresse par exemple & I’ensemble « somme » :

A+A={a+b; abe A}

L’archétype des résultats du domaine est sans doute le théoréme inverse de
Freiman, qui décrit la structure des parties de Z qui croissent peu sous 1'effet
de l'addition.

Théoréme 7 (Freiman). Etant donné un paramétre K > 2, il existe une
constante C = C(K) telle que l’énoncé suivant soit vérifié.

Si A C Z est une partie finie telle que |A + A| < K|A|, alors il existe d < C,
un parallélépipéde B = [Ly, My] x - -+ x [Lg, Mg] dans Z¢ et un morphisme de
groupes ¢: 7% — 7 tel que

AC¢(B) et [op(B) <ClA]

Notons que I'ensemble ¢(B) vérifie |¢(B) + ¢(B)| < 2¢|4(B)| ; 'imprécision
du théoréme ne réside que dans I'expression de la constante C' en fonction du
paramétre K.

La démonstration de Shmerkin utilise un analogue discrétisé du théoréme de
Freiman. Ayant fixé une petite échelle 6 > 0, on évalue la taille d’un ensemble
borné A dans R par son nombre de recouvrement

N
N(A,d) =min{N ; Jz1,...,2ny: AC U B(z;,0)}.
i=1
On cherche alors a décrire les parties A qui vérifient
N(A+ A6) <67 °N(A9). (6)

Exemple. Soit 7 un grand entier, m un entier plus grand encore, et § = 277,
Etant donnée une partie Z de {1,...,m}, on pose

A={z= ZaiQ_iT 1 0<a; < 2T}.
€T

Alors, N(A,6) = 27171 tandis que N(A + A,§) < 2T +DIZl < 5= N (A, §).

A toute partie bornée A dans R, on peut associer un arbre qui décrit la
structure multi-échelle de A. Ayant fixé un grand entier T', les sommets de I’arbre
au niveau ¢ correspondent aux intervalles de longueur 277 qui rencontrent A.
Les arétes de ’arbre relient un intervalle de longueur 277 & tous les sous-
intervalles de longueur 2-C¢+1)7T qui rencontrent A. Dans I’exemple ci-dessus, on
distingue deux types de niveaux :
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— si 4 €T, le branchement est maximal, égal & 27 ;
— sii € Z, le branchement est minimal, égal & 1.

Cela n’est pas anodin, et un résultat de Bourgain montre que I'arbre associé
a toute partie A vérifiant (6) posséde une structure semblable. L’ensemble des
niveaux se divise en deux parties : & certaines échelles, le branchement est es-
sentiellement maximal, tandis qu’il est presque trivial aux autres échelles.

Cette propriété remarquable est exploitée par Shmerkin pour étudier les
produits de convolutions de mesures, du point de vue de la norme L". Il montre
ainsi un « théoréme inverse » pour la norme L” & échelle §, qui est un analogue
pour les mesures du résultat de Bourgain : si deux probabilités p et v sur
07 N [0, 1] vérifient I'inégalité

lpx e = 0% plr

alors i et v admettent une structure multi-échelle voisine de celle mise en évi-
dence ci-dessus. C’est ce théoréme inverse qui permet de démontrer la formule
de Shmerkin pour la dimension L™ des mesures dynamiquement auto-similaires.

Conclusion

Malgré cette avancée remarquable de Shmerkin et Wu sur le probléme de
Furstenberg, la conjecture 2 reste ouverte. Les implications du théoréme 2 en ce
qui concerne la conjecture 3 au sujet de ’écriture de 2™ en base 10 ne semblent
pas non plus trés claires. Il serait pourtant intéressant d’avoir au moins un
résultat partiel sur la densité des entiers n tels que 2™ ne contient pas tous les
chiffres en base 10. Il existe encore bien d’autres conjectures sur ’écriture de 2™
dans d’autres bases. Par exemple, Erdds a conjecturé que pour n > 9, ’écriture
en base 3 de 2" contient toujours un 2; et cette fois, méme une résolution de la
conjecture 2 ne donnerait sans doute pas d’information sur ce probléme difficile.

Enfin, il faut mentionner que si le théoréme de Shmerkin et Wu donne une
borne supérieure optimale sur la dimension d’une intersection d’ensembles fer-
més invariants, on ne dispose presque d’aucune information sur la borne in-
férieure, méme dans les cas les plus simples. A titre d’exemple, considérons
I’ensemble de Cantor triadique Cs, et I’ensemble Cy4 des réels qui n’admettent
ni 1 ni 2 dans leur écriture en base 4. D’aprés le théoréme 2, on peut majorer
log2 1

+ - —1~0.1309...

i <
dlmH(Cg n C4) =~ 10g3 9

mais il semble qu’on ne sache méme pas si cette intersection est infinie!
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