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Résumé

Après quelques millénaires de tâtonnements, l’écriture décimale s’est
peu à peu imposée pour les nombres entiers et réels : l’apprentissage du
calcul en base 10 est maintenant un point essentiel de l’instruction à l’école
primaire. Il est assez naturel de se demander à quoi ressembleraient les
nombres dont l’écriture décimale nous est si familière, s’ils étaient écrits
dans une autre base. Le but de cet article est de présenter certaines ques-
tions posées par Furstenberg à ce propos dans les années 60, et les progrès
récents de Hochman, Shmerkin et Wu dans ce domaine.

Introduction
Tout nombre réel x ∈ [0, 1[ peut se définir par son écriture en binaire : il

existe une suite d’entiers an ∈ {0, 1} tels que

x =
∑
n≥1

an2−n.

On écrit alors x = 0, a1a2a3 . . . , en base 2. Bien que cette écriture soit parti-
culièrement adaptée à l’informatique, nous préférons pour notre usage courant
le système décimal, suivant lequel on peut écrire x = 0, b1b2b3 . . . en base 10,
c’est-à-dire, pour certains entiers bi ∈ {0, . . . , 9},

x =
∑
n≥1

bn10−n.

Ainsi par exemple, nous avons plus l’habitude de

π = 3, 14 . . . en base 10

que de
π = 11, 001001 . . . en base 2.

De façon plus générale, si p et q sont deux entiers distincts — par exemple p = 2
et q = 3 — on peut s’intéresser à l’écriture d’un réel x dans chacune de ces deux
bases, et chercher à comprendre les liens entres ces deux écritures.
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Naturellement, si p et q sont des puissances d’un même entier, c’est-à-dire si
l’on peut écrire p = rk et q = rl pour un certain entier r, les écritures dans les
bases p et q correspondent simplement aux blocs de longueur k et l de l’écriture
en base r, de sorte qu’elles sont très similaires. Par exemple, si peu de chiffres
(ou de blocs de chiffres de longueur donnée) apparaissent dans l’écriture de x
en base p = rk, ce sera aussi le cas en base q = rl. Lorsque p et q ne sont
pas des puissances d’un même entier — on dit qu’ils sont multiplicativement
indépendants — le problème est beaucoup plus subtil.

Dans les années 1960, Furstenberg
furst1,furst2
[5, 4] a obtenu les premiers résultats

remarquables sur ce sujet, et énoncé une série de conjectures dont l’étude a ou-
vert de nouvelles voies à explorer, à l’interface entre la théorie géométrique de
la mesure et les systèmes dynamiques. Nous nous proposons dans cet article de
donner une introduction à ces problèmes, depuis les observations fondatrices de
Furstenberg, et jusqu’aux travaux récents de Hochman et Shmerkin

hs
[6], puis de

Shmerkin
shmerkin
[10] et Wu

wu
[11], qui ont résolu par l’affirmative plusieurs des conjec-

tures de Furstenberg.

Mais commençons par décrire le problème de façon plus géométrique. Si l’on
identifie le segment [0, 1[ au cercle T = R/Z des réels modulo 1, l’écriture en base
p décrit l’orbite du point x par la multiplication par p modulo 1. Concrètement,
si l’on découpe le cercle en p intervalles d’égale longueur T = I0∪ I1∪· · ·∪ Ip−1,
le développement x = 0, a1a2 . . . donne la suite des positions des éléments de
l’orbite (pnx)n≥0 dans cette partition.

I0

I1

I2

x

3x

32x

33x

Figure 1 – Orbite par ×3 de x = 0, 0121... en base 3 (x = 0, 197... en base 10)

Par exemple, dire que tout bloc de chiffres apparaît dans l’écriture de x
en base p revient à dire que l’orbite de x par ×p est dense dans T. À l’opposé,
l’écriture de x en base p est périodique à partir d’un certain rang si et seulement
si l’orbite de x par ×p est finie ; cela équivaut d’ailleurs à ce que x soit rationnel.

Évidemment, de façon analogue, l’écriture en base q correspond à l’opération
×q de multiplication par q. D’un point de vue dynamique, on cherche donc
à comprendre comment interagissent les deux transformations ×p et ×q sur
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le cercle T. La première observation remarquable de Furstenberg concerne les
fermés invariants simultanément par ces deux transformations.

th:basic Théorème 1 (Furstenberg). Si p et q sont multiplicativement indépendants, le
cercle T est l’unique fermé infini invariant par les opérations ×p et ×q.

Au vu de cet énoncé, Furstenberg a aussi formulé une conjecture analogue
pour les mesures invariantes. Rappelons qu’une mesure µ est dite diffuse si elle
est sans atome, i.e. si pour tout x dans T, µ({x}) = 0.

conj:mes Conjecture 1 (Furstenberg). Si p et q sont multiplicativement indépendants,
la mesure de Lebesgue est l’unique probabilité diffuse invariante par ×p et ×q.

Cette conjecture reste aujourd’hui un des problèmes ouverts les plus impor-
tants en systèmes dynamiques. Sous une hypothèse supplémentaire d’entropie
strictement positive, cette conjecture a été résolue par Rudolph

rudolph
[9] lorsque p et

q sont premiers entre eux, puis par Johnson
johnson
[7] lorsque p et q sont seulement

multiplicativement indépendants.

Il n’est pas évident d’expliciter les conséquences des énoncés ci-dessus sur les
écritures en base p et en base q d’un nombre réel, et il pourrait donc sembler à
première vue que cette approche dynamique du problème nous a sensiblement
éloignés de notre problème initial. En fait, les deux énoncés ci-dessus manifestent
une forme d’indépendance entre les deux transformations Tp = ×p et Tq = ×q.
Rappelons que l’écriture en base p correspond à l’orbite 〈Tp, x〉 de x sous l’action
de Tp, tandis que l’orbite 〈Tq, x〉 de x sous l’action de Tq est encodée par l’écriture
en base q. La conjecture ci-dessous, dans le même esprit que le théorème

th:basic
1,

exprime que si x est irrationnel, et p, q multiplicativement indépendants, les
écritures de x dans les bases p et q ne peuvent pas être simultanément trop
simples. La situation serait donc presque à l’opposé du cas où p et q sont deux
puissances d’un même entier ! Rappelons que la dimension de Hausdorff dimHA
d’une partie A dans R peut prendre n’importe quelle valeur entre 0 et 1. Cette
notion, dont la définition précise sera donnée au paragraphe

ss:dim
2.1, donne une

indication de la taille des ensembles fractals, dont la mesure de Lebesgue est
nulle, mais qui peuvent néanmoins contenir beaucoup de points.

conj:rat Conjecture 2. Soient p et q deux entiers multiplicativement indépendants.
Pour tout x dans T, l’inégalité dimH 〈Tp, x〉 + dimH 〈Tq, x〉 < 1 implique que
x est rationnel.

La dimension de Hausdorff α = dimH 〈Tp, x〉 mesure en quelque sorte la
complexité de l’écriture de x en base p. Plus précisément, si l’on note Np(x, n)
le nombre de blocs de longueur n qui apparaissent dans l’écriture de x en base
p, alors

Np(x, n) = pn(α+o(1)).

De plus, on peut montrer que l’égalité dimH 〈Tq, x〉 = 1 implique en fait que
l’orbite (qnx)n≥0 est dense dans T. Par conséquent, si la conjecture est vérifiée,
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et si x est un irrationnel tel que le nombre Np(x, n) de blocs de longueur n dans
l’écriture de x croît sous-exponentiellement, tous les blocs de chiffres doivent
apparaître dans l’écriture de x en base q. Par exemple, l’écriture décimale de

x =
∑
n≥0

2−2n = 0, 11010001 . . . en base 2

doit faire apparaître tous les chiffres de 0 à 9, et même tous les blocs de chiffres.
Pour donner un deuxième exemple concret, cette conjecture implique que si
x ne contient que des 0 et des 1 à la fois en base 3 et en base 10, alors x
est rationnel. Une autre conséquence amusante de cette conjecture, mentionnée
par Furstenberg, concerne l’écriture de 2n en base 10. Rappelons que le cri-
tère d’équirépartition de Weyl permet de calculer la fréquence d’apparition du
premier chiffre (ou bloc de chiffres) de 2n lorsque n varie, et donc de montrer
que tous les blocs de chiffres apparaissent dans l’écriture de certains 2n, pour
n arbitrairement grand. La conjecture ci-dessus impliquerait que tous les blocs
apparaissent dans tout 2n, pourvu que n soit suffisamment grand 1.

conj:deuxn Conjecture 3. Si n est suffisamment grand, tous les chiffres (ou tous les blocs
de chiffres d’une longueur fixée) apparaissent dans l’écriture de 2n en base 10.

À l’heure actuelle, ces trois conjectures de Furstenberg sont encore ouvertes,
mais une version faible de la conjecture

conj:rat
2 a été récemment résolue par Shmer-

kin
shmerkin
[10] et Wu

wu
[11], indépendamment. Commençons par reformuler cette conjec-

ture
conj:rat
2 : si A et B sont deux fermés de T invariants respectivement par Tp et Tq,

et vérifiant dimHA+dimHB < 1, alors A∩B ⊂ Q. Comme première étape vers
cette conjecture, Furstenberg suggérait de montrer que sous ces hypothèses, on
a toujours dimH(A ∩ B) = 0. Notons que si A et B sont des sous-espaces vec-
toriels transverses dans Rd, la dimension de l’intersection est toujours majorée
par

dim(A ∩B) ≤ max(0,dimA+ dimB − d).

Bien sûr, cette inégalité n’est pas toujours valable pour les ensembles fractals,
mais l’idée de Furstenberg est que l’hypothèse d’invariance de A etB par Tp et Tq
nous assure d’une forme de transversalité. C’est le résultat qui a été démontré en
2016 par Shmerkin

shmerkin
[10] et Wu

wu
[11], indépendamment. Une autre démonstration,

plus courte, a aussi été proposée récemment par Austin
austin
[1].

th:trans Théorème 2 (Transversalité de Tp et Tq). Soient p, q deux entiers multiplica-
tivement indépendants, et A,B deux fermés de T invariants par Tp et Tq, res-
pectivement. Alors, pour tous réels s, t, t 6= 0,

dimH(A ∩ (s+ tB)) ≤ max(dimHA+ dimHB − 1, 0).

Cet article se compose de trois parties. La première partie est consacrée au
théorème de Furstenberg sur les fermés invariants par ×p et ×q ; après quelques

1. On renvoie le lecteur intéressé à l’article original
furst2
[4, Conjecture 2’] pour l’argument

élémentaire qui permet de déduire cette conjecture de la précédente.
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exemples introductifs, nous en donnerons la démonstration, suivie d’une brève
discussion de son analogue conjecturel pour les mesures, la conjecture

conj:mes
1. La

seconde partie traite de problèmes de théorie géométrique de la mesure, et a
pour but d’expliquer les liens entre le problème de l’intersection d’ensembles
invariants et celui des projections de mesures invariantes. Nous y esquisserons
au passage une démonstration, due à Hochman et Shmerkin, du résultat de
Rudolph-Johnson sur les mesures invariantes par ×p et ×q. Enfin, la troisième
partie présente succintement deux ingrédients importants de la démonstration
de Shmerkin : la notion de mesure dynamiquement auto-similaire, et les théo-
rèmes inverses en combinatoire additive.

1 Fermés invariants
Donnons d’abord quelques exemples de fermés invariants par l’application de

multiplication Tp. Bien sûr, pour commencer il existe des orbites finies, qui pro-
viennent toutes de points rationnels. Cela n’est qu’une reformulation d’un point
bien connu, que l’on découvre souvent en apprenant l’algorithme de division
avec « chiffres après la virgule » : un nombre réel est rationnel si et seulement
si son développement décimal est périodique à partir d’un certain rang.

Mais il existe aussi de nombreux fermés invariants infinis. Par exemple, si S
est une partie de {0, . . . , p− 1}, l’ensemble

FS = {x =
∑
i≥1

aip
−i ; ∀i, ai ∈ S}

définit un fermé invariant, infini dès que S contient au moins deux éléments ;
c’est l’ensemble des éléments dont une écriture en base p ne contient que des
éléments de S. Ces ensembles s’appellent les ensembles de Cantor p-adiques, le
plus célèbre est sans doute l’ensemble de Cantor triadique, invariant par T3, et
constitué des réels dont l’écriture en base 3 ne contient pas de 1. On peut encore
obtenir d’autres fermés invariants en imposant des conditions sur les différents
blocs de chiffres, et il n’est pas difficile de voir à l’aide de ces constructions que
l’ensemble des fermés invariants par Tp n’est pas dénombrable.

Cela montre bien que l’énoncé du théorème de Furstenberg que nous voulons
démontrer est remarquable : parmi tous ces fermés invariants par Tp, les seuls
qui sont invariants par multiplication par un entier q indépendant de p sont les
orbites finies et le cercle T tout entier !

1.1 Le théorème de Furstenberg
Nous donnons maintenant les grandes lignes de la démonstration du théo-

rème
th:basic
1 proposée par Boshernitzan

boshernitzan
[2], suivant la présentation de Malicet

malicet
[8]. On

renvoie d’ailleurs à cette dernière note pour les preuves détaillées des résultats
intermédiaires.

Un sous-groupe additif de R qui n’est pas monogène est dense. La démons-
tration du théorème de Furstenberg utilise une variante de cette observation

5



pour les semi-groupes, i.e. les parties stables par addition : un semi-groupe ad-
ditif Σ0 de R+ = [0,+∞[ qui n’est pas contenu dans un semi-groupe monogène
est non-lacunaire. Cela signifie que les points de Σ0 sont de plus en plus denses
au voisinage de l’infini. Précisément, pour tout ε > 0, il existe R ≥ 0 tel que
pour tout x ≥ R, il existe s dans Σ0 tel que |x− s| ≤ ε.

Dans la suite, nous nous intéresserons à un semi-groupe multiplicatif Σ de
l’ensemble N des entiers naturels. La partie Σ0 = log Σ est un semi-groupe
additif de R+, et le résultat ci-dessus montre donc que si Σ n’est pas monogène,
alors Σ est non lacunaire, au sens où le quotient de deux éléments successifs de
Σ converge vers 1 en l’infini : si Σ = {s1 < s2 < . . .}, alors

lim
n→∞

sn+1

sn
= 1.

Dans toute la suite, on considère un fermé infini F invariant par multiplication
par deux entiers indépendants p et q, et on cherche à montrer que F = T. Nous
noterons Σ = {s1 < s2 < . . .} le semi-groupe de (N,×) engendré par p et q. Si
l’on dispose d’un élément u dans F arbitrairement proche de 0, la propriété de
non lacunarité de Σ permet d’encadrer un point quelconque x dans T par des
intervalles de la forme [snu, sn+1u], dont les extrémités appartiennent à F , et
dont la longueur est arbitrairement petite. Cette observation élémentaire permet
d’obtenir le premier lemme important en direction du théorème de Furstenberg.

Lemme 1. Si 0 est point d’accumulation de F , alors F = T.

Notons que la conclusion du lemme ci-dessus est encore valable si l’on sup-
pose seulement que F a un point d’accumulation rationnel a

b . En effet, dans
ce cas, le fermé invariant F ′ = bF admet 0 comme point d’accumulation, donc
F ′ = T. Cela implique T = b−1(F ′) =

⋃
0≤k<b F + k

b , et par suite, il existe k tel
que F + k

b contient un ouvert non vide. Donc F contient un ouvert non vide, et
comme F est invariant par Σ, on trouve bien que F = T.

La suite de la démonstration consiste à construire dans F un autre fermé
invariant F ′ qui satisfait une propriété supplémentaire d’invariance par trans-
lation. Pour α ∈ T, nous noterons τα : T → T l’application de translation par
α, définie par τα(x) = x + α. Si τα commute aux opérations de multiplication
Tp et Tq, on procède de la façon suivante : partant de l’ensemble F0 des points
d’accumulation de F , on définit une suite de fermés invariants par la relation

Fn = Fn−1 ∩ τα(Fn−1), ∀n ≥ 1.

Sans perte de généralité, supposons que F0 ne contient aucun point rationnel ;
cela implique en particulier que F0 est infini. Ensuite, si Fn−1 est infini, le lemme
précédent montre que l’ensemble Fn−1−Fn−1 (dont 0 est point d’accumulation)
est égal à T tout entier, ce qui qui implique que Fn est non vide, et donc infini,
puisqu’il ne contient aucun point rationnel. La suite (Fn)n≥0 est donc une suite
décroissante de fermés non vides, et par compacité, l’intersection décroissante

F ′ =
⋂
n≥0

Fn
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définit un fermé invariant non vide stable par τα. C’est exactement le contenu
du second lemme dont nous aurons besoin.

Lemme 2. Si F est un fermé invariant infini et si τα commute à Tp et Tq,
alors F contient un fermé invariant infini F ′ stable par τα.

Le théorème
th:basic
1 s’obtient simplement à l’aide des deux lemmes ci-dessus. En

effet, si F est un fermé infini invariant par Tp et Tq, on peut choisir un entier
arbitrairement grand k puis un entier m tel que k divise à la fois pm − 1 et
qm − 1. La translation τ1/k commute alors à Tpm et Sqm , donc F contient un
fermé F ′ non vide stable par τ1/k. Cela implique que F est 1/k-dense dans T,
et comme k peut être arbitrairement grand, on trouve bien F = T.

Nous concluons ce paragraphe en mentionnant une version quantitative de
l’énoncé de Furstenberg, due à Bourgain, Lindenstrauss, Michel et Venkatesh

blmv
[3].

Théorème 3. Soient p et q deux entiers multiplicativement indépendants. Si x
est un point diophantien de T, i.e. satisfait, pour un certain k ≥ 1, pour tout
(a, b) dans Z × N, |x − a

b | ≥ b−k, alors il existe κ > 0 tel que pour tout entier
N suffisamment grand, l’ensemble

{psqtx ; s, t ≤ N}

est dense à l’échelle (log logN)−κ dans T.

La démonstration de ce théorème utilise des versions quantitatives du résul-
tat partiel de Rudolph-Johnson concernant la conjecture de Furstenberg sur les
mesures invariantes.

1.2 Mesures invariantes
Nous présentons maintenant le théorème de Rudolph-Johnson sur les me-

sures invariantes. Rappelons que l’entropie pour Tp d’une mesure µ invariante
par Tp est définie par

hµ(Tp) = lim
n→∞

−1

n

∑
I∈D(n)

p

µ(I) logµ(I),

où D(n)
p = {[ ipn ,

i+1
pn [ ; 0 ≤ i < pn} désigne la partition de T en intervalles

p-adiques de niveau n. Il existe de nombreuses interprétations de l’entropie, no-
tamment en termes d’information ; nous verrons ci-dessous que l’entropie d’une
mesure est aussi étroitement reliée à sa dimension de Hausdorff.

Le théorème de Rudolph-Johnson exprime que la mesure de Lebesgue est
essentiellement l’unique mesure d’entropie strictement positive invariante par
Tp et Tq. Évidemment, une combinaison convexe de la mesure de Lebesgue
avec une mesure invariante à support fini aura encore cette propriété, et pour
s’assurer l’unicité, il faut donc interdire de telles combinaisons. On dit qu’une
probabilité µ invariante par Tp est ergodique si µ ne peut pas s’écrire comme
combinaison convexe non triviale de deux probabilités invariantes par Tp.
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Théorème 4 (Rudolph-Johnson). Soient p et q deux entiers multiplicativement
indépendants, et µ une probabilité invariante sous l’action de Tp et Tq et ergo-
dique pour Tp. Si µ est d’entropie strictement positive pour Tp, alors µ est égale
à la mesure de Lebesgue sur T.

Certaines démonstrations de ce résultat ne sont pas sans lien avec celle que
nous avons présentée du théorème de Furstenberg sur les fermés invariants,
et relient l’invariance par le semi-groupe multiplicatif engendré par Tp et Tq
à des propriétés de récurrence pour certains sous-groupes additifs. Une autre
démonstration, due à Hochman et Shmerkin, passe par une inégalité sur la
dimension des convolutions de mesures invariantes par multiplication, que nous
décrivons dans la partie suivante.

2 Dimension, projection et intersection
Le but de cette partie est de ramener le théorème

th:trans
2 à un énoncé plus géo-

métrique, qui porte sur la régularité de certaines projections de mesures. Cette
dualité entre intersection et projection, déjà observée par Furstenberg, est à la
base de la démonstration de Shmerkin

shmerkin
[10].

2.1 Dimension et invariance
ss:dim

Commençons par rappeler quelques notions élémentaires pour définir la di-
mension d’une partie bornée A dans R. La définition la plus simple est sans
doute celle de Minkowski : pour une échelle δ > 0 arbitrairement petite, on note
N(A, δ) le cardinal minimal d’un recouvrement de A à l’aide de boules de rayon
δ, et on pose

dimMA = lim sup
δ→0

logN(A, δ)

log 1
δ

.

Cette définition a un inconvénient majeur : elle n’est pas stable par union dé-
nombrable. Même un ensemble discret peut avoir une dimension strictement
positive, par exemple dimM{ 1

n ; n ≥ 1} = 1
2 . On préfère donc souvent utiliser la

dimension de Hausdorff, qui met en jeu des recouvrements par des boules dont
le rayon peut être arbitrairement petit :

dimHA = inf

{
s > 0 | ∀ε > 0, ∃(xi, δi)i∈N : A ⊂

⋃
i

B(xi, δi),
∑
i

δsi ≤ ε

}
.

Fort heureusement, si A est un fermé invariant par multiplication par un entier
p ≥ 2, il n’est pas difficile de vérifier que ces deux notions coïncident

dimMA = dimHA. (1) hausmin

Pour une mesure µ, on définit sa dimension de Hausdorff inférieure par

dimH µ = inf{dimHA ; µ(A) > 0}.
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Lorsque µ est invariante et ergodique par multiplication par un entier p ≥ 2,
le théorème de Shannon-McMillan-Breiman permet de démontrer une formule
analogue à (

hausmin
1). En effet, ce théorème affirme que pour presque tout x au sens

de la mesure µ, le quotient log µ(B(x,δ))
log δ converge vers la valeur limite hµ(Tp)

log p ,
indépendante de x. On dit que µ est de dimension exacte égale à

dimµ =
hµ(Tp)

log p
.

Insistons sur le fait que cette propriété n’est pas valable en général, mais découle
de l’invariance et de l’ergodicité pour Tp. Un exemple important est celui des
ensembles de Cantor p-adiques, et des mesures de Cantor qui leur sont associées.

Exemple (Ensembles et mesures de Cantor). Soit S une partie de {0, . . . , p−1},
et FS l’ensemble de Cantor p-adique associé, c’est-à-dire l’ensemble des éléments
dont l’écriture en base p ne contient que des éléments de S. La dimension de
Hausdorff de FS , égale à sa dimension de Minkowski, est égale à

dimH FS =
log |S|
log p

.

En outre, on peut définir sur FS une mesure canonique µS , qui correspond à
un choix uniforme parmi les éléments de S de chaque chiffre du développement
en base p. Cette mesure vérifie une propriété de régularité importante : il existe
une constante C > 0 telle que pour tout x dans FS et tout δ ∈ ]0, 1[,

1

C
δdimH FS ≤ µS(B(x, δ)) ≤ CδdimH FS . (2) ahlfors

On obtient par un calcul facile la valeur de l’entropie hµS (Tp) = log |S|, ce qui
permet de retrouver dans ce cas particulier la formule annoncée par le théorème
de Shannon-McMillan-Breiman.

2.2 Projection de mesures invariantes
Comme dans le théorème

th:trans
2, nous considérons maintenant deux fermés A,B

dans [0, 1[. Pour s, t dans R, l’intersection A∩ (s+ tB) coïncide avec la fibre au-
dessus de s de l’application πt : (a, b) 7→ a−tb. Or, en général, entre la dimension
des fibres et de l’image, on s’attend à la relation

dim(A×B) = dimπt(A×B) + sup
s

dimπ−1
t ({s}). (3) heur

Cette identité n’est pas toujours valable pour les ensembles fractals, mais elle
a sans doute permis à Furstenberg d’entrevoir la relation entre le problème des
intersections d’ensembles invariants à celui des projections d’ensembles inva-
riants, et de formuler une conjecture étroitement reliée au théorème

th:trans
2 : lorsque

A et B sont respectivement invariants par multiplication par p et q, deux entiers
multiplicativement indépendants, on a, pour tout t 6= 0,

dimH(A+ tB) = min(1,dimHA+ dimHB).
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De façon équivalente, on peut formuler cette conjecture à l’aide des projections
orthogonales de A×B sur des droites, qui correspondent naturellement aux ap-
plications πt. Cette conjecture a été résolue en 2011 par Hochman et Shmerkin,
qui ont même obtenu une version plus générale, pour les projections de mesures
invariantes.

th:hs Théorème 5 (Hochman-Shmerkin). Soient p, q deux entiers multiplicativement
indépendants. Soient µ et ν deux probabilités sur [0, 1[ invariantes par Tp et Tq,
respectivement. Pour toute projection orthogonale π sur une droite distincte des
axes de coordonnées,

dimH π(µ⊗ ν) = min(1,dimH µ⊗ ν).

Pour retrouver le théorème de Rudolph-Johnson, supposons maintenant que
µ soit une mesure invariante à la fois par Tp et Tq, ergodique pour Tp, et d’en-
tropie hµ(Tp) strictement positive. Nous avons déjà vu que µ est de dimension
exacte égale à hµ(Tp)

log p , strictement positive. Le théorème ci-dessus appliqué (plu-
sieurs fois) à la projection (x, y) 7→ x + y montre que dimH µ

∗k = 1 pour k
suffisamment grand. Il n’est pas trop difficile de voir que la mesure de Lebesgue
est l’unique mesure invariante par Tp de dimension exacte égale à 1, et donc
µ∗k = Leb. Mais alors, les coefficients de Fourier de µ vérifient µ̂(n)k = 0 si
n 6= 0, d’où µ̂(n) = 0 et µ est bien la mesure de Lebesgue.

2.3 De la projection à l’intersection
La relation heuristique (

heur
3) est fausse en général, et il n’est pas possible

de déduire la dimension de A ∩ (s + tB) de celle de A + tB, donnée par le
théorème

th:hs
5. Cependant, l’idée générale de la démonstration de Shmerkin est

tout de même de démontrer un théorème de projection suffisament précis pour
pouvoir en déduire l’inégalité souhaitée sur les intersections. On commence par
remarquer qu’il suffit de démontrer le théorème lorsque les ensembles A et B
sont des ensembles de Cantor p-adique et q-adique, respectivement. Cela n’est
pas difficile à voir, car si A est un ensemble invariant par Tp, pour tout ε > 0,
il existe un entier N et un ensemble de Cantor pN -adique Ã contenant A et
tel que dimH Ã ≤ dimHA + ε. En appliquant alors l’inégalité du théorème à
des ensembles de Cantor Ã et B̃ qui approchent A et B, on obtient le résultat
souhaité pour les ensembles A et B.

Le cœur du problème consiste donc à démontrer le théorème pour les en-
sembles de Cantor. Pour cela, nous démontrerons un analogue du théorème de
projection de Hochman-Shmerkin, mais pour une autre notion, plus fine, de
dimension.

Pour r ≥ 1, on définit la dimension Lr d’une mesure ν en étudiant le compor-
tement de la densité de ν à l’échelle δ, lorsque δ tend vers 0. Plus précisément,
si φδ = 1

δ1[0,δ] désigne une unité approchée à l’échelle δ, on pose

dimr ν = 1− lim sup
δ→0

log ‖ν ∗ φδ‖rr
(r − 1) log 1/δ

.

10



C’est une mesure de l’étalement de la mesure ν, qui varie entre 0 (lorsque ν
est concentrée autour de peu de points) et 1 (pour la mesure de Lebesgue,
par exemple). Donnons maintenant la propriété importante de cette dimension
qui permet de rendre rigoureuse l’intuition donnée par (

heur
3) : si A et B sont

des ensembles de Cantor, ηA, ηB les mesures canoniques associées, et π une
projection sur une droite, on a toujours l’inégalité

∀y ∈ R, dimM π−1(y) ≤ dimHA+ dimHB − (1− 1

r
) dimr π∗(ηA ⊗ ηB).

Si l’on dispose de l’analogue du théorème
th:hs
5 pour la dimension Lr, il suffira pour

démontrer le théorème
th:trans
2 de faire tendre r vers l’infini dans l’inégalité ci-dessus.

C’est justement ce qu’affirme le théorème ci-dessous, dû à Shmerkin.

th:shproj Théorème 6. Soient A,B deux ensembles de Cantor associés à des entiers
multiplicativement indépendants, et ηA, ηB les mesures canoniques associées.
On note aussi µ = ηA ⊗ ηB la mesure produit sur A×B. Pour toute projection
π sur une droite non parallèle aux axes de coordonnées, on a, pour tout r > 1,

dimr π∗µ ≥ min(1,dimHA+ dimHB).

Cette inégalité dimensionnelle provient d’une propriété remarquable d’auto-
similarité dynamique satisfaite par la mesure π∗µ, qui sera étudiée dans la partie
suivante, où nous donnerons quelques idées de la démonstration du théorème
ci-dessus.

3 Projection de mesures de Cantor
Un ensemble auto-similaire dans R est un ensemble qui est égal à la réunion

de plusieurs images de lui-même par des contractions. Tout ensemble de Cantor
p-adique FS a cette propriété, puisqu’on peut écrire

FS =
⋃
s∈S

s

p
+

1

p
FS .

On dit de même qu’une mesure ν est auto-similaire s’il existe une famille de
contractions (φs)s∈S et des réels positifs (ps)s∈S tels que

∑
s ps = 1 et ν =∑

s∈S ps(φs)∗ν. C’est le cas pour la mesure µS sur l’ensemble de Cantor FS , si
l’on prend φs(x) = s

p + x
p et ps = 1

p pour chaque s. Cette équation vérifiée par
µS peut s’écrire simplement grâce au produit de convolution :

µS = ∆S ∗ (Sp−1µS),

où ∆S désigne la mesure à support fini 1
|S|
∑
s∈S δ sp , tandis que St est l’appli-

cation de contraction par le facteur t. En itérant l’égalité ci-dessus, on obtient
µS sous la forme d’un produit de convolution infini de mesures à support fini

µS = ∗∞i=0Sp−i∆S . (4) conv
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Cette équation exprime que la géométrie de µS à chaque échelle p−i est contrôlée
par une unique mesure ∆S , indépendante de i. La géométrie des mesures auto-
similaires a été assez bien étudiée depuis les travaux fondateurs de Mandelbrot,
Hutchinson et Mattila au début des années 1980. Plus récemment, en 2012,
Hochman a même obtenu une formule pour la dimension de Hausdorff d’un
ensemble auto-similaire général, sous une condition de séparation assez faible.
La stratégie utilisée par Shmerkin pour démontrer le théorème

th:shproj
6 consiste à

développer les idées de Hochman pour pouvoir les appliquer aux projections
de mesures invariantes. Cela sera possible car la géométrie de ces projections à
toutes les échelles est contrôlée par une structure simple, déjà mise en évidence
par Furstenberg.

3.1 Mesures dynamiquement auto-similaires
On considère maintenant deux mesures de Cantor ηA et ηB sur des ensembles

de Cantor A et B associés à des entiers p et q multiplicativement indépendants,
et on s’intéresse à une projection de µ = ηA ⊗ ηB sur une droite non parallèle
aux axes de coordonnées. À un changement affine de coordonnées près, nous
pouvons écrire cette projection sous la forme

πx : R2 → R
(a, b) 7→ a+ exb

Pour décrire la structure presque auto-similaire de la mesure µx = (πx)∗µ, nous
commençons par reformuler l’équation (

conv
4) pour ηA en termes probabilistes.

On note SA ⊂ {0, . . . , p−1} la partie finie qui définitA et ∆A = 1
|SA|

∑
s∈SA δ

s
p

la probabilité uniforme associée. De même la partie SB ⊂ {0, . . . , q − 1} et la
mesure ∆B sont associés à B. Si (Xi)i≥0 est une suite de variables aléatoires
indépendantes identiquement distribuées de loi ∆A, alors ηA est la loi de la
variable aléatoire

∞∑
i=0

p−iXi.

Naturellement, on dispose d’une écriture analogue pour ηB : si les variables
aléatoires (Yi)i≥0 sont indépendantes et identiquement distribuées de loi ∆B , la
variable aléatoire

∞∑
j=0

q−jYj

est de loi ηB . Supposons p < q. Pour rendre ces deux sommes plus compatibles,
on peut noter que

∞∑
j=0

q−jYj =

∞∑
i=0

p−iY ′i

où
Y ′i =

{
q−jpiYj si pi < qj < pi+1

0 sinon.
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Il apparaît que la suite des indices i tels que la variable aléatoire Y ′i n’est pas
identiquement nulle est codée par le système dynamique X = [0, log q[, muni de
la transformation

T : X → X
x 7→ x+ log p mod log q.

On introduit une famille (∆(x))x∈X de mesures à support fini, définies par

∆(x) =

{
∆A ∗ Sex∆B si x ∈ [0, log p[
∆A si x ∈ [log p, log q[

et les observations qui précèdent montrent que µx = π∗µ est la loi d’une variable
aléatoire

∑∞
i=1 p

−iZi, où les Zi sont des variables aléatoires indépendantes de
loi ∆(T ix). En d’autres termes,

µx = ∗∞i=1Sp−i∆(T ix).

Shmerkin démontre une formule générale pour la dimension de Hausdorff des
mesures définies par un système dynamique comme ci-dessus. L’espace métrique
X est supposé compact, et la transformation T : X → X continue. Le taux de
contraction peut être un réel λ ∈ ]0, 1[ arbitraire, non nécessairement de la forme
1
p pour p entier, mais certaines hypothèses sont nécessaires :

1. T : X → X est uniquement ergodique, i.e. admet une unique probabilité
invariante, notée P.

2. Les mesures µx sont diffuses, supportées par un intervalle compact fixé,
et x 7→ µx est continue (pour la topologie faible) P-presque partout.

3. Pour tout x, la mesure ∆(x) est une probabilité sur R à support fini de
cardinal borné, et l’application x 7→ ∆(x) est continue P-presque partout.

4. Pour presque tout x, il existe R ≥ 0 tel que, pour n arbitrairement grand,
les atomes de µx,n ∼

∑n
i=1 λ

iZi sont distincts et λRn-séparés.
Si ces conditions sont satisfaites — c’est bien le cas dans l’exemple qui nous
intéresse — la dimension Lr de la mesure µx est la même pour tout x dans X,
et donnée par la formule

dimr µx = min

(
1,

∫
X

log ‖∆(x)‖rr dP(x)

(r − 1) log λ

)
, (5) sf

où ‖∆(x)‖rr =
∑
y∈Supp ∆(x)

(
∆(x)({y})

)r. Le lecteur scrupuleux vérifiera par
lui-même que cette formule redonne bien le théorème

th:shproj
6.

3.2 Combinatoire additive
La démonstration de la formule (

sf
5) est l’aboutissement de méthodes d’ana-

lyse multi-échelle des mesures développées depuis le début des années 2000 par
Bourgain, puis par Hochman. Un aspect important de ces méthodes est leur
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lien avec la combinatoire additive. Ce domaine des mathématiques, qui a connu
un essor remarquable ces dernières décennies, a pour objet les liens entre la
combinatoire et la structure de groupe. Étant donnée une partie A dans R, on
s’intéresse par exemple à l’ensemble « somme » :

A+A = {a+ b ; a, b ∈ A}.

L’archétype des résultats du domaine est sans doute le théorème inverse de
Freiman, qui décrit la structure des parties de Z qui croissent peu sous l’effet
de l’addition.

Théorème 7 (Freiman). Étant donné un paramètre K ≥ 2, il existe une
constante C = C(K) telle que l’énoncé suivant soit vérifié.
Si A ⊂ Z est une partie finie telle que |A + A| ≤ K|A|, alors il existe d ≤ C,
un parallélépipède B = [L1,M1] × · · · × [Ld,Md] dans Zd et un morphisme de
groupes φ : Zd → Z tel que

A ⊂ φ(B) et |φ(B)| ≤ C|A|.

Notons que l’ensemble φ(B) vérifie |φ(B) +φ(B)| ≤ 2C |φ(B)| ; l’imprécision
du théorème ne réside que dans l’expression de la constante C en fonction du
paramètre K.

La démonstration de Shmerkin utilise un analogue discrétisé du théorème de
Freiman. Ayant fixé une petite échelle δ > 0, on évalue la taille d’un ensemble
borné A dans R par son nombre de recouvrement

N(A, δ) = min{N ; ∃x1, . . . , xN : A ⊂
N⋃
i=1

B(xi, δ)}.

On cherche alors à décrire les parties A qui vérifient

N(A+A, δ) ≤ δ−εN(A, δ). (6) smalldoubling

Exemple. Soit T un grand entier, m un entier plus grand encore, et δ = 2−mT .
Étant donnée une partie I de {1, . . . ,m}, on pose

A = {x =
∑
i∈I

ai2
−iT ; 0 ≤ ai < 2T }.

Alors, N(A, δ) = 2T |I|, tandis que N(A+A, δ) ≤ 2(T+1)|I| ≤ δ− 1
T N(A, δ).

À toute partie bornée A dans R, on peut associer un arbre qui décrit la
structure multi-échelle de A. Ayant fixé un grand entier T , les sommets de l’arbre
au niveau i correspondent aux intervalles de longueur 2−iT qui rencontrent A.
Les arêtes de l’arbre relient un intervalle de longueur 2−iT à tous les sous-
intervalles de longueur 2−(i+1)T qui rencontrent A. Dans l’exemple ci-dessus, on
distingue deux types de niveaux :
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— si i ∈ I, le branchement est maximal, égal à 2T ;
— si i 6∈ I, le branchement est minimal, égal à 1.

Cela n’est pas anodin, et un résultat de Bourgain montre que l’arbre associé
à toute partie A vérifiant (

smalldoubling
6) possède une structure semblable. L’ensemble des

niveaux se divise en deux parties : à certaines échelles, le branchement est es-
sentiellement maximal, tandis qu’il est presque trivial aux autres échelles.

Cette propriété remarquable est exploitée par Shmerkin pour étudier les
produits de convolutions de mesures, du point de vue de la norme Lr. Il montre
ainsi un « théorème inverse » pour la norme Lr à échelle δ, qui est un analogue
pour les mesures du résultat de Bourgain : si deux probabilités µ et ν sur
δZ ∩ [0, 1] vérifient l’inégalité

‖µ ∗ ν‖Lr ≥ δε‖µ‖Lr

alors µ et ν admettent une structure multi-échelle voisine de celle mise en évi-
dence ci-dessus. C’est ce théorème inverse qui permet de démontrer la formule
de Shmerkin pour la dimension Lr des mesures dynamiquement auto-similaires.

Conclusion
Malgré cette avancée remarquable de Shmerkin et Wu sur le problème de

Furstenberg, la conjecture
conj:rat
2 reste ouverte. Les implications du théorème

th:trans
2 en ce

qui concerne la conjecture
conj:deuxn
3 au sujet de l’écriture de 2n en base 10 ne semblent

pas non plus très claires. Il serait pourtant intéressant d’avoir au moins un
résultat partiel sur la densité des entiers n tels que 2n ne contient pas tous les
chiffres en base 10. Il existe encore bien d’autres conjectures sur l’écriture de 2n

dans d’autres bases. Par exemple, Erdős a conjecturé que pour n ≥ 9, l’écriture
en base 3 de 2n contient toujours un 2 ; et cette fois, même une résolution de la
conjecture

conj:rat
2 ne donnerait sans doute pas d’information sur ce problème difficile.

Enfin, il faut mentionner que si le théorème de Shmerkin et Wu donne une
borne supérieure optimale sur la dimension d’une intersection d’ensembles fer-
més invariants, on ne dispose presque d’aucune information sur la borne in-
férieure, même dans les cas les plus simples. À titre d’exemple, considérons
l’ensemble de Cantor triadique C3, et l’ensemble C4 des réels qui n’admettent
ni 1 ni 2 dans leur écriture en base 4. D’après le théorème

th:trans
2, on peut majorer

dimH(C3 ∩ C4) ≤ log 2

log 3
+

1

2
− 1 ' 0.1309...

mais il semble qu’on ne sache même pas si cette intersection est infinie !
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