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Chapitre 1

Equidistribution dans les
groupes compacts

Dans tout ce chapitre, on note G un groupe topologique compact. Etant
donnée une mesure de probabilité p borélienne sur GG, on considére une suite de
variables aléatoires (g;);en+ indépendantes, identiquement distribuées suivant la
loi i, et on s’intéresse & la marche aléatoire associée, définie par

{ zo=1 (1.1)

Yn>1, Tn = gnTh-1 = GnGn—-1---9J1-

Nous montrerons dans un premier temps que, sous certaines hypothéses natu-
relles sur p, la marche (z,) converge en loi vers la probabilité de Haar, unique
mesure de probabilité invariante par multiplication & gauche et & droite par
les éléments de G, puis nous tacherons de comprendre & quelle vitesse cette
convergence a lieu.

1.1 Une construction de la mesure de Haar

Nous ferons dans la suite deux hypothéses sur la probabilité p.

Définition 1.1. Une mesure borélienne p sur un groupe topologique G est dite
adaptée lorsque son support engendre un sous-groupe dense dans G. Elle est
dite apériodique lorsque son support n’est pas contenu dans une classe a gauche
d’un sous-groupe strict fermé et distingué.

Naturellement, nous dirons que la marche aléatoire définie en (1.1) ci-dessus
est adaptée, ou apériodique, si la mesure p est.

Exercice 1. Donner un exemple de mesure apériodique non adaptée, puis un
exemple de mesure adaptée mais non apériodique.

Exercice 2. Soit p une mesure adaptée sur un groupe G compact. Montrer que
le semi-groupe engendré par le support de p est dense dans G ; on dit que p est
irréductible. Cette propriété est-elle valable lorsque G n’est pas compact ?

Exercice 3. On dit qu'une mesure sur G est symétrique si elle est invariante
par Iapplication g — ¢g~!. Montrer que toute mesure symétrique adaptée sur
un groupe connexe est apériodique. Que peut-on dire si G n’est pas connexe ?
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Le but de cette partie est de démontrer le théoréme suivant, qui montre a la
fois 'existence et 'unicité de la mesure de Haar sur un groupe compact G, et
la convergence en loi des marches aléatoires adaptées apériodiques.

Théoréme 1.2 (Existence et unicité de la mesure de Haar). Soit G un groupe
compact. 1l existe une unique probabilité m sur G telle que pour toute probabilité
u adaptée et apériodique sur G, la marche aléatoire (x,) associée converge en
loi vers m. Cette mesure m est invariante & gauche et a droite par G.

Exercice 4. Soit G un groupe topologique compact. Vérifier que m est I'unique
probabilité borélienne sur G invariante a gauche.

Etant données deux parties A et B d’un groupe G, nous noterons
AB={x=ab; a€ A, b€ B}.

De méme, si S est une partie de G et n € N*, nous noterons S™ ’ensemble des
éléments de G qui peuvent s’écrire comme produit de n éléments de S :

St ={x=8182...8,; s € S}

Une partie .S d'un groupe topologique est dite topologiquement génératrice si le
sous-groupe engendré par S est dense dans G.

Proposition 1.3. Soit G un groupe topologique compact, et S une partie to-
pologiquement génératrice de G qui n’est pas incluse dans une classe & gauche
d’un sous-groupe strict fermé distingué. Pour tout ouvert non vide U C G, il
existe un entier ng tel que

Vn > no, S"U = G.

Démonstration. Fixons un élément s € S. La suite de parties (s~"5™),>1 est
croissante. Notons -
H= U s—nSn
n>1
et montrons que H = G.

Si xz,y € H, on veut voir que zy € H, i.e. que pour tout voisinage U de
Iidentité dans G, xyU rencontre s~™S™ pour un certain n. Pour cela, on choisit
un voisinage distingué symeétrique V de l'identité tel que V6 c U. Comme
x,y € H, pour tout n assez grand, z,y € s~"S™V. On peut alors choisir n de
sorte que s~ € V, ce qui donne z,y € VS™V = S"V?2, et par suite,

zy € STVESMVE = §PVE C sTENSIYE C TSP

Ainsi, H est un sous-semi-groupe compact de G, et donc un sous-groupe. De
plus, H est normalisé par s, et donc par sH. Mais S C sH, donc le groupe H
est normalisé par S, et comme S engendre un sous-groupe dense de G, H est
distingué dans G. Comme S C sH, notre hypothése sur S implique H = G.
Par conséquent, si U est un ouvert non vide, G = J,,~; s "S"U, et par
compacité de G, il existe ng tel que pour tout n > ng, G = s~ "S"U, ce qui
implique G = S™U. [

Exercice 5. Soit G un groupe compact, et U un voisinage de l'identité dans
G. Vérifier les points suivants, utilisés dans la démonstration ci-dessus.
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1. Tl existe un voisinage de l'identité distingué V inclus dans U.
2. Si s € G, il existe n arbitrairement grand tel que s™ € U.
3. Un sous-semi-groupe fermé d’un groupe compact est un groupe.

4. Donner un exemple d’un semi-groupe compact qui n’est pas un groupe.

Définition 1.4. Si y et v sont deux mesures boréliennes sur G, leur produit
de convolution p * v est I'image de la mesure produit pu ® v sur G x G par
Papplication (x,y) — zy. En d’autres termes, pour toute fonction ¢ € C(G),

/G B v)) = [ /G olapulde)u(dy)

n fois

Notons que pour n € N* | la puissance de convolution p*" = jp*- - %y
est la loi au temps n de la marche aléatoire (z,) associée a u, de sorte que
le théoréme 1.2 est équivalent au fait que pour toute mesure p apériodique
et adaptée sur un groupe compact G, la suite des puissances de convolution
(1*™)n>1 converge faiblement vers la mesure de probabilité m sur G.

Si u est une mesure borélienne sur G et f € C(G), nous noterons p * f et
f * u les convolutions de f par u & gauche et & droite, respectivement, définies
par

j fa) = /G flg Du(dg) et ¥ p(z) = /G f(zg)u(dg).

Notre démonstration du théoréme 1.2 s’inspire de la construction par Von Neu-
mann de la mesure de Haar sur les groupes compacts, mais nous utiliserons des
opérateurs de convolution sur C(G) plutdt que des opérateurs de moyennes de
translations.

Démonstration du théoréme 1.2. Soit pu une probabilité adaptée et apériodique
wsur G et
T,: CG) — C(G)
[ xS
lopérateur de convolution & gauche associé. Fixons aussi un élément f quel-
conque dans C(G).

Observation 1 : Toute valeur d’adhérence de (T} f) est constante.
Supposons qu’une sous-suite (7)/* f) converge uniformément vers ¢ € C(G).
Comme la suite (sup T " f) est décroissante, elle converge, et

sup ¢ = 713% sup T, f.

Par conséquent, pour tout r > 1, sup Ty = limg_ o0 SUp T[jk“’f > supy et
donc sup T}, = sup . Soit maintenant xo tel que

T (o) = /@(9’1930)#*’"(619) =sup T}

Comme sup T’ L = sup g, cette égalité implique que pour presque tout g au sens
de la mesure 1*", et donc pour tout g dans le support de p*", o(g~txg) = sup .
Mais d’aprés la proposition 1.3, le support de p*" converge vers G lorsque r tend

vers I'infini, et par continuité, ¢ est donc constante.
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Observation 2 : La suite (T}} f) n'admet qu’une seule valeur d’adhérence.
L’astuce consiste a étudier aussi un opérateur de convolution & droite. Soit v
une autre probabilité borélienne adaptée apériodique sur G, et T, : f — f x v
lopérateur de convolution a droite par v. Si c et ¢’ sont des valeurs d’adhérence
(constantes) des suites (77, f) et (T7 f), respectivement, alors ¢ = ¢’. En effet,
comme les opérateurs T}, et T,, sont de norme 1, commutent, et préservent les
constantes,

c T;”“T;”kf = IYL"’“TV""f —c.

Cet argument montre en outre que l'unique valeur d’adhérence de (7} f) ne
dépend pas de la probabilité adaptée et apériodique p, on la note m(f).

La suite (7}; f) est équicontinue et admet m(f) comme unique valeur d’adhé-
rence dans C(G), donc, d’apreés le théoréme d’Ascoli, elle converge uniformément
vers cette valeur d’adhérence :

Lm T} f = m(f).

D’aprés le théoréme de Riesz, la forme linéaire positive f — m(f) sur C(G)
correspond & une unique mesure de Radon. Bien sir, m(G) = limT;1 = 1
donc m est une mesure de probabilité sur G. Enfin, pour tout a € G, notant

(af)(z) = f(wa),
m(af) =m(Ts, f) =Um T} Ts, f =limTs, T} f = Ts,m(f) = m(f).

De méme, en utilisant les opérateurs T,fb on montre que pour tout b dans G,
m(fb) = m(f), si (fb)(x) = f(bx). Ainsi, la mesure m est bien invariante a
gauche et a droite par G. O

Exercice 6. Soit G un groupe compact et y une probabilité adaptée sur G,
mais non nécessairement apériodique. A Paide des méthodes utilisées dans la
démonstration ci-dessus, montrer que la suite (£ 37, yi*¥),,>1 converge faible-
ment vers m.

Exercice 7. Dans la démonstration ci-dessus, nous avons implicitement admis
I'existence d’une mesure adaptée apériodique sur G, ce qui n’est pas un résultat
évident a priori.

1. La cellularité! dun espace topologique X, notée c¢(X), est le cardinal
maximal d’une famille d’ouverts disjoints de X.

(a) Construire un espace X compact dont la cellularité est non dénom-
brable : ¢(X) > No.

(b) Si¢(X) > Ny, montrer que pour toute probabilité borélienne sur X,
il existe un ouvert U non vide tel que u(U) = 0.

(¢) En déduire que si G est un groupe compact, alors ¢(G) < Ng.

2. Montrer que si le groupe compact G est métrique, il existe une probabilité
adaptée apériodique sur G.

3. On considére maintenant un groupe compact non nécessairement sépa-
rable.

1. Nous remercions Pierre Petit pour ses explications sur cette notion et les liens avec
I’inexistence de mesures de probabilités & support total.
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(a) Pour f € C(G), onnote ay = inf{sup T}, f ; p probabilité borélienne sur G}.
Montrer que si (un) est une suite de probabilités telle que ay =
lim,, sup 7},,, f, alors toute valeur d’adhérence de (T}, f) est constante,
égale a o.

(b) Montrer qu’on a aussi a; = inf{sup 7}, f ; v probabilité borélienne sur G'}.
En déduire que 'application m : f — o définit une probabilité bo-
rélienne sur G invariante & droite et & gauche.

1.2 Analyse harmonique sur les groupes compacts

Nous rappelons dans cette partie les résultats fondamentaux de I’analyse har-
monique sur les groupes compacts. Admettant I’existence de la mesure de Haar,
cela nous donnera en particulier une deuxiéme démonstration de la convergence
en loi des marches aléatoires sur G.

Définition 1.5. Une représentation unitaire d’'un groupe topologique G est un
morphisme continu p : G — U(V), ou V est un espace de Hilbert, et U(V)
I’espace des opérateurs unitaires sur V', muni de la norme d’opérateur. La re-
présentation p est dite irréductible si {0} et V sont les seuls sous-espaces fermés
invariants de V.

Notations. Dans ce cours, un espace de Hilbert V' sera toujours muni d’'un
produit hermitien (-, -) linéaire par rapport a la seconde variable, et anti-linéaire
par rapport a la premicre. En d’autres termes, pour z,y € Vet A € C, (z, \y) =
Mz, y) mais (\z,y) = Mz,), out X désigne le conjugué de A dans C. Si A est un
endomorphisme de V', on note A* ’adjoint de A, i.e. 'unique élément de End V'
qui satisfait, pour tous z,y € V, (z, Ay) = (A*z, y).

Remarque. Pour insister sur le fait qu’on ne considére que les sous-espaces
fermés, on parle parfois de représentation topologiquement irréductible. Par
exemple, l'action de SLo(C) sur L?(C) est topologiquement irréductible (cf.
Knapp, Representation theory of semisimple Lie groups, page 33), mais n’est pas
algébriquement irréductible, puisque les fonctions C*° forment un sous-espace
invariant dense.

Exercice 8. Donner un exemple de représentation unitaire d’un groupe topolo-
gique qui ne se décompose pas en somme directe hilbertienne de représentations
irréductibles.

Définition 1.6. Si G est un groupe compact, nous noterons G le dual unitaire
de G, c’est-a-dire 'ensemble des représentations irréductibles unitaires de G, a
isomorphisme prés.

Exercice 9. Soit G = T = R/Z le tore de dimension 1. Montrer que (' s’identifie
aZ.

Comme dans le cas du tore T = R/Z, nous allons définir pour un groupe
compact G quelconque la série de Fourier d'une fonction f € L'(G). Cela nous
permettra d’analyser ensuite la structure de I'algébre L?(G) et de montrer des
analogues des théorémes classiques : Weierstrass trigonométrique, formule de
Plancherel, ...etc.
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Définition 1.7. Pour p € G, on définit le sous-espace de coefficients H, <
L*(G) par
M, = Vect{g — (u, p(g)v); u,v € V,}.

Notons que H, est stable par l'action réguliére de G & gauche et & droite
sur L?(G), puisque 'on peut écrire (u, p(h1)p(g)p(ha)v) = (W, p(g)v') avec v’ =
p(h1)*u et v' = p(h2)v. Le théoréme suivant est une généralisation du théoréme
de Weierstrass trigonométrique.

Théoréme 1.8 (Péter-Weyl). Soit G un groupe compact. L’espace L*(G) se
décompose en somme directe hilbertienne orthogonale

L*(G) = P H,.
pEC

C’est & partir de ce résultat que nous montrerons les propriétés importantes
de la transformée de Fourier sur les groupes compacts, dont nous rappelons
maintenant la définition.

Définition 1.9 (Transformée de Fourier). Pour f € LY(G) et p € G, on note

fp) = Jo f(9)p(g)* dg. La transformée de Fourier sur le groupe compact G est
I’application
LY(G) — Gapgé EndV,

fooe (F0)ee

Le produit de convolution sur L'(G), défini par

fi# Fale) = /G F1(9) folg ") dg,

permet de munir les espaces L'(G), L*(G) et C(G) de structures d’algébres.
On laisse au lecteur le soin de vérifier que la transformée de Fourier est un
morphisme d’algébres, i.e.

Vi, far fix fa(p) = Fi(p) Fa(p).

Théoréme 1.10 (Isomorphisme de Fourier). Si chaque EndV, est muni de la
norme de Hilbert Schmidt définie par ||A|| s = Tr(A*A)z, Uapplication

L
— ((dim V)2

fo (@mv)i )

induit une isométrie L?(G) ~ @D ,cc EndV, (somme hilbertienne).

Comme corollaires de ce théoréme, on obtient des généralisations des for-
mules bien connues de ’analyse de Fourier sur le cercle.

Formule de Parseval

Vi e LXG), IfI5 = Do (dim V) f(o)llis

peé

Formule de Plancherel

VfeC®(G),Vr e G, f(x)= Z(dimVp)Tr(f(p)p(x))

peé
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Le restant de cette partie est consacré a la démonstration de ces résultats
fondamentaux, qui nous permettront de retrouver — en admettant I'existence de
la mesure de Haar — I’équidistribution des marches aléatoires sur les groupes
compacts.

Lemme 1.11 (Lemme de Schur). Soit G un groupe topologique et V1, Vs deux
représentations unitaires irréductibles de G. Si A : Vi — Vo est un opérateur
linéaire tel que pour tout g € G, p2(g)A = Api(g), alors

1. Si Vi ot Vo (comme représentations de G), alors A = 0.

2. Si Vi = Vs, alors il existe A € C tel que A = A1d.

Démonstration. Les sous-espaces fermés ker A et im A sont stables par 1’action
de G, donc égaux a {0} ou a I’espace tout entier, par irréductibilité. Cela montre
la premiére partie.

Pour la deuxiéme partie, on remarque que A commute & tous les opérateurs
0(g), g € G, et comme p est unitaire, il en est de méme pour 'opérateur adjoint
A*. Par suite, les opérateurs auto-adjoints L = A+TA* et M = A;ZA* commutent
a l'action de G. D’aprés le théoréme spectral, tout projecteur spectral £ : V —
V associé & L ou M commute & ’action de G, et son noyau est donc un sous-
espace fermé stable par G, égal a {0} ou V, par irréductibilité. Par conséquent
L et M n’ont chacun qu’une unique valeur spectrale : pour certains z,y € C,
L=x, M =y, et donc A = M\Id, avec A = x + iy. O

Proposition 1.12. Soit G un groupe compact. Toute représentation unitaire
irréductible de G est de dimension finie.

Démonstration. Soit v un vecteur unitaire dans V. L’opérateur

AU:UH/@v,u)gvdg
G

commute a 'action de G donc A, = A\, Id d’aprés le lemme de Schur. De plus,
pour u unitaire, A, = (u, Ayu) = [,|(gv,u)|*dg = Ay, donc il existe A tel que
Vo, Ay = X. En outre, A = (v, A,v) = [,[{gv,v)|*dg > 0.

Soit uq,...,u, une famille orthonormée dans V. Pour chaque k,

/|<gu1,uk>|2dg:A
G

et donc
n
n\ = Z/ |(guy,ux)|* dg
k=1"C
n
— [ Yltgus i dg
G k=1
< [NgmlPag = [ JufPag =1
G G
Cela montre que n < %, et donc que V est de dimension finie. O

Exercice 10. Montrer que ’orbite d’un vecteur sous ’action d’un groupe com-
pact peut engendrer un espace de dimension infinie.
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Dans la suite, le groupe compact G est toujours muni de la probabilité de
Haar, et l'espace L?(G) du produit scalaire associé.

Proposition 1.13 (Orthogonalité des coeflicients). Soit G un groupe compact,
et p1 : G = GL(V1) et pa : G — GL(Va) deux représentations irréductibles de
G. Pour uy,v1 € V1 et ug,vp € Vs,

0 st p1 % p2

IU17U1,U27'02 = /G<u1,p(g)v1><u2,p(g)vz>dg = { <u1,(11112r31(‘12,v2) si p1 = po.

Démonstration. Pour u dans un espace de Hilbert V', on note v* la forme linéaire
v = (u,v). Cela permet de calculer les produits hermitiens avec la notation
matricielle (u,v) = u*v. Ensuite, calculons,

/<u17p1(9)”1>mdgz/<U1,Pl(g)vl><p2(9)v2’u2>dg
G e,
:/ ui p1(9)v1v3p2(g) “uzdyg
e,

=u] </G m(g)vwépz(g)‘ldg) Uy

A

L’opérateur A € Hom(Vy, Va) vérifie les hypothéses du lemme 1.11, donc

A{O Sip17ép2

d?;;‘?/l Id sip1 = po.

Cela montre déja le résultat si p1 % pa, et si p1 = p2, comme Tr(viv3) = (v, v2),
on trouve bien

Trows  (us, U2>m

dimV; dim V3

Tuy vy g on = <U1> u2>
O

Exercice 11. Si V est un espace de Hilbert, on définit un produit hermitien
sur EndV par (A, B) = Tr A*B.
1. Montrer que H, = {g + (A4,p(g)) ; A € EndV,}.

2. Montrer que sous les hypothéses de la proposition ci-dessus, pour tous
A; € EndV; et Ay € End Vs,

S 0 Sipr o p

IA17A2 = <A17p(g)>(A2,p(g)>dg = (A1,A2) : ' _ ’
G —_—— S1 pl = p2
dim V; :

Démonstration du théoréeme de Péter-Weyl. Par orthogonalité des coefficients,
les sous-espaces H, sont bien deux & deux orthogonaux. Reste & voir qu’ils
engendrent un sous-espace dense. Pour cela, on remarque que H = @ pEG’H,, est
une algebre. Cela découle de la formule

(u1, p1(g)v1){uz, p2(g)ve) = (u1 ® uz, (p1 @ p2)(g)(v1 ® v2))
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et du fait que p; ® p2 se décompose en somme directe de représentations irré-
ductibles, car G est compact. Si p : G — GL(V) est une représentation de G,
la représentation duale p* : G — GL(V*) est définie par p*(g)f = f o p(g)~*
pour tout f € V*. Cette représentation duale montre que H est aussi stable par
conjugaison complexe, et d’aprés le théoréme de Stone-Weierstrass, H est dense
dans C(Q) si H sépare les points, ce qui revient a dire que si p(g) = 1 pour tout
pE G, alors g = 1. Cela est clair : si p(g) = 1 pour tout g € G, alors, comme
L?(G) se décompose en somme d’irréductibles, g agit trivialement sur L?(G),
donc g = 1. (Sinon, g - 1y # 1y dés que U est un voisinage compact de 1 ne
contenant pas g.) O

Exercice 12. On propose une autre démonstration de la densité de H dans
L?(@G), qui n’utilise pas le théoréme de Stone-Weierstrass, mais plutot la convo-
lution par des unités approchées.

1. Soit ¢ € C(G) symétrique a valeurs réelles. Montrer que Popérateur T :
f = f * ¢ est un opérateur compact auto-adjoint sur L?(G).

2. En déduire que ses espaces propres pour les valeurs propres non nulles
sont de dimension finie, et que

L*(G) =kerT ® @ (ker T — \,).

3. En utilisant le fait que T' commute a 'action de G réguliére a gauche,
montrer que les espaces propres sont stables par ’action réguliére & gauche
de G, puis que imT = @, (kerT — A,,) est inclus dans le sous-espace H
des coefficients de représentations de dimension finie.

4. Si f est un élément orthogonal & H, montrer que pour tout ¢, f * ¢ est
orthogonal & f, et conclure.

Maintenant que nous avons montré le théoréme de Péter-Weyl, la formule
d’inversion de Fourier découle d’un simple calcul d’intégrale.

Démonstration de lisomorphisme de Fourier. Fixons p € G. Pour f e H,,
choisissons A € EndV, tel que f(g) = (4,p(g)). Par orthogonalité des ca-
racteres,

Fo) = [ (. po)o(0)d0 = g

tandis que

. 2 gy IS
1@ = 1A pla?dg = Sl

et donc f +— (dimV),) 2 f(p) est une isométrie bijective de H, sur End V,,. Comme
L?(G) est égal & la somme hilbertienne des H,, cela démontre I'isomorphisme
annonceé. O

Exercice 13. On considére 'action de G' x G sur l'espace L?(G) donnée par
(g h) - fl(x) = (g~ zh).

Montrer que les composantes irréductibles de cette représentation sont les sous-
espaces H, du théoréme de Péter-Weyl.
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Admettant 'existence de la mesure de Haar, ’analyse harmonique permet
aussi de montrer la convergence des marches aléatoires apériodiques adaptées.

Convergence des marches aléatoires, deuriéme démonstration. Soit p une pro-
babilité adaptée apériodique sur G. On veut voir que p*™ converge faiblement
vers la mesure de Haar sur G.
Rappelons que I'opérateur de convolution a droite 7}, associé & p est défini
par
T.f = f*p.
Montrons tout d’abord que les opérateurs T),-» = T} convergent simplement

vers 0 sur L2(G). Pour cela, notons, pour p € G,

fi(p) = /G p*(g)p(dg).

L’espace L3(G) se décompose en somme de représentations irréductibles non
triviales, chacune de dimension finie et stable par T),. Comme ||T),[o,, < 1 il
suffit de vérifier que T}, n’a pas de valeur propre de module 1. On raisonne par
contraposée en supposant que T, f = Af avec |A| = 1. Cela implique fixp*f = f
et, par stricte convexité de L2(G), f est invariante par S~1S, ot S = Supp p.
Mais alors S™1S est inclus dans le sous-groupe fermé Stabg f, et u n’est pas
adaptée apériodique.

Soit maintenant f € C(G). La suite de fonctions (7); f),>1 est équicontinue
et converge vers [, f dans L?(G), donc elle converge vers [, f dans C(G). En

particulier,
TN = [ Han™ o) s [

et (u*™) converge faiblement vers la probabilité de Haar sur G. O

1.3 La propriété du trou spectral

Nous voulons maintenant étudier la vitesse de convergence de la suite (4*")n>1
vers la mesure de Haar. Cela se fera par I'¢tude de la suite (7)}),>1, out T, :
f = wux* f est opérateur de convolution associé a u. Notons que ’analyse des
marches aléatoires a ’aide de la théorie de Fourier nous a permis de montrer la
proposition suivante.

Proposition 1.14. Soit G un groupe compact et p une probabilité adaptée et
apériodique sur G. La suite d’opérateurs (Tﬁ)nzl converge simplement vers 0
sur Uespace L§(G) = {f € L*(G) | [, fdm =0}.

Exercice 14. Démontrer cette proposition directement & partir du théoréme 1.2.

Définition 1.15 (Propriété du trou spectral). Nous dirons que la mesure de
probabilité 4 sur G admet un trou spectral en 1 dans L?(G) si la suite (T )n>1
converge en norme vers 0 dans L3(G).

Rappelons que si A est une algébre de Banach et T € A, le spectre de T'
dans A est ’ensemble

Specy(T) ={A € C | T — X non inversible dans A}
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et le rayon spectral de T'
RSA(T) = max{|A| ; A € Spec,(T)}.

Proposition 1.16. Soit A une algébre de Banach et T € A. Les assertions
suivantes sont équivalentes.

1. La suite (T™),>1 converge en norme vers 0 dans A.
2. RSA(T) < 1.

Démonstration. L’équivalence découle immédiatement de la formule pour le

rayon spectral )
RSA(T) = inf | 7" ¥,

dont la démonstration est laissée en exercice. O

Exercice 15. Soit A une algébre de Banach et T' € A. Montrer que RS4(T) =
infus |75

Si 1 admet un trou spectral dans L?(G), cette proposition montre que la
valeur propre 1 est isolée dans Spec(7),), ce qui justifie la terminologie utilisée.
Plus généralement, si 1 est une mesure borélienne finie sur G, on pose

fi(p) = /G p(g)u(dg)-

Proposition 1.17. Une probabilité borélienne u sur G admet un trou spectral si,
et seulement si, il existe une constante € > 0 telle que pour toute représentation
p € G non triviale, RS(ji(p)) <1 —e.

Démonstration. L’isomorphisme de Fourier montre que L3(G) se décompose en
somme de représentations irréductibles non triviales. Si V =~ V * est I'une de ces
composantes irréductibles, I'opérateur T}, préserve V' et agit sur V comme son
coefficient de Fourier fi(p). Par suite, SpecT), = J 4 Spec fi(p) donc RS(T),) =

peEG
sup, s RS(fi(p)) et le résultat est clair. O

peG

Exercice 16. Soit ;1 une mesure apériodique adaptée sur G. Montrer que si
1 est absolument continue par rapport a la mesure de Haar, alors ;1 admet un
trou spectral.

Exercice 17. Soit G = R/Z et p = %(6(1 +0_a), avec a € Q. Montrer que p
n’admet pas de trou spectral.
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Chapitre 2

Mesures 1nvariantes

Nous avons montré au chapitre précédent que sur un groupe compact G, il
existe une unique probabilité borélienne m invariante. Si B(G) désigne la tribu
borélienne de G, cette mesure m est I'unique application m : B(G) — RT qui
vérifie les conditions suivantes :

1. (normalisation) m(G) =1;
2. (additivité) V(A )nen disjoints, m({J,, 4n) = >, m(4,);
3. (invariance) Vg € G, YA, m(gA) = m(A).

Naturellement, on peut compléter la tribu B(G) en lui adjoignant les en-
sembles négligeables pour m, et obtenir ainsi la tribu de Lebesgue L£(G), a
laquelle m admet une unique extension. Mais dés que G est infini, il n’est pas
possible de prolonger m & toutes les parties de G.

Exercice 18. Si G est infini, montrer qu’on ne peut pas prolonger m a P(G).

Pour pouvoir étendre le domaine de définition de la mesure de Haar, nous
affaiblissons ’hypothése d’additivité ci-dessus en la supposant seulement valable
pour les familles finies de parties disjointes. On cherche donc & comprendre les
applications A : £(G) — R qui vérifient

1. (normalisation) \(G) =1;

2. (additivité) VA, B disjoints, m(AU B) =m(A4) +m(B);

3. (invariance) Vg € G, YA, m(gA) = m(A).

Nous nous intéresserons dans ce chapitre a deux problémes étroitement reliés,

posés par Hausdorff [10] et Ruziewicz [1] au début du XXéme siécle :

1. (Hausdorff) Peut-on prolonger la mesure de Haar m a toutes les parties
de G, tout en préservant les trois propriétés ci-dessus ?

2. (Ruziewicz) La mesure de Haar est-elle I'unique application £(G) — R™
vérifiant les trois propriétés ci-dessus ?

Dans le cas particulier ou G = SO, (R), ces problémes on joué un rdle crucial
dans la compréhension des sous-groupes de type fini du groupe des rotations,
et ont mené en particulier a la conjecture du trou spectral que nous étudierons
dans les chapitres suivants.

17
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Remarque. En réalité, nous avons construit la mesure de Haar m comme une
forme linéaire positive invariante sur C(G), puis appliqué le théoréme de repré-
sentation de Riesz pour justifier que cela donne lieu & une mesure borélienne sur
la tribu des boréliens (puis la tribu complétée) de G. La théorie de 'intégration
permet de prolonger naturellement m en une forme linéaire définie sur tout l’es-
pace L*°(G). Comme il apparaitra ci-dessous, le probléme de Hausdorff revient
est celui de l'existence d’un prolongement de la forme linéaire m a ’espace B(G)
des fonctions bornées sur G, tandis que le probléme de Ruziewicz est celui de
l'unicité de m, vue comme forme linéaire sur L>°(G).

2.1 Paradoxe de Banach-Tarski

Dans ce paragraphe, nous cherchons a répondre a la premiére des deux ques-
tions posées ci-dessus. Soit X un ensemble quelconque, et B(X) ’ensemble des
fonctions bornées a valeurs réelles sur X.

Définition 2.1. Une moyenne sur B(X) est une forme linéaire m’ : B(X) — R
telle que

(i) (positivité) m/(f) > 0si f > 0;
(ii) (normalisation) m’(1x) = 1.

Si G est un groupe qui agit sur X, nous dirons que m’ est invariante sous
laction de G si Vg € G, Vf € B(X), m/(gf) = m/(f), ou G agit sur B(X)

suivant Paction réguliére, i.e. (gf)(x) = f(g~'x).
Exercice 19. Montrer qu’'une forme linéaire 6 positive sur B(X), i.e. vérifiant
O(f) > 0si f >0, est nécessairement continue.

Lemme 2.2. Soit G un groupe agissant sur un espace X . S’il existe une moyenne
invariante sur B(X), alors Uapplication m : A — m/(14) définie sur P(X) est
& valeurs dans [0,1] et a les propriétés suivantes :

1. (normalisation) m(X)=1;

2. (additivité) VA, B disjoints, m(AU B) =m(A)+m(B);

3. (invariance) Vg € G, YA, m(gA) = m(A).
Réciproquement, toute application qui vérifie ces conditions se prolonge unique-
ment en une moyenne invariante sur B(X).

Démonstration. Par positivité de la forme linéaire m’, pour tout A C X, m(A) =
m/(La) > 0, et de plus, comme 1x —14 >0,1—m(4) =m/(Ix — 1) >0,
donc m(A) € [0,1]. Les propriétés de normalisation, additivité et d’invariance
de m découlent immédiatement de celles de m’. Réciproquement, si m est une
application sur P(X) vérifiant les propriétés du lemme, elle se prolonge uni-
quement par linéarité a ’espace vectoriel des fonctions en escalier sur X, puis,
par continuité et densité des fonctions en escalier, & B(X) tout entier. Bien siir,
Vextension m’ vérifie m’(1x) = m(X) = 1, et 'on vérifie sans peine que cette
extension est positive et invariante. O]

A cause de ce lemme, nous identifierons dans la suite une moyenne sur B(X)
a lapplication qu’elle induit sur P(X), et parlerons donc souvent de « moyenne
sur P(X) ». Le probléme de Hausdorff énoncé ci-dessus est équivalent a celui de
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Pexistence d’une moyenne invariante sur B(G). Pour déterminer si un groupe G
admet une moyenne invariante, nous utiliserons les concepts d’ensembles équi-
décomposables et de décomposition paradozxale.

Définition 2.3 (Ensembles équi-décomposables). Deux parties A et B de X
sont dites équi-décomposables sous 'action de GG §’il existe deux partitions finies
A=1U7,A; et B=U!,DB; et des éléments g;, i = 1,...,n tels que pour chaque
i, B; = ¢g;A;. Si A et B sont équi-décomposables, on note A ~ B. Si A est
équi-décomposable & une partie de B, on note A < B.

Une réalisation de I’équivalence A ~ B est une bijection h : A — B telle que
pour certaines partitions A = U ;A; et B = U, B, et certains éléments g;,
i=1,...,n, on ait B; = g;A; et h(a;) = g;a; pour tout a; € A;. Alors, si S est
une partie quelconque de A, S ~ h(S).

Proposition 2.4. Si A< B et BS A, alors A~ B.

Démonstration. Soient f : A — B C Bet g: B — A; C A des réalisations
des inégalités A < B et B < A. Définissons par récurrence Cy = A\ A; et
Cnt1 =go f(Cy) et posons C' = U2 ,C,,.

Ona g t(A\C) =B\ f(C). En effet, si z = g~'y, avec y € A\ C, alors
z & f(C) sans quoi gr = gf(c) € C, car gf(C) C C. Et réciproquement, si
y € B\ f(C), on peut écrire y = g~'x, avec x € A;; alors x ¢ C, sans quoi
x = (9f)"a, a € A\ A;, mais comme & € Ay, on doit avoir n > 1, et donc
y=g 'z = f(gf)" ta e f(C).

Par conséquent, A\ C ~ B\ f(C), et comme C ~ f(C), on trouve bien
A~ B. O

Exercice 20. Faire un dessin qui explique la démonstration ci-dessus.

Corollaire 2.5. Les assertions suivantes sont équivalentes :
(i) 1l existe deux parties disjointes A et B dans X telles que A ~ X ~ B.
(i) 1l existe une partition X = AU B telle que A ~ X ~ B.

Démonstration. 11 suffit de veérifier que (i) implique (ii). Cela découle de la
proposition, puisque X \ A< X et X ~ B S X\ A O

Définition 2.6 (Décomposition paradoxale). Une décomposition paradozale de
X est une partition X = AL B telle que A ~ X ~ B.

Exercice 21. Montrer que si X admet une décomposition paradoxale, il n’existe
pas de moyenne invariante par G sur B(X).

Exemple. Soit F' = (a,b) un groupe libre engendré par deux générateurs. On
note A* (resp. A7) 'ensemble des mots réduits commengant par a (resp. a~ 1),
et on définit de méme Bt et B~. Alors, F = AT UA-UBTUB™ U{l} et

F=A"UaA”™ =BT UbB~

d'ott F ~ ATUA™ et F ~ BTUB™. Avec le corollaire 2.5 ci-dessus, cela montre
que F' admet une décomposition paradoxale.

Proposition 2.7. Tout groupe G contenant un sous-groupe libre a deux généra-
teurs admet une décomposition paradozale. En particulier, un tel groupe n’admet
pas de moyenne invariante sur B(G).
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Démonstration. Soit F' un sous-groupe libre de G, et ' = A U B une décom-
position paradoxale de F. Soit (z,), un ensemble de représentants des classes
a gauche de G modulo F. Notons G4 = U, Az, et G = UyBx,. La partition
G = G4 UGp est une décomposition paradoxale de G. O

Lemme 2.8. Sin > 2, le groupe SO,+1(R) contient un sous-groupe libre a
deux générateurs.

Démonstration. Montrons que les deux éléments

1 —2v2 0 L (30 0
g==12v2 1 0] e h=-|0 1 -2V2
3 3
0 0o 3 0 2v2 1
engendrent un sous-groupe libre de SO3(R). Notons que les matrices 3g, 3¢,
3h et 3h~! sont & coefficients dans 'anneau Z[v/2], et que par conséquent, pour
tout mot w de longueur k en g et h, il existe des entiers a, b, c € Z tels que

1 a
wl|0] =3"%[b/2
0 c
De plus, si w est irréductible de longueur & > 1 et se termine par g ou ¢!,
alors 3 { b. Plus précisément, on montre par récurrence sur k = f(w) que si

w = uw'gt!, avec u € {gT1, h*!}, alors

3tbet3|a siu=ht!
3tbet3|c siu=g*!

Les détails de ce calcul sont laissés au lecteur. Cela implique que le groupe
engendré par g et h est libre : si w = w'g™', lobservation ci-dessus montre

1 1

que w (0] # [ 0], et donc w # 1; et dans le cas général, on peut toujours
0 0

conjuguer w & un mot qui se termine par g*!. [

Remarque. Plus généralement, d’aprés I'alternative de Tits, tout sous-groupe
de GL4(R) dont I’'adhérence de Zariski n’est pas virtuellement résoluble contient
un groupe libre sur deux générateurs. La démonstration est 14 encore basée sur
un argument de ping-pong.

Théoréme 2.9 (Hausdorft). Sin > 2, il n’existe pas de moyenne invariante
sur l’ensemble des parties de SOp41(R).

Démonstration. Cela découle immédiatement de 'existence d’un sous-groupe
libre & deux générateurs dans SO,,1+1(R) et de la proposition 2.7. O

Exercice 22. Le but de cet exercice est de montrer qu’il n’existe pas de moyenne
invariante par rotation sur ’ensemble des parties de S?, un résultat da & Haus-
dorff.

1. Construire un sous-groupe libre ' C SO3(R) et une partie dénombrable
D C $? telle que F agisse librement sur S? \ D.
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2. En déduire que S? \ D admet une décomposition paradoxale.

3. Montrer que pour toute partie dénombrable D’ C S?, les ensembles S? et
S?\ D’ sont équi-décomposables.

4. Conclure.

Théoréme 2.10 (Tarski). Un groupe G admet une moyenne invariante sur
P(G) si, et seulement si, il n’admet pas de décomposition paradozale.

Remarque. Le théoréme de Tarski est valable plus généralement dans le cadre
d’une action de G sur un espace X : il existe une moyenne invariante sur P(X)
si et seulement si X n’admet pas de décomposition paradoxale.

Pour montrer le théoréme de Tarski, nous montrerons les caractérisations
équivalentes suivantes des groupes G qui admettent une moyenne invariante sur
B(G). De tels groupes sont dits moyennables en tant que groupes discrets.

Théoréme 2.11. Soit G un groupe discret. Les conditions suivantes sont équi-
valentes :

(i) (Folner) Pour tout € > 0 et tout K C G fini, il existe U C G fini tel que

pour tout © € K, ‘U‘AUalcUl <e.

(ii) (moyennabilité) Il existe une moyenne invariante sur B(Q).

(iti) (Tarski) Il n’existe pas de décomposition paradozale de G.

() (application doublante) Quel que soit K C G fini, il n’existe pas d’applica-
tion v : G — G vérifiant, pour tout g € G, |1 ({g})| > 2 et(g)g~! € K.

Démonstration. (i) = (ii) Soit H le sous-espace de B(G) engendré par les fonc-
tions de la forme g - f — f, ou g € G et f € B(G). Montrons que pour tout
h € H, supyeq h(g) > 0. Pour cela, on écrit h = 7" | kifi — fi, et on note
K = {k;}1<i<n. Soit € > 0 arbitraire et U I’ensemble donné par la condition (i).
Alors,

1
sup h > Il Z h(w)

uelU

- ﬁ 2D filk ) = fi(w)

1=1uelU

1 n
2 — 57 D Milloe - IRUAU
i=1

\%

—ne lrgiagnllfvz\loo-

Comme ¢ > 0 peut étre pris arbitrairement petit, cela montre ce qu’on veut.
Pour construire la moyenne invariante, on définit d’abord une forme linéaire
m sur H & Rlg par m(h + Alg) = A. D’aprés le théoréme de Hahn-Banach,
on peut prolonger m a B(G) tout entier de sorte que pour tout f € B(G),
m(f) < sup f. L’application m est une forme linéaire positive invariante sur
B(G) ; posant m(A) = m(14), on obtient la moyenne invariante souhaitée sur
B(G).

(#4) = (4i7) Soit m une moyenne invariante sur B(G). Si G = AU B est une
partition de G, alors m(G) =1 = m(A) + m(B), donc m(A) # 1 ou m(B) # 1,
et A et B ne sauraient étre tous deux équi-décomposables a G.
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(#i1) = (iv) On raisonne par contraposée. Soit K C G un ensemble fini et v :

G — G une application doublante telle que pour tout g, ¥(g)g~! € K. Pour
chaque g € G, choisissons a, tel que ¥(ay) = g, et posons

A={aglgec et B=G\A,
de sorte que G s’écrit comme réunion disjointe G = AL B. Pour k € K, posons

Ay ={gecAlp(gg ' =k} et Br={geB|v(g)g ' =k}

Comme 1 envoie A surjectivement sur G, on doit avoir G = UgecgkAyg, et de
méme, G = UgegkBy. Donc G = A U B est une décomposition paradoxale.
(iv) = (i) On raisonne par contraposée. Si G ne satisfait pas la condition de
Fglner, il existe € > 0 et une partie finie K C G telle que pour toute partie finie
U non vide, |KU \ U| > ¢|U|. On peut bien str supposer que K est symétrique
et contient I’élément neutre. Et méme, quitte a remplacer K par K", avec n > %
on peut supposer que pour tout U fini non vide, |KU \ U| > 2|U].

On considére alors le graphe biparti G U G, ou deux éléments g et h sont
reliés s’il existe k € K tel que g = kh. Pour tout U C G,

H{heG|3geU:g h} >2Ul.

D’aprés le lemme des mariages rappelé ci-dessous, il existe deux injections
01,02 : G — G telles que :

— Vg € G, ¢1(9) <> g et d2(g) <> g;

— Vg,9' € G, ¢1(g) # ¢2(9').
On définit une application v : G — G en posant

[ g slexiste g € G tel que h € {¢1(g), P2(9)}
v(h) = { h  sinon. 1 2

Tout élément g € G admet au moins deux antécédents par ), a savoir ¢1(g)
et ¢2(g), et on a toujours ¥(g)g~! € K. Donc 9 est I'application doublante
recherchée. O

Lemme 2.12 (Lemme des mariages de Hall). Soit X UY un graphe biparti de
valence bornée.

1. VU C X, {beY |acU: a<+ b} >|U|, alors il existe p: X - Y
injective telle que Va, a < ¢(a) ;

2.5VUCX, {beY |JaecU: a<+ by >2|U| alors il existe ¢1, P :
X =Y injectives telles que Va, ¢1(a) <> a et p2(a) <> a etVa,d’, ¢1(a) #

p2(a’).

Démonstration. Commencons par montrer le premier point. Etant donnée une
partie U C X, on note AdjU l’ensemble des voisins de U. Supposons d’abord
|X| < 400. On raisonne par récurrence sur |X|. Si | X| =1, alors X = {z} et
|Adjx| > 1, donc le résultat est clair. Supposons donc |X| > 2. On distingue
deux cas.

Premier cas : X' C X : 0 # X' # X et |Adj X'| = | X'].

11 suffit alors de construire ¢ sur X’ a valeurs dans Adj X', puis sur X \ X’ a
valeurs dans Adj X \ Adj X'.
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Second cas : VX' C X, |Adj X'| > | X'| si X' # 0.
On choisit € X quelconque puis y € Y tel que y <> z. Soit X' = X \ {z} et
Y=Y\ {y}. Pour tout U C X',

|Adjy Ul > |Adjy U| -1 > |U|

et on peut donc appliquer I’hypothése de récurrence a X’ et Y’/ pour conclure.

Supposons maintenant X dénombrable. On écrit alors X = U2, X;, avec
Vi, |Xi| < 4ocet X3 C Xy C ..., et on note ¥; = Adj X;. Tous ces ensembles
sont finis car le graphe X UY est de valence bornée. La premiére partie de la
démonstration s’applique donc aux sous-graphes X; L1'Y;. Comme, pour chaque
1, il n’y a qu’un nombre fini de possibilités pour ¢;, on peut supposer, quitte
A extraire, que les ¢; sont compatibles avec l'inclusion, de sorte que la limite
inductive ¢ = injlim ¢; est bien définie, injective, et vérifie Vz, ¢(z) < x.

Dans le cas général, on se raméne au cas dénombrable en construisant ¢
sur chaque composante connexe du graphe. Une telle composante connexe est
dénombrable car le graphe est de valence bornée.

Enfin, pour montrer la seconde assertion du lemme, il suffit d’appliquer le
premier point au graphe biparti (X U X)UY. O

Exercice 23 (Rotations en dimension 2). Montrer que G = SO3(R) admet une
moyenne invariante sur B(G). (Indication : Utiliser le critére de Fglner.)

Pour la suite, nous aurons aussi besoin de généraliser un peu la notion d’en-
sembles équi-décomposables. Etant donnés deux entiers m,n > 1 et deux parties
A, B C X, nous dirons que mA et nB sont équi-décomposables si ’on peut dé-
composer m copies de A pour former avec les parties obtenues n copies de B
grace a 'action de G. Nous écrirons alors mA ~ nB. On laisse le soin au lecteur
d’adapter la démonstration de la proposition 2.4 pour montrer que mA < nB
et nB < mA implique mA ~ nB. La régle de simplification suivante est un peu
plus subtile.

Proposition 2.13 (Régle de simplification). Si nA ~ nB pour un certain
n>1, alors A ~ B.

Démonstration. L’équivalence A ~ B signifie qu’il existe un ensemble fini F’
d’éléments de G et une partition A = Urecp Ay telle que B s’écrit comme réunion
disjointe B = Uyecp fAyr. On peut voir cela comme un graphe biparti AU B, ou
chaque point ¢ € A est relié & fa, ou f € F' est choisi de sorte que a € Ay. De la
méme maniére, I’équivalence nA ~ nB permet de construire un graphe biparti
AU B de valence n. En effet, pour chacune des n partitions P®, i =1,....n

de A, un point a appartient & un unique atome Péi)

, envoyé sur une partie
giPél) C B. Le point a est relié a chaque g;a, i = 1,...,n. D’aprés le théoréme
de Koénig rappelé ci-dessous, il existe une application bijective ¢ : A — B telle

que pour tout a € A, a est relié & ¢(a). Cela montre que A ~ B. O

Théoréme 2.14 (Kénig). Soit A U B un graphe biparti réqulier de valence
k € N*. Il existe un couplage bijectif de A et B.

Démonstration. On commence par le cas ou le graphe est fini. Soit X C A et
Y = Adj X. Le graphe est régulier, donc le nombre d’arétes issues de X est égal
a k|X|, tandis que le nombre d’arétes issues de Y est égal a k|Y|. Comme ces
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ensembles coincident — ils sont simplement constitués des arétes entre X et Y
— cela montre que | X| = |Y]. D’apreés le lemme des mariages de Hall, il existe
un couplage de A et B, qui est bijectif car |A| = |B|.

Dans le cas général, on remarque que toute composante connexe du graphe
est dénombrable, puisque la valence est finie. Il suffit donc de montrer le résultat
lorsque A et B sont dénombrables. Notons (e, )nen la suite des arétes de AL B.
Un couplage M de A et B peut étre codé par une suite s = (Sp,)nen, Ol

s 1 sie,eM
"7 1 0 sinon.

Le couplage est bijectif si pour chaque a € A (resp. b € B), il existe un unique
n € N tel que s, = 1 et a (resp. b) est une extrémité de e,. Nous allons
construire la suite (s,) par induction. Une suite finie s = (s,)o<n<n est dite
admissible 8’1l existe un graphe biparti régulier A’ LI B’ fini contenant toutes
les extrémités des arétes e,, n = 0,..., N et admettant un couplage M’ tel
que pour n = 0,..., N, laréte e, appartient & M’ si et seulement si s, = 1.
Pour tout N, il existe une suite finie admissible de longueur N. Cela permet de
définir par récurrence la suite (s,) recherchée : on choisit pour chaque N une
suite admissible (s,,)o<n<n qui prolonge les termes n < N déja choisis et qui
admet une infinité de prolongements. O

Remarque. Dans le théoréme de Kénig, comme dans la démonstration de la
régle de simplification, le graphe peut avoir des arétes multiples.

Théoréme 2.15 (Paradoxe de Banach-Tarski). Soit G un groupe compact. On
suppose que G n’est pas moyennable en tant que groupe discret. Alors G est
équi-décomposable o toute partie d’intérieur non vide U C G.

Démonstration. Comme G est compact et U d’intérieur non vide, G peut étre
recouvert par un nombre fini de translatés de U. Cela montre déja que pour
un certain n, G < nU. Mais G n’est pas moyennable comme groupe discret,
et admet donc une décomposition paradoxale G ~ 2G, qui implique G ~ nG.
Ainsi, nG < nU. Réciproquement, on a bien siir U < G, et donc nU < nG, puis
nU ~ nG. D’aprés la proposition 2.13, U ~ G, ce qu’il fallait démontrer. O

2.2 Probléme de Ruziewicz

Dans le paragraphe précédent, le groupe G était vu comme un groupe discret,
et nous avons ainsi donné un critére pour qu’il existe une moyenne invariante
définie sur I'espace B(G) des fonctions bornées sur G. Dorénavant, G sera muni
d’une topologie localement compacte quelconque. Nous avons vu au chapitre 1
qu’il existe une unique mesure de Radon m sur G, appelée mesure de Haar,
ce qui permet de définir espace L>°(G) = L*®(G, m) constitué des classes
d’équivalence modulo m de fonctions mesurables bornées.

Définition 2.16. Une moyenne sur L°°(G) est une forme linéaire A : L (G) —
R telle que

(i) (positivité) A(f) > 0si f > 0;

(ii) (normalisation) A(1g) = 1.
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Nous dirons que \ est invariante si Vg € G, Vf € L>®(X), Agf) = A(f).

Remarque. Si G est muni de la topologie discréte, alors L>°(G) coincide avec
I'espace B(G) de toutes les fonctions bornées sur G. C’est ce cas que nous avons
étudié au paragraphe précédent. En général, un groupe topologique G est dit
moyennable s'il existe une moyenne invariante sur L*>(G).

Exercice 24. Soit £(G) la tribu complétée pour la mesure de Haar. Montrer
que la donnée d’une moyenne sur L>°(G) est équivalente a celle d’une application
A L(G) — [0,1] telle que

1. (normalisation) \(G) =1;
2. (absolue continuité) VA, m(A) =0 = A(4) =0;
3. (additivité) VA, B disjoints, A(AU B) = A(A) + A\(B).

Vérifier que l'invariance est compatible avec cette équivalence.

Le probléme de Ruziewicz concerne 'unicité de la mesure de Haar vue comme
moyenne invariante sur L>°(G). Dans le cas du groupe des rotations, nous y
observerons la méme distinction que pour le probléeme de Hausdorff : si n > 2
la mesure de Haar est 'unique moyenne invariante par rotation sur les parties
mesurables de S”, tandis que sur S', il existe de nombreuses autres moyennes
invariantes, comme le montre ’exercice suivant.

Exercice 25. Le but de cet exercice est de démontrer que si G est un groupe
compact métrique moyennable en tant que groupe discret, alors la mesure de
Haar n’est pas 'unique moyenne invariante sur L>(G).

1. Soit A un Gy dense de G. Reprendre la démonstration de (i) = (i¢) dans
le théoréme 2.11, et montrer qu’on peut prolonger la forme linéaire sur
H @& Rlg @ R14 définie par AM(h+ alg 4+ 814) = a + 8 en une moyenne
invariante. (Indication : vérifier que pour tout h € H, sup,c 4 h(z) > 0).

2. Justifier qu’il existe un G5 dense A dans G tel que m(A) = 0, et conclure.

Exercice 26. Pour montrer que la réciproque & ’énoncé de 1’exercice précédent
est fausse, construire un groupe compact G non moyennable en tant que groupe
discret et sur lequel la mesure de Haar n’est pas I'unique moyenne invariante
sur L>=(G).

Les exercices ci-dessus montrent que la non moyennabilité est une condition
nécessaire mais non suffisante pour que la mesure de Haar soit unique comme
moyenne sur L>®(G). C’est la propriété du trou spectral qui nous fournira un
critére suffisant, grace au théoréme suivant.

Théoréme 2.17. Soit G un groupe compact. On suppose qu’il existe une pro-
babilité j o support fini sur G ayant un trou spectral dans L*(G). Alors la
probabilité de Haar est l'unique moyenne invariante sur L>=(Q).

Démonstration. Soit A une moyenne invariante sur L>(G). Par densité de L*(G)
dans son bi-dual [5, Lemme II1.4], il existe une suite généralisée (f;);c; d’élé-
ments de L' (G) telle que pour tout i, f; > 0, fG fi = 1 et qui converge faiblement
vers A :

V6 € 17(G). lim [ of@)fi(w)ds = A(o).
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Par invariance de A sous l'action de G, pour tout g dans G, (gf;); converge
faiblement vers A, et donc lim; g f;— f; = 0. D’aprés le théoréme de Hahn-Banach,
les adhérences d’une partie convexe sont les mémes pour les topologies faible et
forte [5, Théoréme IIL.7], on peut obtenir par combinaisons convexes des f; une
suite généralisée (g;)icr telle que pour tout v € Supp p, lim;||vg; — g:|[1 = 0; on
a encore g; > 0 et [, g; = 1.

Posons h; = /g;, de sorte que h; € L?(G), h; > 0 et ||h;||2 = 1. Pour chaque
~ dans Supp g, on majore

2

s — el = / (vhe) (@) — ho())?de
G
< /G |(s) () — ()] (vhi) () + () da

= |vg: — gillx

ce qui montre que lim;||vh; — h;l|2 = 0, et donc lim,||T,,h; — h;l|2 = 0. Par la
propriété du trou spectral, cela implique que (h;) converge dans L?(G) vers 1¢.
Mais ||g1 — 1”1 S 2||hl — 1”1 S 2Hh1 — 1“2, et donc

A=limg; =1,
7/

ce qu’il fallait démontrer. O

Remarque. On peut comprendre ce théoréme et sa démonstration de la fagon
suivante. S’il existait une moyenne invariante A sur L>°(G), on aurait T, A = . Si
1 est a support fini, en approchant A par des fonctions, cela permet de construire
des vecteurs presque invariants pour 7}, dans L?(G). Par la propriété du trou
spectral, ces vecteurs doivent converger vers la fonction constante égale a 1, et
A est égale & la mesure de Haar.

Remarque. On peut adapter la démonstration pour montrer que le théoréme
est encore valable si ’on suppose qu'il existe p €]1, 4+00] et une mesure a support
fini p telle que Popérateur 7), ait un trou spectral dans LP(G). Il suffit de
remarquer que pour z,y > 0, |z — y[P < 2P — yP, ce qui se rameéne a |1 — ¢|P <
[1—¢ <1—¢ pourt e [0,1].

Par construction, la mesure de Haar est définie sur la tribu B(G) des boré-
liens de G, mais on peut ’étendre naturellement a la tribu £(G) des ensembles
mesurables pour m, obtenue en adjoignant & B(G) les ensembles négligeables
pour m :

L(G)={AeP(G)|3IB,B € B(G): BCAC B et m(B"\ B)=0}.
Le théoréme ci-dessus permet de montrer le résultat d’unicité suivant.

Corollaire 2.18. Soit G un groupe compact. On suppose qu’il existe une mesure
1 a support fini sur G qui admet un trou spectral. Alors, la mesure de Haar est
lunique application définie sur L(G) vérifiant

1. (normalisation) A\(G) =1;
2. (additivité) VA, B disjoints, A AU B) = X(A) + \(B);
3. (invariance) Vg € G, YA, XgA) = A(4).
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Démonstration. Vu le théoréme 2.17 et la correspondance établie & 1’exercice 24,
il suffit de vérifier qu’une telle application vérifie A(A) = 0 pour tout A tel que
m(A) = 0. Si G est fini, m est la mesure de comptage, et le résultat est évident.
Si G est infini, il existe une suite (U;);>1 de voisinages ouverts de 'identité
telle que le nombre de translatés de U; disjoints dans G tend vers l'infini. Par
invariance, cela implique lim; A(U;) = 0. L’existence d’une probabilité a support
fini ayant un trou spectral implique que G n’est pas moyennable en tant que
groupe discret. D’aprés le paradoxe de Banach-Tarski, G est équi-décomposable
au voisinage ouvert U;, et A est donc équi-décomposable & une partie A; C U;.
Mais A; peut s’écrire comme réunion de translatés de parties de A, et chacun de
ces translatés appartient a £(G), puisque il est inclus dans la partie négligeable
A. Par conséquent, on peut écrire A(A) = A(A;) < A(U;), et en passant a la
limite, A(4) = 0. O

Comme pour le paradoxe de Banach-Tarski, le probléme de Ruziewicz concerne
a lorigine les mesures sur S™ invariantes par rotation. Dans ce cadre, il faut dé-
terminer s’il existe une mesure a support fini dans SO,11(R) qui admet un
trou spectral. La réponse a été apportée indépendamment par Margulis [12] et
Sullivan [15] pour n > 4, puis par Drinfeld [6] pour n =2 et n = 3.

Théoréme 2.19 (Margulis, Sullivan, Drinfeld). Sin > 2, il existe une mesure
a support fini dans G = SO, 4+1(R) qui admet un trou spectral. En particulier,
la mesure de Haar est 'unique application sur L(G) qui vérifie les conditions
du corollaire 2.18.

Exercice 27. Vérifier que les méthodes de ce paragraphe permettent de montrer
que pour n > 2, la mesure de Haar est I'unique application définie sur £(S™)
qui vérifie les conditions du corollaire 2.18.

2.3 La conjecture du trou spectral

Dans ce dernier paragraphe, on cherche & comprendre quelles mesures ont
la propriété du trou spectral. Ce probléme est difficile, et trés largement ouvert
aujourd’hui. Nous nous bornerons donc ici & quelques observations élémentaires,
a ’énoncé de la conjecture du trou spectral, et des résultats récents de Bourgain
et Gamburd dont la démonstration occupera une partie de la suite de ce cours.
L’obstruction principale & la propriété du trou spectral est la donnée par la
proposition suivante.

Proposition 2.20. Soit G un groupe compact. On suppose qu’il existe un groupe
abélien infini H et un morphisme de groupes surjectif et continu ¢ : G — H. Si
1 est une probabilité a support fini sur G, alors p n’admet pas de trou spectral
dans L?(G).

L*(H) — L*G)

f e fod
de la mesure de Haar sur G par ¢ est égale a la mesure de Haar sur H. Cela
permet d’identifier L?(H) & un sous-espace fermé de L?(G). En outre L?(H)
est stable par l’action de GG, et admet donc un supplémentaire fermé invariant.
Par suite, le spectre de T, comme opérateur sur L?(G) contient le spectre de

Démonstration. L’application est une isométrie, car 'image
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T,, comme opérateur sur L?(H), et il suffit de montrer la proposition dans le
cas ot G = H est abélien, ce que nous supposons donc dans la suite.

Soit p une probabilité & support fini dans G, et S = Supp p. Tout d’abord,
le groupe engendré par S est abélien, il existe donc une suite de parties U, telles

que

fim 190Ul _
n—oo |U,|

On peut choisir une suite de réels €, > 0 tels que pour chaque n, les boules

B(s,en), pour s € U, sont disjointes, et comme G est infini, on peut supposer

de plus que limy, o0 |Un|m(B(1,e,)) = 0. Posons alors f,, = > 1y 1p(se,) et

notons que [, f = || fnll3 = |[Un|m(B(1,e,)). Par ailleurs, pour ¢ € S,
[t fn = fall3 < [tURAUL|B(1,0)| < [SUAUL|IB(1,€n)]
d’ott T )
g 1T~ full
n—oo || fnll3

Soit enfin gn = fn - fG fn Comme T:ugn —Ggn = T:ufn 7fn et fG fn = 0(”.an2)7
on a encore

=0.

lim HTugn _gn||2 _
n—oo |lgnll2

Donc (g,,) est une suite de vecteurs presque invariants pour 7, dans L3(G), et
4 n’a pas la propriété du trou spectral. O

Remarque. La proposition ci-dessus est encore valable si ’on suppose seule-
ment que le groupe H est abstraitement moyennable. C’est tout ce que nous
avons utilisé dans la démonstration.

La proposition ci-dessus assure que si G admet un quotient abélien, il existe
des mesures adaptées apériodiques sur G qui n’admettent pas de trou spectral.
La conjecture qui nous intéresse stipule une réciproque & cette observation,
du moins si G est un groupe de Lie connexe. Dans ce cadre, la structure des
groupes de Lie compacts montre que I'absence de quotient abélien infini équivaut
a I’hypothése que le centre de G est fini.

Conjecture (Conjecture du trou spectral). Toute mesure adaptée sur un groupe
de Lie G compact connexe & centre fini admet un trou spectral dans L*(G).

Remarque. Comme G est connexe, il n’est pas nécessaire de supposer que
est apériodique. En effet, la connexité implique que G n’a pas de quotient fini,
et comme G est semi-simple (par le théoréme de structure des groupes de Lie
compacts, cela est équivalent au fait que G est a centre fini) on en déduit que
G n’admet pas de quotient abélien. Pour tout sous-groupe distingué H, 'image
de p dans G/H est adaptée, et ne saurait donc étre supportée par un singleton.

Telle que nous ’avons énoncée, la conjecture du trou spectral est peut-étre
excessive, car a ’heure actuelle, on ne connait méme pas d’exemple de groupe
compact infini sur lequel toute mesure apériodique adaptée admet un trou spec-
tral. En fait, les seuls exemples de mesures p & support fini ayant la propriété du
trou spectral sont dans des cas ou le groupe G admet une structure algébrique,
et reposent sur les propriétés arithmétiques des éléments du support de p. Le
théoréme le plus général, montré récemment grice aux avancées remarquables
de Bourgain et Gamburd [4, 3| sur le sujet, est énoncé ci-dessous.
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Théoréme 2.21. Soit G un groupe de Lie compact connexe a centre fini et
u une probabilité adaptée sur G. On suppose que dans une certaine base de
lalgébre de Lie g de G, tous les éléments Adg, g € Supp u sont des matrices a
coefficients algébriques. Alors p admet un trou spectral.

Exercice 28. Construire une mesure adaptée sur SO3(R) & support fini dans
S03(Q).

Exercice 29. Soit G un groupe topologique et D(G) le sous-groupe fermé de
G engendré par les commutateurs zyz—ly~!, x,y € G.

1. Montrer que D(G) est égal a l'intersection de tous les noyaux de mor-
phismes continus G — H, avec H abélien.

2. Nous dirons qu’'un groupe compact G est parfait si le sous-groupe fermé
D(G) est d’indice fini dans G. Montrer que le groupe compact G = AY
est parfait.

3. Construire une mesure adaptée sur G qui n’admet pas de trou spectral.

4. Vérifier que G est abstraitement moyennable.
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Chapitre 3

Combinatoire additive

Dans ce chapitre, nous présentons quelques outils de combinatoire additive
— distance de Ruzsa, inégalité de Pliinnecke, etc. — dont nous aurons besoin
dans la démonstration du théoréme 2.21.

La combinatoire additive peut se définir comme 1’étude des propriétés com-
binatoires des groupes. Typiquement, dans un groupe G, étant données deux
parties finies A et B, on cherche & étudier les liens entre le cardinal de 1’en-
semble produit AB = {ab ; a € A,b € B} et les propriétés algébriques des
parties A et B. Mais commengons par un exemple élémentaire qui illustre bien
les problémes que nous aborderons.

Exercice 30. Soit A une partie finie d’un groupe G, et AA = {ab; a,b € A}.

1. Si |[AA| = |A|, montrer qu’il existe un groupe fini H et un élément a
normalisant H tel que A = aH.

2. On suppose maintenant |[AA| < 2|A|. On veut voir qu’il existe un sous-
groupe fini H et a normalisant H tels que A C aH et |H| < 3|A].

(a) Vérifier que ces conditions donnent bien |[AA| < 3|A4|.

(b) Soit H = A~ A. Montrer que tout x € H s’écrit de k > |A|/2 fagons
différentes x = dlcl_1 =...= dkc,zl.

(c) Montrer que H est un sous-groupe fini normalisé par A.

(d) Montrer que sia € A et B=a"1A, alors a='BaB = H, et conclure.

3.1 Calcul de Ruzsa

Dans ce paragraphe, on se place dans un groupe G quelconque.

Définition 3.1 (Distance de Ruzsa). Etant données deux parties finies A et B
de G, on pose
[AB~]

VIAIIBI

Exercice 31. Montrer que d(A, B) > 0 avec égalité si et seulement si A et B
sont des classes & gauche d’un méme sous-groupe fini.

d(A, B) =log

31
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Lemme 3.2 (Inégalité triangulaire). Soient A, B et C des parties finies de G.
Alors
d(A,C) < d(A,B)+d(B,C).

Démonstration. Pour chaque x dans AC, fixons une décomposition z = a,c,,
avec a, € A et ¢, € C. L’application

Bx AC™! — AB !'x BC!
(b, z) = (agb™t, bey)

est injective, donc |B||AC~!| < |[AB~||BC~Y. O

Dans la suite, si A est une partie de GG et n > 1, on note A™ I’ensemble produit
A" = {aqaz...a, ; a1,...,a, € A}. En ce qui nous concerne, la conséquence
la plus importante de I'inégalité de Ruzsa est la suivante.

Proposition 3.3 (Ensembles a petit triplement). Soit A C G tel que |A3| <
K|A|. Alors, pour toutn > 3, |A"| < K*"=5|A|. Plus généralement, sie1, ..., e, €
{&1}, alors |[A®1 A%z ... A®n| < KoM Al

Démonstration. Soit n > 3. D’apreés 'inégalité de Ruzsa,

d(A"H A7) <d(AML AT 4 d(ATH A) 4 d(A, AT

A% A3 . .
et donc |A"TY < |A"|ﬁﬁ. Par récurrence, cela montre déja la premiére
assertion.

La démonstration de la seconde inégalité est analogue. Notons pour simplifier
A, = A1 A%2 ... A®». On commence par écrire,

A(Ap_1, A1 A7) < d(Ap_y, A7) + (A7 A) + d(A, A=t A5n)

i.e.

|AASn| |AAS Asn+1|

4] Al
Pour majorer les deux derniers quotients indépendamment des valeurs de ¢,, et
€nt1, on utilise encore I'inégalité de Ruzsa. D’abord, d(A, A%) < d(A, A7) +
d(A™1, A%) donne

|An+1| < |An|

-2 2 3
(A4 < @H < K2,
A 1Al [A]

et de méme, échangeant les roles de A et A~1, |[A=1A?| < K?|A|. Enfin, écrivant
d(A, A7TA) < d(A, A7) + d(A™1, A= A), on trouve

-1 21| A—1 42
AATA] LAy
Al Al 1A]
Ainsi, on a toujours |A, 1] < K?®|A,| et par récurrence, la proposition est
démontrée.

O
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Exercice 32. Montrer que l’énoncé analogue & la proposition 3.3 n’est pas
valable si I'on suppose seulement |A%| < K|A.

Définition 3.4 (Sous-groupes approximatifs). Soit K > 1. Un sous-groupe K-
approximatif de G est une partie A qui vérifie les propriétés suivantes :

— 1lcAet A1 =A;

— il existe X C G tel que | X| < K et AA C AX.

Lemme 3.5 (Lemme de recouvrement de Ruzsa). Soient A et B deuz parties
finies de G et K > 0 tel que |AB| < K|A|. Alors, il existe X C B tel que
|IX|<KetBcCATAX.

Démonstration. Soit X = {b1,...,b,} une famille maximale d’éléments de B
telle que les ensembles Aby, . .., Ab, soient disjoints. Comme tous ces ensembles
sont inclus dans AB, on doit avoir n < K. De plus, par maximalité de la famille,
pour tout b € B, il existe i tel que AbN Ab; # (), et par conséquent b € A~ Ab;,
puis B C A71AX. O

Avec la proposition 3.3, ce lemme permet de caractériser les ensembles a
petit triplement en termes de sous-groupes approximatifs.

Proposition 3.6 (Caractérisation du petit triplement). Etant donné une partie
finie A C G et K > 2 les assertions suivantes sont équivalentes.

(i) |43 < KOW|A]
(i) 3H sous-groupe KW -approzimatif tel que A C H et |H| < KOW|A|.

Démonstration. Il est clair que la seconde assertion implique la premiére. En
effet, A> ¢ H®> ¢ HX?, donc |A3| < |X|?|H| < KCW|H| < KOW|A].
Réciproquement, montrons que si |[43| < K|AJ, alors H = (AU A=t U {1})?
est un sous-groupe K 0(1)—approximatif. Comme cet ensemble est symétrique,
il suffit de voir que H C HX pour un certain X tel que |X| < K°W. Soit
A; = AU AP U{1}. L’ensemble A} est inclus dans la réunion des parties de
la forme A°tA®2A4%3 A1 A% ou ¢; € {—1,0,1}, et d’aprés la proposition 3.3
chacune de ces parties vérifie |A%1 A%2 A3 A% A% | < KO |A|. Donc |A; H?| =
|A| < KO9W|A,;|. D’apreés le lemme de recouvrement de Ruzsa, il existe une
partie X C H telle que | X| < KW et H?> C A7'A1X = HX. O

Dans la suite, nous voudrons aussi comprendre les parties A et B qui sa-
tisfont I'inégalité |AB| < K|A|2|B|2. La proposition suivante en donne une
caractérisation en termes de sous-groupes approximatifs. La démonstration est
sensiblement plus difficile que celle de la caractérisation des ensembles & petit
triplement, et sera donnée au paragraphe 3.3, une fois que nous aurons introduits
les outils nécessaires.

Proposition 3.7 (Caractérisation du petit doublement). Pour deuz parties
finies A, B C G et K > 2, les assertions suivantes sont équivalentes.
1. |AB| < KOO |4} [B| ;
2. I existe un sous-groupe KW _approzimatif H et X,Y C G tels que
IX],|V| < KW et AC XH et BC HY.

Remarque. Il est facile de voir que la seconde assertion implique la premiére :
AB C XHHY donc |AB| < KOW|HH| < KOW|H|. L’autre implication est
plus difficile & démontrer.
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3.2 Le lemme de Balog-Szemerédi-Gowers

Définition 3.8 (Energie multiplicative). L’énergie multiplicative de deux par-
ties finies A, B C G est

E(A,B) =|{(a,b,a’,b') € Ax Bx Ax B|ab=ad't'}|.

Commengons par noter quelques propriétés importantes de 1’énergie multi-
plicative. Etant donnée une partie S C A x B, nous noterons

A-s B=1{ab; (a,b) € S}.

Proposition 3.9. L’énergie multiplicative de deux ensembles A et B satisfait
les propriétés suivantes.

(i) B(A,B) = ||14* 1plf3.
(i) Pour tous g,h € G, E(gA, Bh) = E(A, B).
(iii) E(A,A™Y) = BE(A1 A);
(iv) |Al|B| < E(A,B) < |A|?|B|3.
3 3
; 1IR3 AlZ|B|2
(v) Si |AB| < K|A|z|B|z, alors E(A,B) > %

(vi) Si E(A,B) > %|A|%\B|%, alors il existe une partie S C A x B telle que
15| > BBl ¢4 |4 . B| < 2K|A|3|B|3.

Démonstration. (i) On calcule
> (Maxlp(2)? =Y (Y 1a(x)lp(y))?

=3 Y 1a@)1s)1a)1s)

z zxy=z=z'y’

— > 1a(2)1p(y)La(a")1p(y')

z,ya Yy wy=a'y’
= E(A, B)
(ii) évident
(iii) Le résultat découle d’un simple calcul :
E(A, A7Y) = [{(a1, a2, a3,a4) € A | alagl = a3a51}|
= |{(a1,a2,a3,as) € A** | aytay = ay tas}]

= E(A71, A).

(iv) Le point (v) découle de 'exercice ci-dessous, en prenant X = A x B et

¢ : (a,b) — abd.

(v) Pour faire voir (vi), on pose
1
S = {(a,b) | ab a au moins ﬁ|A|1/2|B|1/2 représentations sous la forme a’b’}.

Il est clair que |A -g B| < 2K|A|'/?|B|'/2. De plus,

|A|3/2|B|3/2

1
< < 1/21p11/2 | 1 4172 p11/2
< B(A,B) < |S|IA[|BIY2 + | Al B2 4] B
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|A||B]
donc [S| > =
O

Exercice 33. Soient X et Y deux ensembles finis et ¢ : X — Y. On note

2
B, = |{(z1,22) € X x X | (a1) = p(a2)}]. Montrer que [p(X)| > XL

Exercice 34. Montrer que E(B, A) # E(A, B) en général.

L’intérét principal de I’énergie multiplicative provient du lemme ci-dessous,
qui permet de construire des ensembles & petit doublement & partir d’ensembles
A et B dont ’énergie multiplicative E(A, B) est grande.

Lemme 3.10 (Balog-Szemerédi-Gowers, énergie multiplicative). Soit K > 2
un paramétre, et A, B deux parties finies d’un groupe G telles que

]. 3 3
> —|A|2|B|z.
E(4,B) = —|A}|B]

Alors il existe A" C A et B’ C B tels que
(i) |A'| = K=CWI|A] et |B'| > K-°W|B] ;
(ii) |4 B'| < KOO 4] B|1.

Ce lemme découle d’un résultat de théorie des graphes dii aux mémes au-
teurs.

Lemme 3.11 (Balog-Szemerédi-Gowers, chemins de longueur 3). Soit n € N,
K > 2, et AU B un graphe biparti, avec |A|,|B] < n. On note E ’ensemble
des arétes, et on suppose que |E| > "72 Alors, il existe des ensembles A’ C A et
B’ C B tels que

(i) |A'| > K=OW|4] et |B'| > K-OW|B] ;

(ii) pour tout (a,b) € A'x B', il existe au moins K~%Mn? chemins de longueur
3 entre a et b.

Remarque. Attention! Les chemins qui relient (a,b) € A’ x B’ peuvent passer
par des points hors de A’ LU B’.

Notations. Pour x € AU B, on note V(x) ’ensemble des voisins de x. Pour
X C AU B on note V(X) = NyexV(z) 'ensemble des voisins communs & tous
les points de X.

Exercice 35. Nous dirons qu’un sous-graphe A’ LI B’ dans ALIB est totalement
connecté si toute paire de points (a,b) € A’ x B’ est reliée par une aréte.

1. Montrer que sl existe A’, B’ satisfaisant le point (i) et tels que le sous-
graphe A’ U B’ soit totalement connecté, alors on a bien le point (ii) ci-
dessus.

2. Sous les hypotheéses du lemme, construire A’ LI B’ totalement connecté tel
que |A'||B'| > .

3. Sous les hypotheéses du lemme, construire A’ LI B’ totalement connecté tel
que |[A'| > 2 et [B'| > #5.

4. Sous les hypothéses du lemme, construire A’ Ll B’ totalement connecté tel

que min(|A’|, |B’|) > ZIﬁ)ggT}('
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5. Montrer que sous les hypothéses du lemme, il n’existe pas nécessairement
A’ U B’ totalement connecté satisfaisant (i). (Indication : Considérer un
graphe aléatoire.)

6. Le lemme ci-dessus implique qu'il existe un sous-graphe A’ LI B’ qui vérifie
(i) et qui est totalement connecté pour les chemins de longueur 3. Vérifier
ce résultat directement.

Démonstration du lemme 3.11. Pour x € AU B, nous noterons V (x) ’ensemble
des voisins de x. Pour que tous les éléments de B aient beaucoup d’arétes, on
commence par restreindre le graphe & A L By, ol

= peB V) = 5

Le nombre total d’arétes vérifie encore |E| > 35

On considére maintenant un point x choisi aléatoirement uniformément dans

A. Alors,
B(V(@)] = T38| > 118> g

Nous dirons que deux éléments b,b’ dans B sont mal connectés si I’ensemble
V(b,0') de leurs voisins communs vérifie [V (b,b")| < i55%s. Notons N(z) le
nombre de couples (b,b’) d’éléments de V(z) mal connectés. Si (b,b') est un tel
couple, on a évidemment x € V(b,b'), et la probabilité de cet événement est

. 1 .
donc majorée par j5555. Par conséquent,

n2

E[N(z)] < 128K

Soit Z(x) C V(x) I'ensemble des éléments b mal connectés & au moins s57-

¢léements de V' (x). Naturellement, N (z) > |Z(x)|55%=, et donc
n
VA
E|Z(@))) < 1%

Cela permet de choisir un point € A tel que B’ = V(z)\ Z(x) vérifie |B'| > f=
Ensuite, on pose

n
A'={a€A|V(@)NB| = 7

Soit R le nombre d’arétes partant de B’. Alors,

2 2

n n n
= <|An+
<A+

8K?2 2K 4K -
et donc |A’| > 16K2
Reste a minorer le nombre de chemins de longueur 3 entre deux points a € A’
et b € B’. Pour cela, on remarque que I’ensemble

M = {b' € B'| (b,b) est mal connecté}

vérifie M| < 55%=, tandis que |V (a) N B'| > 1g%=, et donc il existe au moins
e éléments b dans V(a) bien connectés a b. Pour chaque tel ¥, il existe au

moins 5=z chemins de longueur 2 entre b et b/, donc le nombre de chemins de

longueur 3 entre a et b est minoré par W’ ce qu’il fallait démontrer. O
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Démonstration du lemme 3.10. D’apreés le dernier point de la proposition 3.9, il
existe S C A x B tel que, notant 7 : (a,b) — ab 'application produit,

Al Bl

Zom et (S| < KOWAE|B|E.

|S| >

Comme |S]| > |I?|o|5)|, il existe b € B tel que [{a € A | (a,b) € S}| > %. Mais
I’application 7 est injective en restriction a cette fibre, et donc [A] < KW |B|.
Echangeant les roles de A et B, on a aussi |B| < K| A|. Posant alors n =
max(|Al,|B]), on observe que les hypothéses du lemme sont satisfaites pour le
graphe biparti A Ll B défini par la partie S, avec la constante K1),

Soient A’ et B’ les ensembles qui résultent de ’application du lemme. On a
bien stir [A’| > K~9W|A| et |B'| > K~°W|B|. Notons que A'B’ C (A-sB)(A-g
B)71(A s B). En effet, si (a,b) € A’ x B, il existe un chemin a <> b’ <> a’ <> b
et donc

ab=ab'(a'b')ra'b€ (A-s B)(A-5 B)"'(A -5 B).

De plus, tout produit ab dans A’B’ admet K~ °(n? représentations de cette
forme. Donc

|A/B/| < KO(I)TL72|A~SB‘3 < KO(l)n: KO(1)|A|1/2‘B‘1/2.

3.3 Le lemme de Petridis et ses applications

Pour conclure la démonstration de la proposition 3.7, nous utiliserons aussi
le lemme suivant, dii & Petridis.

Lemme 3.12 (Petridis). Soit A et B deuz parties finies de G et By C B tel que

le rapport |"43i?| soit minimal ; on note Ky ce rapport. Alors, pour toute partie

X de G,

|ABo X| < Ko|BoX|.
Démonstration. On procéde par récurrence sur le cardinal de X.
Si ‘X‘ = 1, alors |ABQX‘ = |AB()| = K0|B0‘ = K0|B()X‘
Supposons le résultat connu pour |X| = n > 1. Soit X une partie de cardinal
n+1 et x un élément de X. Notons X' = X \{xz}. Alors,

|ABoX| = |ABoX'| + [ABoz| — |[(ABoX") N (ABoz)|
S K0|BoX/| + K0|Bol‘| — |(ABoX/) N (AB()J))|
S KolBoX/| + K()lBo{E| - |AZ{E|,
ou Z = {z € By|Azx C AByX'}. On remarque que Z D By N BoX'z~! et que

par conséquent |Z| > |Boz N (BoX')|. De plus, comme Z C B, par définition de
Ky, |AZ| > Ky|Z|. L’inégalité ci-dessus donne alors ce qu’on veut :

|ABOX| S K0|BOX/| + K0|B01’| - Ko‘(Bo.T) N (BOX/)|
= Ko|BoX|.

Ceci achéve la récurrence. O
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Nous pouvons maintenant démontrer la caractérisation des ensembles & petit
doublement & partir des sous-groupes approximatifs.

Démonstration de la proposition 3.7. Parl'inégalité de Ruzsa d(A, A) < d(A, B)+
d(B,A) <2log K i.e. |[AA~Y| < K?|Al. Par conséquent, E(A, A™!) = BE(A™1, A) >
K~CY|A]3. D’aprés le lemme 3.10 appliqué 4 A = A~! et B = A, il existe une
partie A; C A telle que |[A;| > K~¢|A] et |A1_1A1| < K~Y]A|. Comme A; C A,
on a aussi |[A; ATt < K—CA.

|41 45"

Soit Ay C A; tel que le rapport A soit minimal. D’aprés le lemme de

Petridis, pour toute partie X finie
AL AT X | < KOW A X (3.1)

Cela implique en particulier que |A;| < K9W|A,|. De plus, Ay, C A; donc

|A; 1 Ag| < KOM|Ay|. Soit alors A3 C Ay tel que le rapport IA‘;T??" soit mini-
mal. D’aprés le lemme de Petridis, pour tout X fini,
| A1 43X | < KOW[A3X| < KOW[ A, X|. (3:2)

Cela implique |Ay| < KW |A3]. De plus, appliquant successivement les inéga-
lités (3.2), (3.1) et (3.2) ci-dessus,

(A" A3)? A5 < A7 1 A (A7 A3 457

< KOW|A3A5 A3 AT

< KOW|A1 A7 A5 A7

< KOW| A7 A, 471

< Ko(l)‘AgAgl‘

< KOW| 471,
Le lemme de recouvrement de Ruzsa montre donc que (A3 A3)? C (A3'A43)T,
avec |T| < KM et H = A§1A3 est donc un sous-groupe KM -approximatif.
Comme |AA;!| < |AA~'| < K9 |A3|, on a aussi, par recouvrement de Ruzsa,

AC XH, avec |X| < KOO, Enfin, |A3B| < |AB| < K°M|A3| donc B € HY,
avec |Y| < KO, O

Une autre application du lemme de Petridis est une variante de la pro-
position 3.3 pour les groupes abéliens, dans laquelle il suffit de supposer que
I’ensemble considéré est a petit doublement. Ce résultat est connu sous le nom
d’inégalité de Pliinnecke. Si (G, +) est un groupe abélien, et A, B C GG, on note

A+B={a+b;ac A, be B}

et pour n € N*,
nA={a+ - +an; a € A}.

Théoréme 3.13 (Inégalité de Pliinnecke). Si A et B sont deuz parties d’un
groupe abélien (G,+) vérifiant |A+ B| < K|B|, alors, pour tous entiers naturels
m et n,

ImA —nA| < K™ "|B].
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Démonstration. Choisissons By C A tel que %

particulier Ky < K. Gréace au lemme de Petridis appliqué successivement, on
obtient

= Ky soit minimal; en

|Bo +mA| = |A+ By + (m — 1)A| < Ko|Bo + (m — 1)A| < --- < K| By,

et de méme,

On utilise alors 'inégalité triangulaire de Ruzsa pour conclure :
|mA —nA||By| < |Bo +mA|| By +nA| < K| By |?

d’ou
ImA —nA| < K™"|B|.

O

Exercice 36. Soit G un groupe abélien et X, Y7,..., Y} des parties finies de G.
On suppose que | X +V;| < K;|X|, i =1,... k.

1. Montrer qu’il existe Zy C X tel que |Zy| > ‘ZQ—Ol et |Zo+ Y1+ Y| <

4K K5|Zp|. (Indication : Utiliser le lemme de Petridis, et si |Xg| < %l,

appliquer une nouvelle fois le lemme a ensemble X \ Xy, et ainsi de suite.)
2. Montrer par récurrence qu'il existe Z C X tel que |Z 4+ Y7 + -+ + Yi| i
k
(ITizy K121
|X]

3. Montrer qu’on peut en outre imposer |Z| > 5+ a la question précédente.

3.4 Somme-produit dans les corps finis

Etant donné un groupe ambiant G, nous avons commencé a étudié au pa-
ragraphe précédent les parties A telles que |A?| < K|A|. Dans ce paragraphe,
nous nous placerons dans un cadre un peu plus riche, en supposant que la partie
A est incluse dans un anneau. On dispose alors de deux opérations, somme et
produit, et I'on cherche donc & comprendre quelles parties A peuvent satisfaire
simultanément |A?%| < K|A| et |A+ A| < K|A|. Le premier résultat remarquable
sur le sujet est sans doute le théoréme suivant, montré par Erdés et Szemerédi
[8] en 1983.

Théoréme 3.14 (Somme-produit dans Z). Il existe 7 > 0 tel que pour toute
partie finie A C 7Z,
|A+ Al +|A- Al > |AMT.

Solymosi [14] & démontré que le théoréme était valable pour 7 = % Le
meilleur exposant, égal a %—i— % a été obtenu récemment par Rudnev et Stevens
[13]. La conjecture ci-dessous sur la valeur optimale de 'exposant 7, due & Erdés
et Szemerédi, n’a pas encore été résolue.

Conjecture (Erdds et Szemerédi). Pour tout € > 0, il existe ng tel que si
|A] > ng, on peut prendre T =1 — e dans linégalité ci-dessus.

Nous allons montrer une généralisation du résultat ci-dessus valable dans un
corps quelconque.
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Théoréme 3.15 (Somme-produit dans un corps quelconque). Il existe 7 > 0
tel que ’énoncé suivant soit vérifié.
Soit A une partie finie d’un corps F quelconque. Si |A+ Al + |A - A] < K|A]|,
alors on a lalternative suivante :
— soit |A] < KO ;
— soit il existe un sous-corps fini Fy tel que |Fua| < KOW|A| et A C
tFAUX pourx € A et |X| < KOO,

Exercice 37. Vérifier que cet énoncé est optimal, au sens ol tout ensemble qui
vérifie I'une des deux conditions du théoréme vérifie |A+ A|4|A-A| < KOW|A].

Exercice 38 (Somme-produit en caractéristique nulle). Montrer qu’il existe
7 > 0 tel que si F' est un corps de caractéristique nulle et A C F, alors |[A +
Al+|A-A] > |A|**7. En déduire le résultat d’Erdds et Szemerédi cité ci-dessus.

Exercice 39 (Somme-produit dans les corps finis). On note F, = Z/pZ. Mon-
trer qu'il existe 7 > 0 tel que pour tout IF,, et tout A C IFp,

| A+ A|+|A- A] > |A|(min{|A], &})T.

ue peut-on dire dans un corps fini F,, ¢ = p™ quelconque ?
q

Avant de chercher & démontrer le théoréme 3.15, il est plus facile d’étudier les
parties qui ne croissent pas sous ’action simultanée de ’addition et de la multi-
plication. La démonstration du théoréme 3.15 se raménera & ce cas particulier,
qui d’ailleurs est souvent suffisant dans les applications.

Théoréme 3.16 (Somme-produit, deuxiéme version). Soit F' un corps quel-
conque. Si A C F est une partie finie telle que |A + AA| < KJA|, alors
|A| < KOO ou il existe un sous-corps fini B D A tel que |B] < KOW|A].

Démonstration. Quitte a remplacer A par A U {0,1}, on peut supposer que
0,1 € A. On considére alors

B:{al—a

2l a; €A, ag—ay € F\{0}}.
asz — a4
Premier cas : B est stable par - et +.
Comme B est fini, et contient 0 et 1, c’est un sous-corps de F, et B D A.

Pour chaque = € B, fixons une représentation x = 3=, avec a, € A — A et
by € (A— A)\ {0}. Notons aussi A* = A\ {0}. L’application

A*xB — AA-A)x(A-A)A
(a,2) (aag, bya)
est injective, donc
|[AA — AA?
A%

Second cas : dz,y € B: z+y ¢ Bouzxy ¢ B.
Selon le cas, écrivons z +y = & ou zy = &, avec e; € [(A— A)(A—A4) +
(A-A)(A—-A)JU(A—-A)(A—A)eteg € (A—A)(A— A)\ O, et considérons
I’application

|B| < < KO9W|A]

¢ : AxA — 61A + 62A
(a,b) +— eja—+esd.
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Sia—a # 0, I'tgalité era + exb = e1a’ + ezl implique £ = i’/__ab, € B.

Par contraposée, ¢(a,b) = ¢(a’,b') implique a = o, puis b = ¥'. Donc cette
application est injective,

le1 A+ eaA| = |p(A x A)| = |A]2.

Pour conclure, reste a voir que |e; A + esA| < KOW|A|. Cela découle de la
proposition 3.17 ci-dessous. O

Proposition 3.17. Soit A une partie finie d’un anneau telle que |A + AA| <
K|A|. Pour s € N*, on note (A), l'ensemble des sommes ou différences d’au
plus s produits d’au plus s éléments de A. Alors |(A)s] < KO- |A].

Démonstration. Par 'inégalité de Pliinnecke et le lemme de recouvrement de
Ruzsa, la condition |A + AA| < K|A| implique que A — A est un sous-groupe
K9 _approximatif.

Montrons d’abord que pour tout x € (A),, il existe X, , tel que [X, 5| <
KO M et 2 A C A— A+ X, . Cela se voit par récurrence sur s. Pour s = 1, par
recouvrement de Ruzsa, AA C A— A+ X, pour | X| < K°M donc le résultat
est clair. Ensuite, on remarque quesizA C A-A+ X, et yAC A-A+ X, q,
alors (1 +yY)AC2A+yACA-A+A-A+ X, + Xy CA—A+Xoiyst1
et de méme, (r —y)A C A— A+ X,_y o41. Enfin, 2yAd C 2A —2A+2X,, C
A-A+A-A+ X, s —Xps +2Xy s CA—A+ Xyy 541

Montrons maintenant par récurrence qu’il existe X, C (A), tel que | X,| <
KO M et A5 ¢ A— A+ X,. Cela a déja été vu pour s = 2. Supposons donc le
résultat démontré pour s > 2. Alors,

A+ AT C A4+ AA—-A+X,) CA+AA— AA+ AX,.

Par la premiére partie de la démonstration, AX, € A — A+ X', ou X' =
Urex, X5, done [A+ AT < |A+ AA - AA+ A- A+ X'| < KOM|A| puis
At Cc A — A+ X, 1, par inégalité de Ruzsa.

Pour conclure, notons que (A),, 1 = AT ... £ AT CA- A+ .+ A—
A+ X 4+ X, et donc [(A)gyq| < KOMW|A]. O

L’exercice suivant donne une version de 1’énoncé valable dans un anneau
quelconque. On s’apercoit qu’en général, il faut comprendre la position de A
par rapport aux éléments non inversibles de I'anneau.

Exercice 40 (Somme-produit dans un anneau). Soit R un anneau quelconque,
dont on note R* les éléments inversibles et Ry = R\ R*. Si A C R est une
partie finie telle que |A + AA| < K|A|, montrer que 'une des deux assertions
suivantes est vérifiée :

— (A= A)N Ro| > K~OW|A[;

— il existe un sous-anneau fini B O A tel que |B| < KOW|A|.

Pour démontrer le théoréme 3.15, nous aurons besoin du lemme suivant, qui
est en quelque sorte analogue a la classification des ensembles a petit doublement
par les sous-groupes approximatifs.

Lemme 3.18 (Katz-Tao). Soit A une partie finie d’un corps quelconque F telle
que |A+ Al + |A - A| < K|A|. Il existe une partie A’ C A telle que

1A > K=OW|A];
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2. |A'+ A') < KOW|A| et |A'A' + A'A'| < KOW|4].

Démonstration. Soit A C F et K > 2 tel que |A + A| + |AA| < K|A|. Par
I'inégalité de Schwarz,

|AA| ( SO ILIA(z)V) > (Z 3 le(Z)>2 = (> _|zA]? =|A[*

z€AA z€A z€AAxcA T€EA

et comme |AA| < K|A|,

A]?
Z [rANyA| > —.
z,ycA K
Fixons b € A tel que ) [zANDA| > ‘A‘ , puis

A’:{aeAHaAﬁbA\zg}.

Notons que |A’| > 5. De plus, pour a € A, si X = [aANbA|, alors [X| > %
et

X +bA| < K|A| < 2K?|X]|.

Soit a1, as,as,ay € A’. Par recouvrement de Ruzsa, a;A C b(A — A) + X pour
un certain X tel que | X| < KOW et donc (a1az — azas)A C b?(A— A)+Y avec
V| < KOO, Par consequent pour chaque c € A’A’ — A’A’, il existe y € YV tel
que pour au moins K 9| A| éléments a € A, ca € b*(A— A) +y. Donc il existe
au moins K ~9W)| A| différences cu = c(a—a’) telles que cu € b*(A—A+A— A).
En d’autres termes, I’élément ¢ admet au moins K ~9()|A| représentations de
la forme £, avec v € A— A et u € b*(A— A+ A— A). Comme |A] <|A—A| <
?(A— A+ A— A)| < KOW|A|, cela implique |[A’A" — A’A'| < KOW|4A|l. O

{ |X +aA| < K|A| <2K?%|X|

Nous pouvons enfin démontrer le théoréme 3.15.

Démonstration du théoréeme 3.15. Soit A C F tel que |[A+ A|+|A- A| < K|A|.
D’aprés le lemme 3.18, il existe une partie A" C A telle que |A’| > K—9M)| 4|,
A — A < KOD|A] et |A/A — A’A'| < KOWJ|A|. Fixons a € A’ \ {0} et
notons A = a ' A’. Si |A] < KU on a aussi |[A] < KU, Sinon, comme A
vérifie les hypothéses du théoréme 3.16 pour KO le corps F4 engendré par A
vérifie |[F4| < KW A|. De plus, par recouvrement de Ruzsa, A C aFs + X et
A C FaY, avec | X|,|Y| < KW, Donc A est inclus dans une réunion d’au plus
KO ensembles de la forme a[(Fy +x)NFay). Or,si f+z = gy et f'+2 = ¢'y,
on trouve f — f'=(g—¢)ypuis f— f'=g—¢g =0ouy= f f € Fy. Cela
montre que Uintersection (Fa + ) N Fay est égale & F4, vide, ou réduite & un
singleton, et le théoréme est démontré. O

Exercice 41. Soit p un nombre premier, et soit A C F, tel que |A[ > /p.

1. Montrer que tout élément x € [, peut s’écrire x = $1=2.
3—Qa4

2. En déduire qu'il existe b = 21:22 tel que |{(a1,as,a3,a4) € AX* | b =

a1 — az}‘ < ‘A‘

az—aq

3. Conclure que A(A —A)+AA-A)=F




Chapitre 4

Combinatoire discrétisée

Le théoréme somme-produit démontré au chapitre précédent illustre bien les
méthodes de la combinatoire additive, mais pour montrer la propriété du trou
spectral dans les groupes compacts, nous aurons besoin de résultats analogues ou
le cardinal est remplacé par le nombres de recouvrement & une certaine échelle
5. A D'origine, ces énoncés ont été introduits par Katz et Tao [11] pour résoudre
la conjecture suivante :

Conjecture (Erdés-Volkmann, résolue par Edgar-Miller [7]). Tout sous-anneau
borélien strict dans R est de dimension de Hausdorff nulle.

Exercice 42. Le but de cet exercice est de démontrer le théoréme d’Edgar et
Miller.

1. (Théoréme de Marstrand) Soit A C R™ borélien tel que dimyg A > 1.
Montrer que pour presque toute forme linéaire ¢ : R” — R, ¢(A) est de
mesure de Lebesgue positive.

2. Soit A un sous-anneau mesurable de R tel que dimy A > 0. Justifier qu’il
existe n € N* et ¢ € (R™)* tels que ¢p(A™) = R.

3. Montrer que si n est 'entier minimal tel qu'il existe ¢ € (R™)* tel que
d(A™) = R, alors ¢ : A™ — R est injective. En déduire que n = 1 puis
A=R.

Peu aprés la publication de la solution d’Edgar et Miller, Jean Bourgain [2]
est parvenu & mettre en ceuvre la méthode suggérée par Katz et Tao [11] et a
donné une autre démonstration de la conjecture, beaucoup plus technique, mais
avec l'avantage de montrer au passage la proposition suivante.

Proposition 4.1 (Bourgain). Pour tout o > 0, il existe T > 0 tel que I’énoncé
suivant soit vérifié. Soit A C R une partie borélienne de dimension de Hausdorff
dimg A € [0,1 — o]. Alors dimy A+ AA > ¢ + dimy A.

La démonstration de cette proposition passe par celle d'un énoncé analogue
« discrétisé », conjecturé par Katz et Tao [11], qui a trouvé depuis de nombreuses
autres applications. Pour A C R et § > 0, on note N(A4,d) le cardinal minimal
d’un recouvrement de A par des boules de rayons 9.

Théoréme 4.2 (Somme-produit discrétisé dans R). Pour tout o €]0, 1[, il existe
e > 0 tel que l’énoncé suivant soit vérifié pour tout 6 > 0 suffisamment petit.
Soit A C [0,1] tel que

43
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(1) N(A,6) <6777¢;
(ii) pour tout p >4 et tout x € [0,1], N(AN B(x,p),d) < I =p°N(A4,9).
Alors
N(A+ AA,5) > 6 °N(A,9).

En termes de dimension de Hausdorff, la premiére condition sur ’ensemble
A correspond a l'inégalité dimy A < o + ¢, et la deuxiéme & dimg A > o —e. Il
est toutefois important de noter qu’il ne suffit pas de supposer N(A,d) > §~7+¢,
il faut aussi éviter que ensemble A soit concentré dans une boule B(z, p), avec
p €[4, 0°].

Exercice 43. Montrer que pour A = B(3,6'77), on a N(A,8) =67 et pour-
tant N(A+ AA,0) <2N(A,9).

A Paide d’un analogue discrétisé du lemme 3.18, on peut montrer que sous
les hypothéses du théoréme 4.2, on a méme

max(N(A + A,8), N(AA,8)) > 6 °N(A, ).

Cependant, ’exercice suivant montre que 1’énoncé analogue pour la dimension
de Hausdorff n’est pas valable. A une échelle § fixée, I'un des deux ensembles
A+ A ou AA croit, mais on peut construire A de sorte qu’a certaines échelles
arbitrairement petites, A + A ne croit pas et a d’autres, AA ne croit pas; cela
permet de majorer la dimension de Hausdorff de chaque ensemble.

Exercice 44. Soit « €]0, 1] fixé.

1. Construire une partie A C R telle que dimy A = dimy A+A = . Montrer
qu’on peut méme imposer que A soit un sous-groupe.

2. Montrer qu’il existe une partie A C R telle que dimyg A = dimy AA = a.
3. Construire A C [1,2] tel que dimy A = dimpy A+ A = dimy AA = a.

Le premier but de ce chapitre est de donner une démonstration simple du
théoréme 4.2, basée sur un article récent de Guth, Katz et Zahl [9]. Nous étu-
dierons ensuite les généralisations de ce résultat & C ou a d’autres algébres
matricielles de dimension supérieures. Mais pour commencer, nous expliquons
briévement comment les résultats du chapitre précédent s’adaptent & notre nou-
veau cadre de travail.

4.1 Nombres de recouvrement

Définition 4.3. Soit E un espace métrique, X C E et § > 0. Le nombre de
recouvrement de X a 1'échelle § — ou entropie de X al’échelle 6 — noté N (X, J)
est le cardinal minimal d’un recouvrement de X par des boules de rayon 0 :

N
N(X,6) =min{N € N | Iz )1<i<y : X C | Blas, 6)}.

i=1
Dans la suite, nous considérons seulement le cas ot E/ est un espace vectoriel
réel de dimension finie, isométrique & R? muni de sa norme euclidienne. L’espace
métrique E est donc doublant : il existe une constante Cg, telle que pour tout
x € E et tout » > 0, la boule B(x,r) peut étre recouverte par Cg boules de
rayon 5. En d’autres termes, N(B(z,r), 5) = O(1). Cela implique en particulier
la proposition suivante, dont nous ferons souvent usage implicitement.
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Proposition 4.4. Soit E un espace métrique doublant. A certaines constantes
multiplicatives prés ne dépendant que que E, si X C E et X' est une partie
d-séparée mazimale dans X, alors N(X,d) < | X'|.

Démonstration. Par la propriété de doublement, N (X, %) < N(X,6). Or, si
X cC Ufil B(z;, g), chaque boule B(z;, g) contient au plus un élément de X',
car X' est d-séparé. Cela montre déja que |X'| <« N(X,J). Réciproquement,
par maximalité de X', on a X C (J,cx/ B(z,26), donc [X'| > N(X,2) >
N(X,9). O

Exercice 45. Vérifier que tout espace vectoriel normé de dimension finie est un
espace métrique doublant. Donner un exemple d’espace métrique non doublant.

Les propriétés de combinatoire additive démontrées au paragraphe 3.1 ci-
dessus pour le cardinal admettent toutes des analogues pour le nombre de re-
couvrement & 1’échelle 6. Nous utiliserons en particulier le résultat suivant.

Théoréme 4.5 (Inégalités de Pliinnecke). Soient X,Y7,...,Y) des parties bor-
nées de R%. On suppose que N(X +Y;,6) < K;N(X,08), i = 1,... k. Il existe
alors Xo C X tel que N(Xo+Y1+---+Y,0) < (Hf:1 K;)N(Xo,9). On peut
de plus supposer que N(Xp,0d) > N(X,0).

Démonstration. Nous allons nous ramener & 'inégalité de Pliinnecke usuelle en
approchant chaque partie par une partie finie de G = §Z%. Pour Z C R<, on
pose Z' = G N Z?9 de sorte que N(Z,d) =< |Z'|. Par conséquent, pour chaque
i, | X'+ Y| < K;|X'|. D’aprés Uexercice 36, il existe X C X’ tel que |Xj| > £
et | X, + Y]+ -+ Y| < (TT5, K,)|X{}|. Par suite, posant X, = X N (X4)2%),
on a bien N(Xo,d) > |X{| > N(X,0) et

k
N(Xo+ Y1+ + Y5, 0) < (J[ Ki)N (X0, 0).

i=1
O

On laisse au lecteur le soin de vérifier que I'inégalité et de lemme de recou-
vrement de Ruzsa peuvent aussi s’adapter pour les nombres de recouvrement,
ainsi que la proposition suivante.

Proposition 4.6. Soit E une algébre réelle de dimension finie et A une partie
de E telle que N(A+AA, ) < KN(A,J). Pour s € N*, on note (A)s l’ensemble
des sommes ou différences d’au plus s produits d’au plus s éléments de A. Alors
N((A)s,0) < KO-(WN(A,$).

4.2 Somme-produit discrétisé dans R

Comme ce cas est un peu plus facile, nous commencerons par I’étude du phé-
nomeéne somme-produit discrétisé dans R. Notre but est de démontrer le théo-
réme 4.2 énoncé ci-dessus. La démonstration est analogue a celle du théoréme
somme-produit démontré au chapitre précédent, mais un nouveau parameétre
intervient, qui sert a controler les éléments mal inversibles, i.e. trop proches de
zéro, dans A — A.



46 CHAPITRE 4. COMBINATOIRE DISCRETISEE

Démonstration du théoréme 4.2. Soit A C [0, 1] une partie satisfaisant les condi-
tions suivantes :

(i) N(A,6) <6777,

(ii) pour tout p > 4 et tout = € [0,1], N(AN B(x,p),d) <6 p°N(A,0);
(iii) N(A+4+ AA,0) <6 EN(A,9).
On veut en déduire une inégalité £ > (o) > 0. Fixons un paramétre v €]0,

dont la valeur exacte sera choisie plus tard, et posons Ag = A — A, A;
Ao\ B(0,67) et B = AgA"'. En d’autres termes,

[

=

B = {al_a2 ) aiEA, |a3—a4\ >(5’Y}.
a3z — Qg

Notons que par I'inégalité de Ruzsa N(Ag,d) < 63 N(A, ) tandis que I’hypo-

thése de non concentration implique N(A1,d) > N(A,5)(1 —577) > N(A,J).
Posons 61 = 61727, L’ensemble B doit vérifier 'une des deux assertions

suivantes :

(A) B?%) 5 0,1].

(B) Il existe b € BN [0,1] tel que d(%, B) > 6; ou d(*£L, B) > 6;.

Supposons en effet que la seconde assertion ne soit pas vérifiée. Alors, 'ensemble

B(291) gt stable par les opérations b — g et b— %. Comme 0,1 € B(291) cela

implique que B(?91) contient tous les rationnels dyadiques, puis que B(91) =

[0,1].

Premier cas : (A)

Soit B’ une partie d;-séparée dans B, et pour chaque z € B’ fixons une repré-

sentation x = §=, avec a, € Ao et b, € Aj. Soit aussi A’ une partie §;-séparée

dans A = A\ B(0,4"). L’application

A'x B — AAO X AlA
(a,z) +—  (aag,bya)

est injective & échelle §. En effet, si

aa; = u+ O(9)
{ bya =v+ O(9)

alors o = %= = %L 4 O(-%-) = £ 4+ 0(4;) donc = € B’ est uniquement déterming,
puis a = 3~ + O %) = 3=+ O(d1) est aussi déterminé dans A’. Par conséquent,
N(AA - AA,6)?
N(B,6) < ¥

Or, d’aprés I'inégalité de Ruzsa, N(AA — AA,§) < §%¢N(A,6), et par ailleurs,
|A'| < N(A,8;1) > 627 N(A, ) > §>YN(A,§), donc

N(B,6,) < 6277 N(A,0).
Mais comme B(%) 5[0, 1], on a aussi N(B,d;) > 6; ' =~ 1+?7 et donc

0777 2 N(A,6) > 67T,
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d’ott € > %.
Second cas : (B)
Si d(g,B) > 01, on écrit g = o, avec e1 € Ag et ex € 24, tandis que si

d(b%l,B) > 01, on écrit b# = Z—;, avec e; € Ag + Ay et e € 24;.

Nous voulons d’abord minorer N(e; A + e24,0). Soit
Q = {(a1,as,a3,a4) € A | eaay + eraq = ezan + eraz + O(5)}.
L’inégalité qui définit @) implique

a; —a e
R < 5|€2|_1|CL3 — Cl4|_1 < (51_7|a3 — a4\_1.

az — Q4

Comme d(£t, B) > 51727, on doit avoir |az — ays| < §7. Si ay est connu & § prés,
par non concentration, il y a au plus §77 N (A, §) possibilités pour as. Ensuite,
si ay,as,as sont connus a d prés, comme

€ €
as + —as = a1 + —ag + O(Jea|~16)
€9 ()

I’hypothése de non concentration montre qu’il y a au plus |es| 7769 5N (A, d)
possibilités pour as, et ainsi

N(Q,8) < |ea] 707026 N (4, 5)4.

Avec I'inégalité de Schwarz cela donne

N(€1A1 + 62A1, 5) > > |62|0570(1+y)+25.

D’autre part, on peut aussi majorer

N(€1A+62A,6) < N N(A+61A+62A, (5)

o

(A, [ea])
<0 F|ea| N(A+ AA— AA+ AA— AA+ AA— AA9)
< ea|071°N(A,6).

Ainsi, N(A,§) > 67+ +12¢ o donc € > .

Dans les deux cas, € > min( 1_”5_47, 93), et choississant v = 41;& , on obtient
12
o(l—o)

Exercice 46. Vérifier que le théoréme ci-dessus n’est pas valable pour les en-
sembles A C B¢(0,1). Quelle hypotheése faudrait-il ajouter ?

Nous aurons méme besoin d’une version du théoréme somme-produit valable
dans le corps C des complexes. La démonstration est quasiment identique &
celle présentée dans dans le cas réel, mais évidemment, il faut ajouter comme
hypothése que ’ensemble A n’est pas inclus dans un §°-voisinage de R.

Théoréme 4.7 (Somme-produit discrétisé dans C). Pour tout o €]0,2], il existe
e > 0 tel que l’énoncé suivant soit vérifié pour tout 6 > 0 suffisamment petit.
Soit A C Be(0,1) tel que
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(i) N(A,0) <6777,
(ii) pour tout p > 4 et tout x € [0,1], N(AN B(x,p),d) < I =p°N(A4,9);
(i13) il existe a € A tel que d(a,R) > 6°.
Alors
N(A+ AA,0) > 367 °N(4,9).

Démonstration. Soit A C Bg(0,1) une partie satisfaisant les conditions sui-
vantes :

() N(A,8) <60+

(ii) pour tout p > 4 et tout = € [0,1], N(AN B(x,p),d) <6 p?N(A,0);
(iii) il existe a € A tel que d(a,R) > §°;
(iv) N(A+ AA, ) <67°N(A,J).

On veut en déduire une inégalité ¢ > e(o) > 0. Fixons un parameétre v €]0,
dont la valeur exacte sera choisie plus tard, et posons Ag = A — A, A;
Ao\ B(0,07) et B = AgAT"'. En d’autres termes,

[

INIE

B= {al_a2 ;a; € A, |ag — aq >5“’}.
az — a4
Notons que par I'inégalité de Ruzsa N(Ag,d) < 62 N(A, ) tandis que I’hypo-
thése de non concentration implique N(A1,d8) > N(A,8)(1 —3§77) > N(A, ).
Posons 6; = §'727. L’ensemble B doit vérifier 'une des deux assertions
suivantes :

(A) B@%) 5 0,1].
(B) Il existe b € BN [0,1] tel que d(%, B) > 6; ou d(*£L, B) > 6;.

Supposons en effet que la seconde assertion ne soit pas vérifiée. Alors, I’ensemble
B(291) egt stable par les opérations b — % et b b%l. Comme 0,1 € B9 cela

implique que B(%) contient tous les rationnels dyadiques, d’ott B(291) 5 [0, 1].
Premier cas : (A)
Soit a € A tel que d(a,R) > §°. Comme [0,1] € B?%) on a

N(aB + B, ;) > 6°6, % = 5~ 2+4r+e,

D’autre part, notant Ay = A(A— A)(A—A)+(A—-A)(A—A) et A3 = (A -
A)(A - A)\ B(0,6%7),
aB+ B C AyA7' =C

Soit €’ une partie d;-séparée dans C, et pour chaque z € C' fixons une repré-
sentation z = ‘;—z, avec a, € A et b, € As. Soit aussi A’ une partie §;-séparée
dans A= A\ B(0,67). Soit enfin Ay = AA; et A5 = AA3. L’application

A xC — A4 X A5
(a,z) +— (aag,bza)

est injective & échelle §. En effet, si

aa; = u+ O(9)
{ bra =v+ O(9)
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puis a = i + O(% = % + O(61) est aussi déterminé. Par conséquent,
N(A4,0)N(As,6
N(C.ay) < VU |1)4/|( 20) 5NN (4, 0) < 67T
Ainsi
6—0’—4"{—996 > 6—2+4"/+8
et donc € > 2_f0687.

Second cas : (B)
Si d(%,B) > 41, on écrit % = 2—;, avec e; € Ag et eg € 244, tandis que si
d(%ﬂB) > 61, on écrit b%l = z—;, avec e; € Ag + Ay et ex € 2A4;.

Nous voulons d’abord minorer N(e; A + es A, d). Soit

Q = {(a1,a2,a3,a4) € A1X4 | eaa; + e1aq = esas + ejaz + O(0)}.
L’inégalité qui définit @ implique

a1 — ag €

< 5|€2|_1|a3 — Cl4|_1 < (51_7|a3 — a4\_1.

1
a3z — a4 €2

Comme d(¢*, B) > ¢'~27, on doit avoir a3 —as| < 7. Si aq est connu & § prés,
par non concentration, il y a au plus 77N (A4, §) possibilités pour as. Ensuite,
si a1, as, as sont connus & ¢ prés, comme

e e
as + —1a3 =a1 + —1a4 + O(‘62|715)
€9 €9

I'hypothése de non concentration montre qu’il y a au plus |ea| 797 =N (A, J)
possibilités pour as, et ainsi

N(Q,8) < |ea| 7671+ =22 N (4, 5)%.

Avec 'inégalité de Schwarz cela donne

N(A,6)* B _
N(eiAr +e2dy,0) > N((Q,(S)) > |ea]”0 o(1+y)+2e

D’autre part, on peut aussi majorer

1
N(61A+62A,6) S N N(A+€1A—|—62A,5)

(A7 |62D
< 57%|ea| " N(A + 4AA — 4AA, 5)
< lea|767 19N (A, 6).

Ainsi, N(A,68) > 6—o(+1)+12¢ of donc & > =,

2—0—8y oy sl
s oo %> 73 ), et choisissant  convenablement,
g —0

300 N

Dans tous les cas, € > min(

on obtient ¢ >
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Remarque. Le théoréme 4.7 est encore valable si I’on remplace ’hypothése de
non concentration par 'hypothése un peu plus faible

Vp >4, N(Ap)=d6p 7.

Cela découle simplement de l'observation suivante : si A vérifie cette hypo-
thése et est concentré & une certaine échelle p, i.e. vérifie N(A N B(x, p),d) >
§72¢p° N(A, §) pour une certaine boule B(x, p), alors

N(A+ A,6) > N(A, p)N(AN B(x,p),0) > 6 °N(A,0),
et la conclusion du théoréme somme-produit est vérifiée.

Un argument formel permet méme d’affaiblir encore I'hypothése de non
concentration, ce qui nous sera utile plus tard.

Théoréme 4.8 (Somme-produit discrétisé dans C). Pour tout o €]0,2[ et tout
k > 0, 1l existe € > 0 tel que I’énoncé suivant soit vérifié pour tout § > 0
suffisamment petit.
Soit A C Be(0,1) tel que

(i) N(A,0) <6 77¢;

(ii) pour tout p > 6, N(A,p) > 6¢p~";
(iii) il existe a € A tel que d(a,R) > 6°.
Alors

N(A+ AA,0) > 07 °N(A,9).

Démonstration. Le théoréme 4.7 et la remarque ci-dessus montrent qu’il existe
¢ > 0 tel que pour tout o’ € [k, o], pour tout ¢ suffisamment petit, si un ensemble
A vérifie les conditions

(i) N(A,6) <577 =

(ii) il existe a € A tel que d(a,R) > §°°;

(iii) N(A+ AA,5) <6 °9°N(4,6);
alors il existe p > 0 tel que N(4,p) < 6%0p=7". Par conséquent, si N(A +
AA,0) < 67°0N(A,0), il existe ;1 > § tel que

N(A,d1) < 6%0877 < 6,7+,
Si N(A+ AA,61) < 67°°N(A, 1), on obtient de méme d2 > d; tel que
N(A,d) < 508,710 < gyo+2e0,

Et ainsi de suite, tant que N(A + AA,05-1) < 6, I N(A,dk—1), il existe o >
5k—1 tel que
N(A, ) < 5;0715;&(1@71)50 < otk

Par conséquent, pour k < L%J, on doit avoir

N(A+ AA,b) > 6.°N(A, b).

Notons que 6°6;7 " < N(A,61) < 60077 et donc &; < §Iom i e > 0 est
0!

suffisamment petit. De méme, §; < 6:(_”1_“) , et par conséquent

_<c0 g \k
o <677 <o < §lzEt)
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_ . .. k .
et donc €0 > §72% 5i ¢ > 0 est choisi de sorte que 2¢ < ¢ (%’) . Soit alors

Bjs, = B(x, d) une boule de A tel que N(ANBs, , ) soit maximal. Cela implique

en particulier N(AN By, ,d) > ]i,v((;;l’éi)) et par conséquent

N(A+ A+ AA,8) > N(AN Bs,,0)N(A+ AA, 63
N(A,0)

= N4, )

> 6. 0N(A,0).

N(A+ AA,6;)

Pour conclure, on utilise I'inégalité de Ruzsa

N(A+ AA,S

) 2
N(A+A+AA,6)§( NAT) )N(A,(S).

O

Enfin remarquons que si A C B¢(0,1) est une partie non concentrée, une
application itérée du théoréme 4.8 montre qu’a l'aide d’un nombre borné de
sommes et de produits d’éléments de A, on peut obtenir tout élément dans une
boule B(0,6%°), ot g9 > 0 est arbitrairement petit.

Proposition 4.9. Etant donnés k,eo > 0, il existe s € N* tel que I’énoncé

suivant soit vérifié pour tout 6 > 0 suffisamment petit.
Soit A C Be(0,1) vérifiant :

1. il existe a € A tel que d(a,R) > 6° ;

2. pour tout p > 0, N(A,p) > ép".
Alors, notant (A)s Uensemble des éléments qui s’écrivent comme somme d’au
plus s produits de longueur au plus s d’éléments de A,

N((A),,8) > 62+,

Démonstration. 11 suffit de choisir un entier £ tel que kK + ({ — 1)e > 2 — gq et
d’appliquer le théoréme 4.8 successivement aux parties A définies par

Ag=A
VE>1, Ap=Ap 1+ Ap 1Ak 1.

Comme N(Ag,d) > 6~ "7%, on obtient N(Ag,d) > 620, et comme A, C (A),
pour s = 222, le résultat est démontré. O
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Chapitre 5

Analyse dans les groupes de
Lie

Soit G un groupe de Lie compact a centre fini. On munit G de la distance
associée & une métrique riemmanienne invariante & gauche et & droite. Si X
est une partie de G et § > 0 une échelle, on note N(X,¢) le cardinal minimal
d’un recouvrement de X par des boules de rayon §. On note aussi X le 6-
voisinage de X dans G. La démonstration du théoréme 2.21 se fonde sur ’énoncé
combinatoire suivant.

Théoréme 5.1 (Théoréme produit discrétisé). Soit G un groupe de Lie compact
a centre fini. Il existe un voisinage de l’identité U dans G tel que pour tout k > 0,
il existe € > 0 tel que ’énoncé suivant soit vérifié.
Soit A C U une partie vérifiant
(Z) N(A, (5) < 5~ dim G+o :
(i1) pour tout sous-groupe fermé distingué connexe N < G,

vp > 57 N(WG/N(A)vp) > 5EP_H§

(iti) pour tout sous-groupe fermé connexe H < G, il existe x € A tel que
d(x, H) > 6°.
Alors,
N(AAA§) > 07 °N(A,9).

Remarque. L’hypothése de compacité n’est pas essentielle, 'important est que
lalgebre de Lie g du groupe soit parfaite, i.e. vérifie [g,g] = g.

Comme la démonstration de ce résultat général est trop longue pour étre in-
cluse dans ce cours, nous la présenterons seulement pour le groupe G = SO3(R)
des rotations en dimension 3. Ce cas particulier nécessitera déja une grande par-
tie des outils d’analyse et de combinatoire nécessaires a la démonstration dans
le cas général. Notons que SO3(R) est localement isomorphe & SU3(R) = {g €
SL2(C) | gg* = 1}, le théoréme produit est donc le méme pour chacun de ces
deux groupes, et comme les calculs sont un peu plus simples dans SU(RR), nous
nous placerons dans ce cadre pour le restant du chapitre. Les seuls sous-groupes
connexes de G = SU3(R) sont des tores de dimension 1, qui ne sont pas dis-
tingués ; dans ce cadre, le résultat que nous voulons démontrer s’énonce donc
comime suit.

33
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Théoréme 5.2 (Théoréme produit discrétisé dans SU2(R)). Soit G = SU5(R)
et o,k > 0 des paramétres firés. Il existe € > 0 tel que l’énoncé suivant soit
VETifié.
Soit A C G une partie vérifiant

(i) N(A,0) <6747 ;

(i) pour tout p > 3§, N(A,p) > §p";

(iii) pour tout sous-groupe fermé connere H < G, il existe x € A tel que

d(x, H) > 6°.
Alors,
N(AAA, ) > 67 °N(A,9).

5.1 Construction d’un tore riche

L’idée de la démonstration du théoréme 5.1 est de se ramener au phénoméne
somme-produit discrétisé dans C. Le cas de G = SU2(R) est un peu plus simple,
car les tores maximaux sont de dimension 1, isomorphes au groupe des complexes
de module 1. C’est la proposition suivante qui nous permettra construire, &
partir d’un sous-groupe approximatif dans G, les parties non concentrées de C
auxquelles nous appliquerons le théoréme somme-produit.

Proposition 5.3 (Existence d’un tore riche). Soit A C G tel que
1.VH<G, Ja€eA: d(a,H)>;
2. N(AAA, ) <6°N(A,9).

11 existe un tore T dans G tel que N(A® N T(51—0<5)),5) > §OCIN(A,6)s.

Commengons par un lemme sur les éléments qui stabilisent presque un vec-
teur dans une représentation linéaire.

Lemme 5.4. Soit G un groupe de Lie compact et V une représentation linéaire
de G.

1. Pour tout v € V, il existe une constante ¢ > 0 telle que pour tout g € G,
d(gv,v) > c¢-d(g, H,), ov H, = Stabwv.

2. Si 'V ne contient pas de vecteur invariant, il existe une constante C' > 0
telle que pour tout v € V' unitaire, il existe un sous-groupe fermé strict H
tel que pour tout g € G, si d(gv,v) < e, alors d(g,H) < Ce.

Démonstration. Soit W un supplémentaire de h dans g et U un voisinage de 0
dans W tel que Y — €Y -v soit un diffeomorphisme de U sur son image. Il existe
co > 0 tel que si d(g, H,) < co, on peut écrire g = e¥ h, avec h € H, et Y € U,
d’ou
d(gv,v) = d(e¥v,v) < |Y| =< d(g, H,).

d(gv,v)
d(g,Hy)
sur le compact d(g, H,) > cg, on trouve bien qu’il existe ¢ > 0 tel que pour tout

g € G, d(gv,v) > cd(g, Hy). Cela montre la premiére partie du lemme.

Pour la seconde partie, fixons vy un vecteur unitaire dans V', D’aprés le pre-
mier point du lemme, pour tout  dans G, I'inégalité d(gxvg, zvy) < € implique
d(g, Hyv,) < Coe, pour une constante Cy qui ne dépend que de vg. Notons bg

Comme par ailleurs, la fonction continue g — est strictement positive
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lalgebre de Lie de H,, = Stabug, et Wy tel que g = ho & Wy. Dans un voi-
sinage U,, de vy, tout vecteur v peut s’écrire v = eY(vo + u), avec Y € Wy
et u € (Woup)t, et cette écriture est unique. Supposons d(gv,v) < e. On a
alors gv = geY¥ (vo + u) donc & > d(gv,v) > d(ge¥ vy, e¥vg). Par conséquent,
d(g, Hev ) < Coe. Pour conclure, il suffit de prendre un recouvrement fini de
la sphére unité dans V' par des petits ouverts U,,. O

Exercice 47. Montrer que le sous-groupe H dans le deuxiéme point du lemme
n’est pas nécessairement égal a Stabwv.

Lemme 5.5. Soit A C G a distance au moins p de tout sous-groupe. Il existe
des éléments g1,g2,93 € A? tels que le jacobien de lapplication ¢ : g +—
(Tr g19, Tr gog, Tr g3g) vérifie

[ Jo(1)] > pO).
Démonstration. Le jacobien Jy(1) est égal au déterminant de I’application

¢I MQ((C) — Cct
X = (Tr X, Trg1 X, Tr g2 X, Tr g3 X)

. Notons go = 1 et commengons par fixer g; tel que d(g1, go) > p. Ensuite, soit
Vi = Cgo @ Cg1 < M(C). Comme Vi1 NG = Z(¢1), il existe go € A tel que
d(ga, V1) > p. Soit alors Vo = Cgp @ Cg; ® Cga < M(C). Cet espace n’est pas
un idéal & gauche de M3 (C) car il contient go = 1 donc il existe u € A tel que
d(u,Stabg Va) > p. D’apreés le lemme 5.4, cela implique d(uVa, V2) > p et donc,
pour un certain i € {0, 1,2}, d(ug;, Vo) > p°®1). Posant g3 = ug; on obtient la
famille souhaitée, car det ¢ = det(go, g1, g2, g3)- O

Démonstration de la proposition 5.53. D’aprés le lemme 5.5,
3
N(Tr(AAA), H (Tr(g; A),8) > 6N (A4, 6)

i.e. N(Tr(AAA),8) > 6°CE)IN(A,5)%. Par le principe des tiroirs, il existe donc
a € A3 tel que Pensemble C,(8) = {g € G | |Tr(g) — Tr(a)| < §} vérifie

N(4° N Cu(8),6) < 5 <57 OCN(4,0)5.

1

Mais A% N C,(8) contient tous les éléments gag—!, g € A, et il doit donc exister

go € A tel que
N({ge A|gag™ = goagy' + 0(6)},8) > d°IN(A,4)5.

Comme d(a, 1) > 6%, le lemme 5.4 montre que gag~' = g(]aggl + O(8) implique
d(g(;lg> Za) = 0(61_6), et donc

N(ASNTOO) ) > §OCIN(A,5)5.
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5.2 Croissance dans la représentation adjointe

Pour montrer ’expansion dans GG, on commence par démontrer I’expansion
via somme et produit dans la représentation adjointe. On rappelle que si g =
Lie G, la représentation adjointe Ad : G — GL(g) est définie par

(Adg)X = gXg ™.

Comme G = SU3(R) est simple, la représentation adjointe est irréductible, et
Palgebre engendrée par Ad G dans End g est égale & End g ~ M3(R).
Proposition 5.6. Soit A C G tel que

1.VH< G, Ja€ A: d(a,H)>0°;

2. N(AAA,$§) <57 °N(A,9).

8. Vp=0, N(Ap)=d6p";
On note Ay = Ad A C End g l'image de A par la représentation adjointe. Pour
tout g > 0, il existe s € N* tel que

N((Ay)s,6) > 670070,

Démonstration. D’aprés la proposition 5.3, les deux premiéres conditions sur A
impliquent qu’il existe un tore T tel que

N(ASNT@ %) 5) > §OCIN (4, 6)3.

En outre, on peut supposer que ’ensemble A’ = T'N (AG)(‘SFO(E)) vérifie, pour
tout p > 9,

N(A'NB,,8) <5 9 psN(A, ).
En effet, si ce n’est pas le cas, en conjugant par des éléments de A en bonne
position, on obtient N(A® N B,,d) > 5 OC PN (A, 6)3 > 67OF)prN(A,)),
ce qui implique N(A“+1 8) > N(A, p)N(A® N B,,8) > 6 9CEIN(A,6), et par
I'inégalité de Ruzsa, cela contredit N(AAA,0) <06 °N(A,9).

On considére maintenant 'image 77 = (AdT') du tore T dans la représen-
tation adjointe G — GL(g) ~ GL3(R). La sous-algébre engendrée par 77 dans
M;3(R) s’identifie & C, et dans cette identification, ’ensemble A} = Ad A’ vérifie
les hypothéses de la proposition 4.9 et donc, pour un certain s,

N((Al)sy,0) = 672450,
En particulier, il existe un vecteur unitaire n € M3(R) tel que
N((Af)s, N0[0,1],8) = 671,

Comme G x G agit irréductiblement sur M3(R) par X — aXb~! et A est a dis-

tance au moins 0° de tout sous-groupe dans G, le lemme 5.4 montre qu’il existe

des éléments a;,b; € A%, i =1,...,9 tels que, notant V; = Vect{a;nb; ; j < i},
Vi = 17"'797 d(ainbia‘/ifl) > 50(6)~

Par suite, posant s = 9(sg + 18),
9
N((A1)s,6) = 69O T N(ai(A)s,bi N ainbi[0,1],6)

i=1
> §0)§—9(1—e0)
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5.3 Application exponentielle

Commengons par une observation élémentaire sur 'application exponentielle
au voisinage de 0. Soit p €]0, %[ et X,Y € By(0, p). Alors, a lordre 1, XY =
eXeY et donc

d(6X+Y,6X€Y) _ O(pZ).
Si I'on ajoute un terme correctif & eXeY, on peut améliorer la précision de
I’approximation. En effet, un calcul élémentaire montre que

e e XX =1 1 2[X, Y]+ O(p°)
_ (eXeYe—Xe—Y)Z 4 O(p3)
et donc, notant (g, h) = ghg=*h~!,

d(62)(-',-2Y7 62X€2Y(€X, eY)2) _ O(pB)

En poursuivant cette analyse grace a la formule de Campbell-Hausdorff, on
peut montrer par récurrence que pour tout k € N*, il existe un entier m; tel
que e™*X+Y) soit approchable & I'ordre k par un mot en eX et e¥. Clest le
contenu du lemme suivant.

Lemme 5.7. Fizons s € N*. Pour chaque k € N*, il existe mj € N* et un mot
wy € Fy, le groupe libre sur s générateurs, tel que

VX1,..., X5 € By(0,p), d(exp(my (X1 + -+ X)), w(eX,... X)) < pL.

Démonstration. On construit le mot wy, et lentier my par récurrence sur k.
Pour k = 1, wy(21,...,05) = T1...2s car et TX = X1 X 1 O(p?).
Supposons construits my_1 € N* et wy_1 tels que

et (Xt Xe) — gy (XL eX) + O(pP).

eXl Xs)

D’aprés la formule de Campbell-Hausdorff, I'expression logwg_1(e*?, ... e
admet un développement & tout ordre en somme de crochets de Lie des éléments
X1,...,Xs; en particulier, on peut écrire a ’ordre k, pour certains rationnels
ri, i € [1,s]*,

mk—l(Xl + -+ Xs) = lngk_1(€X17 RN} €Xs)

+ Z i Xiy s [(Xigs [ [Xin s Xin] -2 )] 4 O(pF ).
(i1,-yik) €[1,5]*

En multipliant par un dénominateur n, commun a tous les r;, on obtient
my, N, € N* et des entiers a; tels que

me(X1+- -+ Xs) = logwk_l(exl, R eXS)"’c
Y alXa X L X Xa ]+ O,

Notons que si (z,y) = xyz~ly~!

[Xi17 [Xi27 [ ) [Xik—lﬂXik} .. ]]] = log(eXil ) (eXi27 ( (X (eXikfl ) eXik) s )))+O(pk+l)
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On peut donc poser
—a;
wi(@y, . we) = wea (@, ws) [ [ @i, (@i, (o (@0, 26,) -2)
i
pour avoir le développement & l'ordre k souhaité. O

Partant du tore riche construit au paragraphe précédent, et grace a ’action
adjointe, ce lemme va nous permettre de transformer une expression somme-
produit dans la représentation adjointe en un produit dans G, et ainsi, de dé-
montrer le théoréeme 5.1.

Démonstration du théoréeme 5.1 pour G = SU(R). L’hypothése de non concen-
tration sur A permet d’obtenir z = eX € AA™! tel que d(x,1) =< §°°. Si s est
I’entier donné par la proposition 5.6, on a

N({A1)s - X,0) > | X[[0°N (A1), 8) > [|X[|§77F9%0 > 67310,

et comme 'application exponentielle est un difféomorphisme local au voisinage
de l'identité
N (exp({A1)s - X),8) > 6210,

Posons k = % et notons m = my € N* et w = wy, € F} les éléments donnés par

le lemme 5.7. Pour ay,...,as € A%, notons X; = (Ada;)X et z; = e(Ada)X —
a;xa; L'e 4512, Alors, le lemme 5.7 appliqué avec p = §°° donne

exp[ms(X1 + -+ X,)] = w(eX, ..., eX) + 0(9).
Par conséquent, si £ = ¢(w) est la longueur du mot w,
exp[ms (X1 + -+ X,)] € AT B(1,0(6)),

d’ou
N(ASH2L,6) 5 N(exp(my (A1) - X)), 8) > 55105,

Prenant gg tel que 3 — 10y = ?’JFT" et ¢ > 0 tel que 2(s + 2)le < ?“T", cela

implique N(AG+2¢ §) > 6262 N (A, §) et donc, par I'inégalité de Ruzsa

N(A3,6) > 67 °N(A,$).



Chapitre 6

Aplanissement et trou
spectral

Dans ce chapitre, nous achevons la démonstration du théoréme 2.21, suivant
la méthode développée par Bourgain et Gamburd [4, 3]. Le théoréme produit 5.1
et les méthodes de combinatoire additive des chapitres 3 et 77 vont nous per-
mettre de montrer que la propriété du trou spectral pour une mesure symétrique
1 est équivalente & une certaine propriété de non concentration de la marche
aléatoire au voisinage des sous-groupes.

Définition 6.1 (Mesures presque diophantiennes). Une probabilité symétrique
w sur G est dite presque diophantienne s’il existe des constantes C,c > 0 et
ng € N telles que pour tout n > ng et tout sous-groupe fermé H tel que
dim H < dim G,

p"({g € G ldg, H) <e M) <em.
Le résultat que nous montrerons dans ce chapitre est le suivant.

Théoréme 6.2. Une probabilité symétrique p sur G admet un trou spectral si
et seulement si elle est presque diophantienne.

Commengons par vérifier le sens facile de cette équivalence : si g admet un
trou spectral, alors p est presque diophantienne.

Trou spectral = Condition presque diophantienne. Pour p > 0, on définit un
élément de LZ(G) en posant f = 1, —m(H®). Notons que || fll2 < |10 || <
m(HP)1/2 < p/2 Donc pour n = C), log 1/p, notant p = dim H,

||T;L]1H(zp) ||2 < pd_p.
Or,

1/2
IT2 a2 = ( J([ v (xy)u*"(dx))2dy>

= ( / (w*"(H (2”)y)2dy> v

> |H(”)\1/2u*”(H(p))

99
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et donc .
P (HP) < p

La suite du chapitre a pour but de démontrer I'implication réciproque.

6.1 Aplanissement
Nous utiliserons la famille d’unités approchées (Pj)s~o définie par

~ Ipas ()

B =T a

Si v est une probabilité sur G et § > 0, on note v5 = v * Py la régularisée de v
a échelle ¢, et
[ll2,6 = [lv * P52

Le lemme central dans la démonstration du théoréme 6.2 est le suivant. C’est
I’analogue pour les mesures de probabilité du théoréme produit discrétisé, et il
s’en déduit a I'aide du lemme de Balog-Szemerédi-Gowers.

Lemme 6.3 (Aplanissement L?). Etant donné o,k > 0, il existe € > 0 tel que
l’énoncé suivant soit vérifié pour tout 6 > 0 suffisamment petit.
Soit v une probabilité sur G telle que

(i) o > 677 ;
(ii) VH < G, ¥p >0, (v*v)(HP) < p~.
Alors,

[ * V2,5 < 6%[|vl2,s.

Démonstration. Supposons que v vérifie

(@) [[vll2s =677

(i) VH < G, Vp >4, (v*)(HP) < p~.

(iti) [[v vz, = 0%([v]2,-

Nous approcherons la densité vs = v* Ps de v a I’échelle § par des ensembles
de niveau dyadiques. Posant

Vi>1, Ay ={x | 2" <wvs(zx) <201},

on a

> 204(@) <wslx) <142 > La,(a)

1§i§dlog% 1§i§dlog%

La troisiéme condition sur v implique

Do 2y w1, =6Vl
1<, j<log 9

et donc il existe i, j tels que

27|14, % 1a,ll2 > 6% V|25
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Comme [|2¢1 4,1 < 1 et [|201 4,

2 < ||V|l2,s, cela implique

[vll2,s > 112704, 11111270 4, 12 > 277714,

4,2 > 6%Vl

et donc _ _ )
1> 2[A; > 6% et |vllas > 27|4;]7 > 6% ||v]l2s.

Les mémes encadrements sont encore valables si ’on échange i et j, d’ou, & un
facteur 6°() pres,
i i
lv]l2,s <22 < 22

et ‘ .
|4;] < 4] <27 <277,

Par suite, I’énergie multiplicative de A; et A; est minorée :
B(Ai Aj) = [[La, * 14, |3 = 69942 412,

D’aprés le lemme de Balog-Szemerédi-Gowers (lemme 3.10), et la classification
des ensembles a petit doublement (proposition 3.7), il existe un sous-groupe
69 _approximatif H et deux éléments =,y € G tels que

— [H| < 670@)|4;[2|4]%;

— ‘Al N $H| > (50(6)‘A1| et |AJ N Hy| > 60(6)‘AJ|
Notons que vs(xH) > 59 et vu I’hypothése de non concentration sur v, cela
implique que zH n’est pas inclus dans un §°()-yoisinage d’un sous-groupe

fermé strict. Cela implique aussi N(H,p) = N(zH,p) > 50(6)m >

IN

p~/260¢) (En effet, pour tout 2 dans G, on peut majorer v5(B(z,p))>
v D(B(1,2p))0l5p".)

D’aprés le théoréme produit, il existe 7 > 0 tel que si € > 0 est suffisamment
petit, on doit avoir N(H?3,§) > §~7N(H,d). Par conséquent, 7 < O(e), et € > 0
est minoré, ce qu'il fallait démontrer. O

Gréace a une application itérée du lemme d’aplanissement, nous allons mon-
trer la proposition suivante.

Proposition 6.4. Soit p une probabilité symétrique presque diophantienne sur
G. Pour tout o > 0, il existe une constante cg > 0 telle que pour tout n suffi-
samment grand, si 6 = e~ " alors

2,6 <677,

tm ]

Démonstration. Rappelons que pour tout n suffisamment grand,

efcn)

VH < G, pn(H' Yy <e e,

Posant k = &, cela implique que pour tout n > ny,
VH <G, Vp>e O p,(H®) < pm.

Comme p est symétrique, cela montre que pour tout N > ng, la mesure v =
un vérifie les hypothéses du lemme 6.3 pour tout 6 > e~ “N. Définissons par
récurrence

Vg = UN
Vk>1, vp =Vgp_1 % Vk_1.
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Tant que [[vgl2,6 > 677, le lemme 6.3 montre que |[vg11ll2,6 < 677 |[vgll2,6. Par
conséquent, il existe k < H2E tel que [[vgflas <677 Sin =2FN et ¢p =

PLE
comme vy, = fiok y = fin €t § = e~ N = e~%" on obtient

[ ERE

Cela montre la propriété souhaitée lorsque n = 28N pour N assez grand. Le
cas général en découle, quitte & diminuer un peu la valeur de cy, car on peut
toujours écrire n = 2K N + p, p € [0,2F — 1] et donc

i ll2,s < llporn|l2s <677

6.2 Analyse de Fourier

Rappelons la classification des représentations unitaires irréductibles de G =

SU,(R).

Théoréme 6.5. Pour chaque m > 1, il existe a équivalence prés une unique
représentation irréductible de G = SU3(R) sur un espace de dimension m. Cette
représentation est donnée par laction réguliere de G sur l'espace V,, = C,[X,Y]
des polynémes homogénes de degré m en deur variables X,Y :

on (@)= ()

Démonstration. Une représentation de SUz(R) est un morphisme SU3(R) —
GL4(C). Comme SU3(R) est simplement connexe, ces représentations sont en
bijection avec les représentations de l'algébre de Lie

supy = {X €5l(C) | X* + X =0}.

Et comme suy @ isus = sl3(C), une telle représentation se prolonge uniquement
en une représentation C-linéaire sly(C) — gl;(C). Il s’agit donc de classifier les
représentations de I'algebre de Lie complexe sl (C). On utilise pour cela la base

=(00) =00 =)

qui vérifie [h,e] = 2e, [h, f] = —=2f et [e, f] = h. Soit 7 : s5(C) — gl(V') une
représentation de dimension finie de sl3(C). Comme C est algébriquement clos,
Pendomorphisme 7(h) admet une valeur propre :

JveV\{0},AeC: w(h)v=v.
On écrit alors
w(h)mw(e)v = w(e)m(h)v + [r(h),n(e)]v = (A + 2)m(e)v

et par récurrence

m(h)m(e)*v = (X + 2k)m(e)"v.
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Les vecteurs 7(e)*v, k > 0 sont lindairement indépendants s’ils sont non nuls, car
ils sont associés a des valeurs propres distinctes de w(h). Comme dim V' < +o0,
il existe k tel que W(e)kv = 0, et par conséquent, quitte & changer A,

Jug £0: w(e)vo=0 et 7(h)vg = Avy.

Pour i > 0, notons v; = 7(f)%vg. On vérifie facilement par récurrence sur i que
7w(h)v; = (A — 2i)v; et donc il existe n tel que 7(f)" vy = 0. Si n € N* est
Ientier minimal qui satisfait cette égalité, les vecteurs vy, ..., v, sont linéaire-
ment indépendants. Montrons que V' = Vect(vo, .. .,v,). Pour cela, il suffit de
vérifier que W = Vect(vp, ..., v,) est stable par 'action de sly(C). Comme W
est clairement stable par 7(f) et w(h), il reste & montrer la stabilité par 7(e). On
montre par récurrence que 7(v;) € Vect(vg, ..., v;—1). Tout d’abord, m(e)vg = 0,
puis w(e)vy = w(e)w(f)ve = [w(e), n(f)]vo = Avg et ensuite

m(e)vip1 = w(e)m(fv, = m(h)v; + 7 (f)m(e)v;
= (A =2i)vi + w(f)m(e)vs

et comme 7(e)v; € Vect(vg,...,v;—1), on trouve bien 7(e)v;+1 € Vect(vg, ..., v;).
Pour conclure, on remarque que A = n car

Trn(h) = Te(n(e)m(f) — (f)m(e)) = 0

ie.
0=> (A=2i)=(n+1)A—n(n+1).
i=0
Cela permet d’exprimer les matrices de 7(e), w(f) et w(h) dans la base vg, ..., v,
et de vérifier qu’elles correspondent bien a la représentation de sy (C) sur C,,[X, Y],
dans la base canonique. O

Cette description du dual unitaire de G permet d’expliciter la formule de
Parseval. Pour m € N*, et f € L'(G), on note

fim) = /Gf(g)pn(g)* dg,

ol p, : G — GL(V,,) est 'unique représentation irréductible de G de dimension
m. Alors,

Vi e LXG), IfI3 =D mlf(m)lEs.

m>1

C’est la croissance linéaire en m de la dimension des représentations irréductibles
de G qui va nous permettre de déduire de la proposition 6.4 que toute mesure
presque diophantienne admet un trou spectral.

Démonstration du théoréme 6.2. D’apreés la proposition 6.4 appliquée avec o =
%, pour tout n assez grand, si § = e~ 0"

1
lpnl3 s <077
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Or, par la formule de Parseval appliquée a f = pu,, * Py,

linll3,s = > mli(m)™ Bs(m)||3s
m>1

> m||i(m)" Ps(m)|| % s

> ml|u(m)" Ps(m)|1?,.

Choisissons m = | 1t=], de sorte que | Ps(m) — 1]op < 3. On a alors
"2, < 2l a(m)" Ps(m)|2, < m~16% < 100m ™2

1(m)" 5 <

et par conséquent, comme m < § 1 = %",

pour un certain € > 0 indépendant de m, suffisamment grand. Comme p est
adaptée apériodique, on a aussi pour tout m # 1, ||i(m)|| < 1, et par conséquent
la mesure p admet un trou spectral en 1, ce qu’il fallait démontrer. O



Chapitre 7

Non concentration des
marches aléatoires

Le but de ce chapitre est de conclure la démonstration du théoréme 2.21.
Nous commencons par en rappeler ’énoncé.

Théoréme 7.1. Soit ;1 une mesure adaptée sur G = SU2(R) dont le support est
constitué de matrices o coefficients algébriques. Alors p admet un trou spectral.

Vu le théoréme 6.2 démontré au chapitre précédent, il suffit de faire voir
que toute mesure adaptée sur G dont le support est constitué de matrices a
coefficients algébriques vérifie la condition presque diophantienne :

e—cn)

Ing,C,e>0: VH < G, VYn > ny, ;L*“(H( ) <e .

Nous procéderons pour cela en deux étapes. Dans un premier lieu, nous montre-
rons que pour toute mesure p adaptée, on peut majorer uniformément p*"(H) <
e~ " pour tout n suffisamment grand et tout sous-groupe fermé strict H < G.
Ensuite, nous vérifierons que si p est supportée par un ensemble S fini constitué
d’éléments a coefficients algébriques, il existe une constante C' > 0 telle que
pour tout sous-groupe fermé H < G et tout n > ng, il existe H' < G tel que

ST AHE T ¢ H.
Avec ce qui précéde, cette inclusion permet alors de majorer u*”(H(efcn)) <
u*n(H/) < emem,
7.1 Moyennabilité et probabilité de retour
Avant d’étudier la propriété presque diophantienne d’une marche aléatoire,
il convient d’abord de comprendre & quelle condition la probabilité de retour en

I'identité décroit exponentiellement. C’est ce que nous faisons dans cette partie,
en présentant le critére de moyennabilité de Kesten.

Nous avons vu au chapitre 2 qu’un groupe discret I' est dit moyennable si
pour toute partie finie K C I' et tout € > 0, il existe une partie finie U C T’

65
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|KUAU|
< . |~U| . T . oy .
a une décroissance sous-exponentielle de la probabilité de retour en l'identité
pour une marche aléatoire symétrique.

telle que < e. Lorsque I est de type fini, cette propriété est équivalente

Théoréme 7.2 (Critére de Kesten). Un groupe de type fini est moyennable si
et seulement si, pour toute probabilité symétrique u adaptée,

lim 2" ({1}) 77 = 1.

Pour démontrer ce critére, il est commode d’interpréter la moyennabilité
d’un groupe de type fini I' comme une propriété géométrique de son graphe de
Cayley.

Notations. Soit G = (V, E) un graphe, i.e. un ensemble de sommets V et un
ensemble d’arétes E C V x V. Etant donné une partie A quelconque d’un graphe
G, nous noterons la frontiére de A

0A={ecE|e=(a,b)ac A, bg A} =EN(Ax (V\A).
Définition 7.3. Un graphe G est dit non moyennable s’il existe ¢ > 0 tel que
pour toute partie finie A C V', |0A| > ¢|A].

Exercice 48. Vérifier qu'un arbre régulier de valence v > 3 est non moyennable.

Donnons tout de suite quelques caractérisations des graphes non moyen-
nables. Ci-dessous, étant donnée une fonction f : V' — R sur l’ensemble des
sommets d’un graphe G = (V| E), on note Vf : E — R D'application définie par
Vf(e) = f(e) — f(e7), ou e = (eT,e). (Si le graphe n’est pas orienté, cette
application n’est définie qu’au signe prés, mais cela n’a pas d’importance, car
nous considérerons seulement |V f/|.)

Proposition 7.4. Soit G un graphe quelconque. On note C.(G) l'ensemble des
fonctions a support fini dans G. Les assertions suivantes sont équivalentes.
(i) G est non moyennable ;
(i) 3C =2 0: Vf € C(G), Iflh <ClIVflhs
(ii)) 3C > 0: Vf € C(G), [fll2 < ClIVflz2;
Démonstration. (i) = (i) Comme ||V f]|1 > ||VI|f||l1, on peut supposer f > 0.

Soit alors, pour t > 0, A; = {f > t}. On utilise alors la formule de la coaire
IVl = fooo\aAt|dt pour minorer

IV £l > / |At|dt=c/0 f > t}[dt = e £
(ii) = (iii)
1B = 1720 < CIV £ = C I — fle )]
=CY If(er) = fle)If(eh) + fle)

< CIIVFllay/SoIF () + F(e)P?
< 20|V £ all -

(#91) = (4) 1l suffit de prendre f = 14 pour obtenir la définition de la non
moyennabilité. O
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Exercice 49. Démontrer la formule de la coaire sur un graphe quelconque :
pour f € C.(G) & valeurs positives, si A4, = {f > t}, alors [|[Vf|1 = [ |0A|dt.

Définition 7.5 (Graphe de Cayley). Soit I' = (S) un groupe de type fini
engendré par un ensemble fini symétrique S de générateurs. Le graphe de Cayley
G(T,S) de T pour S est le graphe sur 'ensemble de sommets T dans lequel deux
éléments sont reliés s’ils différent par un élément de s :

a+b & dseS:b=sa.

Proposition 7.6. Un groupe de type fini T' = (S) est non moyennable si et
seulement si son graphe de Cayley G(T',S) est non moyennable. Cette propriété
ne dépend pas du systéme (symétrique) de générateurs S.

Démonstration. Si le graphe de Cayley G(T',S) est non moyennable, il est clair

que I' est non moyennable, puisque en prenant K = S, pour toute partie finie
. |SUAU|

non vide U, on aura 0] > c.

Réciproquement, supposons I' non moyennable. Il existe donc une partie
finie K C I telle que pour toute partie finie non vide U, % >c Si S
est une partie génératrice finie symétrique de I' quelconque, il existe n € N*
tel que S™ D K. Par conséquent, pour toute partie finie, |S"U \ U| > |U].
Posant ¢ = n~1|S"|71c, on obtient donc qu’il existe s;...s, € S™ tel que
[s1...8, U\ U| >nd|U|. Or

|51...an\U|§Z|51...skU\51...sk_1U|:Z|5kU\U\
k k

et par suite, pour un certain k
lskU\ U| > |U|.
Cela montre que G(T',S) est non moyennable. O

Dans le cas des graphes de Cayley, la moyennabilité s’intérpréte naturelle-
ment & I’aide d’opérateurs de convolution. Etant donnée une mesure sur I', on
note P, : L*>(I") — L*(T") Popérateur de convolution défini par

Puf(x) = p(g)f(zg).

zel
Proposition 7.7. Soit " un groupe de type fini et S une partie finie génératrice.
Les assertions suivantes sont équivalentes.
(i) T est moyennable ;

(i) Ye > 0: 3f € L), Vs €S ||f —sfll2 > ¢l fll2:

(111) pour toute probabilité v sur T, ||P,|| =1;

(iv) il existe une probabilité adaptée p sur I' telle que ||P,|| = 1.
Démonstration. Remarquons que ||V f||3 = err Zses|f(x)ff(sx)\2 = ZseSHf*
sf||3. L’équivalence (i) < (ii) découle donc du troisiéme point de la proposi-
tion 7.4.

(ii) = (iii)
Soit p une probabilité adaptée sur I' moyennable. Etant donné € > 0 on peut
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choisir S fini tel que u(S) > 1 —e. D’aprés ce qui précéde, il existe f € L*(I)
tel que Vs € S, ||f — sfll2 < el fll2. Cela implique

1f = Puflla <3 ws)lIf = sflla+ Y p(s)f = sflle

ses sZS
<ellfllz + 2| fl]2-

Par conséquent, ||P,|| > 1 et donc ||P,|| = 1 pour toute probabilité p sur I
(7i1) = (iv)

Evident.

(iv) = (i)

Supposons qu'il existe une probabilité adaptée p vérifiant ||P,| = 1. Sans perte
de généralité, on peut supposer que 1 € S = Supp pu. Soit (f,,) une suite de
vecteurs unitaires dans L?(T) tels que lim|| P, f||2 = 1. Comme

1Pufulld = [ {57 A, Fyudsputa)

et pour tout s,t, (s tfn, fa)l < |Ifall3 = 1, la convergence ||P,f.l3 — 1
implique que pour presque tout s,t, (s~ 'tf,, fu) — 1, ie. ||fu — s 3 =
2 — 2(s7f,, fn) — 0. Ainsi, la suite de vecteurs (f,,) est presque invariante
par I’ensemble symétrique SS~' O S qui engendre I'. Cela montre que I' est
moyennable. O

Pour conclure la démonstration du théoréme 7.2, il reste seulement a dé-
montrer le théoréme suivant.

Théoréme 7.8 (Kesten). Soit I' un groupe de type fini et p une probabilité
symétrique sur I'. La norme de l'opérateur de convolution P, : L*(T') — L?(T)
est donnée par la formule

1
. *2n 2n
1Bl = lim (a7 ({1})
Démonstration. Une inégalité est facile a vérifier :
pA(1) = (P Le, L) = [|[PrLe]l3 < (1P

Pour la réciproque, on applique le théoréme spectral a 'opérateur symétrique

P, : L*(T') — L?(I'). En restriction au sous-espace cyclique H, engendré par 1.,

P, est conjugué a I'opérateur de multiplication f — (¢ — tf(t)) sur L?(Spec P, m.),
ou m, est la mesure spectrale donnée par me(f) = (f(P,)1lc, 1.). Par consé-
quent, en restriction & H,, on a

1
2
|1 Pyl &, || = max Suppm, = lim / t2"me (dt)
Spec P,

n— oo
S T 2n %
= nh_}rr;O(PM 1., 1.)2

= lim p**"(e) el
n—oo
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Plus généralement, en restriction au sous-espace cyclique H, engendré par v €
L*(T), P, est conjugué a la multiplication par ¢ dans L?(Spec P,,m,), avec
my(f) = (f(Pu)v,v). Or, écrivant v = > v(x)1,, on observe que

(f(Puo,0) =Y v(@)o(y){f(Pu)La, 1),

et comme pour tous z,y, et A C Spec P,
(1a(P)1a, 1y) < La(P)Lal® = La(Pu)Lel

la mesure m,, est absolument continue par rapport & m.. En particulier, max Supp m, <
max Supp m.. Pour conclure, on décompose L?(T") en somme orthogonale de
sous-espaces cycliques de la forme H,,, ce qui montre que ||P,|| < sup,||Pyl#, || =

[ Bl .

Exercice 50. Cet exercice a pour but de démontrer la version du théoréme
spectral utilisée dans la démonstration ci-dessus. On considére donc un espace
de Hilbert réel H et un opérateur symétrique 7' : H — H. On suppose en outre
qu'il existe v € H tel que 'espace engendré par la suite (T"v),>¢ est dense dans
H ; on dit que H est cyclique. Notons S = Spec T le spectre de T, i.e. 'ensemble
des éléments A € C tel que T n’est pas inversible dans 1’algébre des opérateurs
bornés sur H. Nous voulons démontrer qu’il existe une mesure borélienne mz
sur S et un isomorphisme U : L?(S,my) — H tel que T = UMU~', ou M :
L?(S) — L3(S) est l'opérateur f — (t — tf(t)) de multiplication par ¢.
1. On note Rg[t] ensemble des applications polynomiales restreintes a S.
Montrer que l'application Rg[t] — H; f+— f(T)v est bien définie.

= lim, 0o ,u*zn(e)ﬁ. O

2. Montrer que expression mr(f) = (v, f(T)v)) définit une forme linéaire
sur Rg[t] qui induit une mesure borélienne finie sur S. Justifier que cette
mesure est positive.

3. Montrer que I'application définie & la premiére question induit une isomé-
trie bijective U : L?(S,m7) — H qui a les propriétés souhaitées.
4. Expliquer la notation f(T) pour f € L*°(S).

7.2 Alternative de Tits

Théoréme 7.9 (Alternative de Tits). En caractéristique zéro, un groupe li-
néaire contient soit un sous-groupe résoluble d’indice fini, soit un groupe libre a
deux générateurs.

Démonstration. O

Corollaire 7.10. Si la composante neutre de l’adhérence de Zariski de I' n’est
pas résoluble, alors I contient un sous-groupe libre & deuxr générateurs.

Démonstration. On raisonne par contraposée. Si I' ne contient pas de sous-
groupe libre, d’aprés 'alternative de Tits, il existe I'y < I" résoluble tel que
[[' : Ty] < +oo. Alors, Padhérence de Zariski de T’y est résoluble, et comme
celle-ci est d’indice fini dans ’adhérence de Zariski de I', elle en contient la
composante neutre, qui doit aussi étre résoluble. O
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Corollaire 7.11. Soit G un groupe semi-simple et j une mesure adaptée sur
G. Il existe une constante ¢ > 0 telle que pour tout n > 1, p*™*({1}) < e~ .

Dans le cas ou G = SUs(R) et le sous-groupe engendré par le support de
est libre, on peut méme montrer la proposition suivante, qui permet de majorer
la mesure d’un sous-groupe fermé pour la loi de la marche aléatoire au temps n.

Proposition 7.12. Soit p une mesure adaptée sur G = SU3(R) tel que S =
Supp i est fini et engendre un groupe libre. Il existe ¢ > 0 tel que pour tout n
suffisamment grand et tout sous-groupe fermé H < G,
ﬂ*n(H) S e,
Cette proposition est valable plus généralement dans tout groupe semi-simple
G, et méme si le sous-groupe engendré par u n’est pas libre, mais la démons-
tration est plus délicate. En effet, dans SU3(R), tous les sous-groupes fermés
stricts sont abéliens & indice fini prés, et cela va nous permettre de majorer leur
mesure en utilisant simplement la borne de Kesten sur la probabilité de retour
en l'identité. Nous utiliserons le lemme suivant.

Lemme 7.13. Soit F' un groupe libre et u,v € F deux éléments quelconques.
Si uwv = vu, alors il existe w € F et m,n € Z tels que u = w™ et v =w". En
d’autres termes, tout sous-groupe abélien de F' est cyclique.

Démonstration. On procéde par récurrence sur £(u) + ¢(v). Le résultat est clair
si f(u) +4(v) <1
Quitte & échanger u et v, on peut supposer que £(u) < £(v). On distingue
alors plusieurs cas :
— Si le mot wv est réduit, alors vu aussi, car ces deux mots ont la méme
longueur. Par conséquent, u est un segment initial de v, i.e. v = uv’. On a
alors uv’ = v'u, et par récurrence, pour un certain w, u = w™, v’ = w" .
Posant n = n’ + m, cela montre ce qu’on veut.
— Siu~! est un segment initial de v, on conclut aussi facilement par récur-
rence.
— Si uw n’est pas réduit et u~! ne divise pas v, on écrit u = u't et v =t~ 1o’
de sorte que uv = u'v’ soit réduit. Alors, u'v' = t~1v'u't.
— siu'~! est un segment final de v/, on écrit v = v'v/~! puis v/'v"u/ "t =
t~1v"t. Cela donne tu'v” = v"tu’ et par récurrence tu' = wf et
v" = w§. Posant w = t~lwot, on vérifie facilement que u = w™
et v = w™ pour certains entiers m,n.
— sinon, on écrit v/ = v"’'s et ' = s~ 1w de sorte que v'u’ = v"u" soit
réduit. Cela donne s~'u/v"s = t~'"u/t. Comme par construction,

ces mots sont réduits, on doit avoir £(s) = £(t), puis, comme s est

un segment final de ¢, nécessairement t = s. Par suite, u''v" = v"u”,
et par récurrence u” = wi' et v = wd. Posant w = tlwot, et
nous souvenant que t = s, on trouve bien u = t~lu’t = w™ et

v=1t"1"t =w".
O

Nous pouvons maintenant démontrer la proposition 7.12.
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Démonstration de la proposition 7.12. D’apreés le théoréme de Jordan, il existe
une constante C' > 0 telle que tout sous-groupe fini de SU(R) contient un sous-
groupe abélien d’indice au plus C. Par ailleurs, les seules sous-algébres de Lie
propres de sti5 sont les sous-algébres de dimension 1. Par conséquent, si H est un
sous-groupe fermé infini strict de SU5(RR), son algébre de Lie est abélienne, donc
sa composante neutre est un tore 7', pour lequel [H : H N'T] < 2. Ainsi, dans
tous les cas, si H est un sous-groupe fermé strict de G, il existe un sous-groupe
abélien Hy < H tel que [H : Hy] < C.

Soit ' = (S) le sous-groupe engendré par p. Comme I" est non moyennable,
il existe une constante ¢ > 0 telle que pour tout x € I' et tout n > 0,

M*Zn(:c) S H*Qn(l) § e~ Cn.

Par ailleurs, comme H est abélien, d’aprés le lemme 7.13, le sous-groupe HyNT'
est cyclique. Cela permet de majorer, pour tout 2n € N,

|Ho N S| < 2n,

*2n est supportée par S27,

,U*Qn(HO) — Z /1**2n(x) < ne=°".

r€S2rNHy

et comme

Pour conclure, on remarque que, par symétrie de p, pour tout z € G, u*"*(Hox)? <
w3 (Hy), et donc

P H) = Y p(How) < Cvne”F < e
r€H/Hoy

pour tout n suffisamment grand. O

7.3 Une propriété diophantienne

Si on ajoute une hypothése d’algébricité sur les coeflicients des éléments de
Supp p, on peut déduire facilement de la borne de Kesten que la mesure est
presque diophantienne.

Proposition 7.14. Soit u une mesure adaptée sur G = SU(R), & support fini
constitué de matrices a coefficients algébriques qui engendrent un groupe libre.
Alors 1 est presque diophantienne.

La démonstration de cette proposition se fonde sur ’observation suivante.

Lemme 7.15. Soit S un ensemble fini d’éléments de Q. Il existe une constante
C > 0 telle que pour tout n € N*, pour toute somme r = S11...81p + -+ +
Skl ---Skn de produits de longueur au plus n d’éléments de S, si x # 0, alors
|z| > k=Ce=Cn.

Démonstration. Soit K le corps de nombres engendré par S, d = [K : Q), et
Ok lanneau des entiers de K. Soit ¢ € N* tel que pour tout s € S, ¢s € Ok.
Alors, ¢"x € Ok et par conséquent ¢ N(x) = N(qz) € Z. Si 2 # 0, on a donc

_dn<|N |_]‘_[|0_z
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d’ou p
q— n

[T, loi(@)|

Il existe une constante Cyp = Cy(S) telle que pour tout 4, |o;(w)| < ke®o™ et
donc

|z >

|$| > kfdefc'n,

dCon ]

C — gde

ou C est choisi tel que e
Démonstration de la proposition 7.14. Soit U un voisinage ouvert de l'identité
dans SU5(R) tel que pour tout sous-groupe fermé H, le sous-groupe engendré
par U N H soit abélien. Notons S = Supp i et S’ ’'ensemble des coefficients des
éléments de S. Les coefficients d’'un mot w de longueur n en les éléments de
S sont des sommes d’au plus n produits de longueur au plus n d’éléments de
S’. D’aprés le lemme ci-dessus appliqué a S’, on a donc, pour une constante C'
dépendant de S,
d(w,1) > e~

Si wy,ws € UNHE ™™ alors d([wy,wa],1) < e72C™ et comme £([wy, ws]) <
4n, la condition diophantienne implique [wy, ws] = 1. Ainsi, U N HE A gn
est une partie commutative de SU3(R), elle est donc incluse dans un tore H', et
d’aprés la proposition 7.12,

(e—SCn)
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