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Chapitre 1

Équidistribution dans les
groupes compacts

Dans tout ce chapitre, on note G un groupe topologique compact. Étant
donnée une mesure de probabilité µ borélienne sur G, on considère une suite de
variables aléatoires (gi)i∈N∗ indépendantes, identiquement distribuées suivant la
loi µ, et on s’intéresse à la marche aléatoire associée, définie par{

x0 = 1
∀n ≥ 1, xn = gnxn−1 = gngn−1 . . . g1.

(1.1)

Nous montrerons dans un premier temps que, sous certaines hypothèses natu-
relles sur µ, la marche (xn) converge en loi vers la probabilité de Haar, unique
mesure de probabilité invariante par multiplication à gauche et à droite par
les éléments de G, puis nous tâcherons de comprendre à quelle vitesse cette
convergence a lieu.

1.1 Une construction de la mesure de Haar
Nous ferons dans la suite deux hypothèses sur la probabilité µ.

Définition 1.1. Une mesure borélienne µ sur un groupe topologique G est dite
adaptée lorsque son support engendre un sous-groupe dense dans G. Elle est
dite apériodique lorsque son support n’est pas contenu dans une classe à gauche
d’un sous-groupe strict fermé et distingué.

Naturellement, nous dirons que la marche aléatoire définie en (1.1) ci-dessus
est adaptée, ou apériodique, si la mesure µ l’est.

Exercice 1. Donner un exemple de mesure apériodique non adaptée, puis un
exemple de mesure adaptée mais non apériodique.

Exercice 2. Soit µ une mesure adaptée sur un groupe G compact. Montrer que
le semi-groupe engendré par le support de µ est dense dans G ; on dit que µ est
irréductible. Cette propriété est-elle valable lorsque G n’est pas compact ?

Exercice 3. On dit qu’une mesure sur G est symétrique si elle est invariante
par l’application g 7→ g−1. Montrer que toute mesure symétrique adaptée sur
un groupe connexe est apériodique. Que peut-on dire si G n’est pas connexe ?
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6 CHAPITRE 1. ÉQUIDISTRIBUTION

Le but de cette partie est de démontrer le théorème suivant, qui montre à la
fois l’existence et l’unicité de la mesure de Haar sur un groupe compact G, et
la convergence en loi des marches aléatoires adaptées apériodiques.

Théorème 1.2 (Existence et unicité de la mesure de Haar). Soit G un groupe
compact. Il existe une unique probabilité m sur G telle que pour toute probabilité
µ adaptée et apériodique sur G, la marche aléatoire (xn) associée converge en
loi vers m. Cette mesure m est invariante à gauche et à droite par G.

Exercice 4. Soit G un groupe topologique compact. Vérifier que m est l’unique
probabilité borélienne sur G invariante à gauche.

Étant données deux parties A et B d’un groupe G, nous noterons

AB = {x = ab ; a ∈ A, b ∈ B}.

De même, si S est une partie de G et n ∈ N∗, nous noterons Sn l’ensemble des
éléments de G qui peuvent s’écrire comme produit de n éléments de S :

Sn = {x = s1s2 . . . sn ; si ∈ S}.

Une partie S d’un groupe topologique est dite topologiquement génératrice si le
sous-groupe engendré par S est dense dans G.

Proposition 1.3. Soit G un groupe topologique compact, et S une partie to-
pologiquement génératrice de G qui n’est pas incluse dans une classe à gauche
d’un sous-groupe strict fermé distingué. Pour tout ouvert non vide U ⊂ G, il
existe un entier n0 tel que

∀n ≥ n0, SnU = G.

Démonstration. Fixons un élément s ∈ S. La suite de parties (s−nSn)n≥1 est
croissante. Notons

H =
⋃
n≥1

s−nSn

et montrons que H = G.
Si x, y ∈ H, on veut voir que xy ∈ H, i.e. que pour tout voisinage U de

l’identité dans G, xyU rencontre s−nSn pour un certain n. Pour cela, on choisit
un voisinage distingué symétrique V de l’identité tel que V 6 ⊂ U . Comme
x, y ∈ H, pour tout n assez grand, x, y ∈ s−nSnV . On peut alors choisir n de
sorte que s−n ∈ V , ce qui donne x, y ∈ V SnV = SnV 2, et par suite,

xy ∈ SnV 2SnV 2 = S2nV 4 ⊂ s−2nS2nV 6 ⊂ s−2nS2nU.

Ainsi, H est un sous-semi-groupe compact de G, et donc un sous-groupe. De
plus, H est normalisé par s, et donc par sH. Mais S ⊂ sH, donc le groupe H
est normalisé par S, et comme S engendre un sous-groupe dense de G, H est
distingué dans G. Comme S ⊂ sH, notre hypothèse sur S implique H = G.

Par conséquent, si U est un ouvert non vide, G =
⋃
n≥1 s

−nSnU, et par
compacité de G, il existe n0 tel que pour tout n ≥ n0, G = s−nSnU , ce qui
implique G = SnU .

Exercice 5. Soit G un groupe compact, et U un voisinage de l’identité dans
G. Vérifier les points suivants, utilisés dans la démonstration ci-dessus.
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1. Il existe un voisinage de l’identité distingué V inclus dans U .
2. Si s ∈ G, il existe n arbitrairement grand tel que sn ∈ U .
3. Un sous-semi-groupe fermé d’un groupe compact est un groupe.
4. Donner un exemple d’un semi-groupe compact qui n’est pas un groupe.

Définition 1.4. Si µ et ν sont deux mesures boréliennes sur G, leur produit
de convolution µ ∗ ν est l’image de la mesure produit µ ⊗ ν sur G × G par
l’application (x, y) 7→ xy. En d’autres termes, pour toute fonction φ ∈ C(G),∫

G

φ(z)(µ ∗ ν)(dz) =

∫∫
G×G

φ(xy)µ(dx)ν(dy).

Notons que pour n ∈ N∗, la puissance de convolution µ∗n =

n fois︷ ︸︸ ︷
µ ∗ · · · ∗ µ

est la loi au temps n de la marche aléatoire (xn) associée à µ, de sorte que
le théorème 1.2 est équivalent au fait que pour toute mesure µ apériodique
et adaptée sur un groupe compact G, la suite des puissances de convolution
(µ∗n)n≥1 converge faiblement vers la mesure de probabilité m sur G.

Si µ est une mesure borélienne sur G et f ∈ C(G), nous noterons µ ∗ f et
f ∗ µ les convolutions de f par µ à gauche et à droite, respectivement, définies
par

µ ∗ f(x) =

∫
G

f(g−1x)µ(dg) et f ∗ µ(x) =

∫
G

f(xg)µ(dg).

Notre démonstration du théorème 1.2 s’inspire de la construction par Von Neu-
mann de la mesure de Haar sur les groupes compacts, mais nous utiliserons des
opérateurs de convolution sur C(G) plutôt que des opérateurs de moyennes de
translations.

Démonstration du théorème 1.2. Soit µ une probabilité adaptée et apériodique
µ sur G et

Tµ : C(G) → C(G)
f 7→ µ ∗ f

l’opérateur de convolution à gauche associé. Fixons aussi un élément f quel-
conque dans C(G).
Observation 1 : Toute valeur d’adhérence de (Tnµ f) est constante.
Supposons qu’une sous-suite (Tnkµ f) converge uniformément vers ϕ ∈ C(G).
Comme la suite (supTnµ f) est décroissante, elle converge, et

supϕ = inf
n≥0

supTnµ f.

Par conséquent, pour tout r ≥ 1, supT rµϕ = limk→∞ supTnk+r
µ f ≥ supϕ et

donc supT rµϕ = supϕ. Soit maintenant x0 tel que

T rµϕ(x0) =

∫
ϕ(g−1x0)µ∗r(dg) = supT rµϕ.

Comme supT rµϕ = supϕ, cette égalité implique que pour presque tout g au sens
de la mesure µ∗r, et donc pour tout g dans le support de µ∗r, ϕ(g−1x0) = supϕ.
Mais d’après la proposition 1.3, le support de µ∗r converge vers G lorsque r tend
vers l’infini, et par continuité, ϕ est donc constante.
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Observation 2 : La suite (Tnµ f) n’admet qu’une seule valeur d’adhérence.
L’astuce consiste à étudier aussi un opérateur de convolution à droite. Soit ν
une autre probabilité borélienne adaptée apériodique sur G, et Ťν : f 7→ f ∗ ν
l’opérateur de convolution à droite par ν. Si c et c′ sont des valeurs d’adhérence
(constantes) des suites (Tnµ f) et (Ťnν f), respectivement, alors c = c′. En effet,
comme les opérateurs Tµ et Ťν sont de norme 1, commutent, et préservent les
constantes,

c← Ťnkν Tmkµ f = Tmkµ Ťnkν f → c′.

Cet argument montre en outre que l’unique valeur d’adhérence de (Tnµ f) ne
dépend pas de la probabilité adaptée et apériodique µ, on la note m(f).

La suite (Tnµ f) est équicontinue et admetm(f) comme unique valeur d’adhé-
rence dans C(G), donc, d’après le théorème d’Ascoli, elle converge uniformément
vers cette valeur d’adhérence :

limTnµ f = m(f).

D’après le théorème de Riesz, la forme linéaire positive f 7→ m(f) sur C(G)
correspond à une unique mesure de Radon. Bien sûr, m(G) = limTnµ 1 = 1
donc m est une mesure de probabilité sur G. Enfin, pour tout a ∈ G, notant
(af)(x) = f(xa),

m(af) = m(Ťδaf) = limTnµ Ťδaf = lim ŤδaT
n
µ f = Ťδam(f) = m(f).

De même, en utilisant les opérateurs Ťnν on montre que pour tout b dans G,
m(fb) = m(f), si (fb)(x) = f(bx). Ainsi, la mesure m est bien invariante à
gauche et à droite par G.

Exercice 6. Soit G un groupe compact et µ une probabilité adaptée sur G,
mais non nécessairement apériodique. À l’aide des méthodes utilisées dans la
démonstration ci-dessus, montrer que la suite ( 1

n

∑n
k=1 µ

∗k)n≥1 converge faible-
ment vers m.

Exercice 7. Dans la démonstration ci-dessus, nous avons implicitement admis
l’existence d’une mesure adaptée apériodique sur G, ce qui n’est pas un résultat
évident a priori.

1. La cellularité 1 d’un espace topologique X, notée c(X), est le cardinal
maximal d’une famille d’ouverts disjoints de X.

(a) Construire un espace X compact dont la cellularité est non dénom-
brable : c(X) > ℵ0.

(b) Si c(X) > ℵ0, montrer que pour toute probabilité borélienne sur X,
il existe un ouvert U non vide tel que µ(U) = 0.

(c) En déduire que si G est un groupe compact, alors c(G) ≤ ℵ0.

2. Montrer que si le groupe compact G est métrique, il existe une probabilité
adaptée apériodique sur G.

3. On considère maintenant un groupe compact non nécessairement sépa-
rable.

1. Nous remercions Pierre Petit pour ses explications sur cette notion et les liens avec
l’inexistence de mesures de probabilités à support total.
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(a) Pour f ∈ C(G), on note αf = inf{supTµf ; µ probabilité borélienne surG}.
Montrer que si (µn) est une suite de probabilités telle que αf =
limn supTµnf , alors toute valeur d’adhérence de (Tµnf) est constante,
égale à αf .

(b) Montrer qu’on a aussi αf = inf{sup Ťνf ; ν probabilité borélienne surG}.
En déduire que l’application m : f 7→ αf définit une probabilité bo-
rélienne sur G invariante à droite et à gauche.

1.2 Analyse harmonique sur les groupes compacts

Nous rappelons dans cette partie les résultats fondamentaux de l’analyse har-
monique sur les groupes compacts. Admettant l’existence de la mesure de Haar,
cela nous donnera en particulier une deuxième démonstration de la convergence
en loi des marches aléatoires sur G.

Définition 1.5. Une représentation unitaire d’un groupe topologique G est un
morphisme continu ρ : G → U(V ), où V est un espace de Hilbert, et U(V )
l’espace des opérateurs unitaires sur V , muni de la norme d’opérateur. La re-
présentation ρ est dite irréductible si {0} et V sont les seuls sous-espaces fermés
invariants de V .

Notations. Dans ce cours, un espace de Hilbert V sera toujours muni d’un
produit hermitien 〈·, ·〉 linéaire par rapport à la seconde variable, et anti-linéaire
par rapport à la première. En d’autres termes, pour x, y ∈ V et λ ∈ C, 〈x, λy〉 =
λ〈x, y〉 mais 〈λx, y〉 = λ̄〈x, y〉, où λ̄ désigne le conjugué de λ dans C. Si A est un
endomorphisme de V , on note A∗ l’adjoint de A, i.e. l’unique élément de EndV
qui satisfait, pour tous x, y ∈ V , 〈x,Ay〉 = 〈A∗x, y〉.

Remarque. Pour insister sur le fait qu’on ne considère que les sous-espaces
fermés, on parle parfois de représentation topologiquement irréductible. Par
exemple, l’action de SL2(C) sur L2(C) est topologiquement irréductible (cf.
Knapp, Representation theory of semisimple Lie groups, page 33), mais n’est pas
algébriquement irréductible, puisque les fonctions C∞ forment un sous-espace
invariant dense.

Exercice 8. Donner un exemple de représentation unitaire d’un groupe topolo-
gique qui ne se décompose pas en somme directe hilbertienne de représentations
irréductibles.

Définition 1.6. Si G est un groupe compact, nous noterons Ĝ le dual unitaire
de G, c’est-à-dire l’ensemble des représentations irréductibles unitaires de G, à
isomorphisme près.

Exercice 9. SoitG = T = R/Z le tore de dimension 1. Montrer que Ĝ s’identifie
à Z.

Comme dans le cas du tore T = R/Z, nous allons définir pour un groupe
compact G quelconque la série de Fourier d’une fonction f ∈ L1(G). Cela nous
permettra d’analyser ensuite la structure de l’algèbre L2(G) et de montrer des
analogues des théorèmes classiques : Weierstrass trigonométrique, formule de
Plancherel, ...etc.
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Définition 1.7. Pour ρ ∈ Ĝ, on définit le sous-espace de coefficients Hρ <
L2(G) par

Hρ = Vect{g 7→ 〈u, ρ(g)v〉; u, v ∈ Vρ}.

Notons que Hρ est stable par l’action régulière de G à gauche et à droite
sur L2(G), puisque l’on peut écrire 〈u, ρ(h1)ρ(g)ρ(h2)v〉 = 〈u′, ρ(g)v′〉 avec u′ =
ρ(h1)∗u et v′ = ρ(h2)v. Le théorème suivant est une généralisation du théorème
de Weierstrass trigonométrique.

Théorème 1.8 (Péter-Weyl). Soit G un groupe compact. L’espace L2(G) se
décompose en somme directe hilbertienne orthogonale

L2(G) =
⊕
ρ∈Ĝ

Hρ.

C’est à partir de ce résultat que nous montrerons les propriétés importantes
de la transformée de Fourier sur les groupes compacts, dont nous rappelons
maintenant la définition.

Définition 1.9 (Transformée de Fourier). Pour f ∈ L1(G) et ρ ∈ Ĝ, on note
f̂(ρ) =

∫
G
f(g)ρ(g)∗ dg. La transformée de Fourier sur le groupe compact G est

l’application
L1(G) →

⊕
ρ∈Ĝ EndVρ

f 7→ (f̂(ρ))ρ∈Ĝ

Le produit de convolution sur L1(G), défini par

f1 ∗ f2(x) =

∫
G

f1(g)f2(g−1x) dg,

permet de munir les espaces L1(G), L2(G) et C(G) de structures d’algèbres.
On laisse au lecteur le soin de vérifier que la transformée de Fourier est un
morphisme d’algèbres, i.e.

∀f1, f2, f̂1 ∗ f2(ρ) = f̂1(ρ)f̂2(ρ).

Théorème 1.10 (Isomorphisme de Fourier). Si chaque EndVρ est muni de la
norme de Hilbert Schmidt définie par ‖A‖HS = Tr(A∗A)

1
2 , l’application

f 7→
(

(dimVρ)
1
2 f̂(ρ)

)
ρ∈Ĝ

induit une isométrie L2(G) '
⊕

ρ∈Ĝ EndVρ (somme hilbertienne).

Comme corollaires de ce théorème, on obtient des généralisations des for-
mules bien connues de l’analyse de Fourier sur le cercle.

Formule de Parseval

∀f ∈ L2(G), ‖f‖22 =
∑
ρ∈Ĝ

(dimVρ)‖f̂(ρ)‖2HS

Formule de Plancherel

∀f ∈ C∞(G),∀x ∈ G, f(x) =
∑
ρ∈Ĝ

(dimVρ) Tr(f̂(ρ)ρ(x))
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Le restant de cette partie est consacré à la démonstration de ces résultats
fondamentaux, qui nous permettront de retrouver – en admettant l’existence de
la mesure de Haar – l’équidistribution des marches aléatoires sur les groupes
compacts.

Lemme 1.11 (Lemme de Schur). Soit G un groupe topologique et V1, V2 deux
représentations unitaires irréductibles de G. Si A : V1 → V2 est un opérateur
linéaire tel que pour tout g ∈ G, ρ2(g)A = Aρ1(g), alors

1. Si V1 6∼ V2 (comme représentations de G), alors A = 0.
2. Si V1 = V2, alors il existe λ ∈ C tel que A = λ Id.

Démonstration. Les sous-espaces fermés kerA et imA sont stables par l’action
de G, donc égaux à {0} ou à l’espace tout entier, par irréductibilité. Cela montre
la première partie.

Pour la deuxième partie, on remarque que A commute à tous les opérateurs
ρ(g), g ∈ G, et comme ρ est unitaire, il en est de même pour l’opérateur adjoint
A∗. Par suite, les opérateurs auto-adjoints L = A+A∗

2 etM = A−A∗
2i commutent

à l’action de G. D’après le théorème spectral, tout projecteur spectral E : V →
V associé à L ou M commute à l’action de G, et son noyau est donc un sous-
espace fermé stable par G, égal à {0} ou V , par irréductibilité. Par conséquent
L et M n’ont chacun qu’une unique valeur spectrale : pour certains x, y ∈ C,
L = x, M = y, et donc A = λ Id, avec λ = x+ iy.

Proposition 1.12. Soit G un groupe compact. Toute représentation unitaire
irréductible de G est de dimension finie.

Démonstration. Soit v un vecteur unitaire dans V . L’opérateur

Av : u 7→
∫
G

〈gv, u〉gv dg

commute à l’action de G donc Av = λv Id d’après le lemme de Schur. De plus,
pour u unitaire, λv = 〈u,Avu〉 =

∫
G
|〈gv, u〉|2 dg = λu, donc il existe λ tel que

∀v, λv = λ. En outre, λ = 〈v,Avv〉 =
∫
G
|〈gv, v〉|2 dg > 0.

Soit u1, . . . , un une famille orthonormée dans V . Pour chaque k,∫
G

|〈gu1, uk〉|2 dg = λ

et donc

nλ =

n∑
k=1

∫
G

|〈gu1, uk〉|2 dg

=

∫
G

n∑
k=1

|〈gu1, uk〉|2 dg

≤
∫
G

‖gu1‖2 dg =

∫
G

‖u1‖2 dg = 1.

Cela montre que n ≤ 1
λ , et donc que V est de dimension finie.

Exercice 10. Montrer que l’orbite d’un vecteur sous l’action d’un groupe com-
pact peut engendrer un espace de dimension infinie.
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Dans la suite, le groupe compact G est toujours muni de la probabilité de
Haar, et l’espace L2(G) du produit scalaire associé.

Proposition 1.13 (Orthogonalité des coefficients). Soit G un groupe compact,
et ρ1 : G → GL(V1) et ρ2 : G → GL(V2) deux représentations irréductibles de
G. Pour u1, v1 ∈ V1 et u2, v2 ∈ V2,

Iu1,v1,u2,v2 =

∫
G

〈u1, ρ(g)v1〉〈u2, ρ(g)v2〉dg =

{
0 si ρ1 6∼ ρ2

〈u1,u2〉〈v1,v2〉
dimV1

si ρ1 = ρ2.

Démonstration. Pour u dans un espace de Hilbert V , on note u∗ la forme linéaire
v 7→ (u, v). Cela permet de calculer les produits hermitiens avec la notation
matricielle (u, v) = u∗v. Ensuite, calculons,∫

G

〈u1, ρ1(g)v1〉〈u2, ρ2(g)v2〉dg =

∫
G

〈u1, ρ1(g)v1〉〈ρ2(g)v2, u2〉dg

=

∫
G

u∗1ρ1(g)v1v
∗
2ρ2(g)∗u2dg

= u∗1

(∫
G

ρ1(g)v1v
∗
2ρ2(g)−1dg

)
︸ ︷︷ ︸

A

u2

L’opérateur A ∈ Hom(V1, V2) vérifie les hypothèses du lemme 1.11, donc

A =

{
0 si ρ1 6∼ ρ2

TrA
dimV1

Id si ρ1 = ρ2.

Cela montre déjà le résultat si ρ1 6∼ ρ2, et si ρ1 = ρ2, comme Tr(v1v
∗
2) = 〈v1, v2〉,

on trouve bien

Iu1,v1,u2,v2 = 〈u1, u2〉
Tr v1v

∗
2

dimV1
=
〈u1, u2〉〈v1, v2〉

dimV1
.

Exercice 11. Si V est un espace de Hilbert, on définit un produit hermitien
sur EndV par 〈A,B〉 = TrA∗B.

1. Montrer que Hρ = {g 7→ 〈A, ρ(g)〉 ; A ∈ EndVρ}.
2. Montrer que sous les hypothèses de la proposition ci-dessus, pour tous
A1 ∈ EndV1 et A2 ∈ EndV2,

IA1,A2
=

∫
G

〈A1, ρ(g)〉〈A2, ρ(g)〉dg =

{
0 si ρ1 6∼ ρ2
〈A1,A2〉
dimV1

si ρ1 = ρ2.

Démonstration du théorème de Péter-Weyl. Par orthogonalité des coefficients,
les sous-espaces Hρ sont bien deux à deux orthogonaux. Reste à voir qu’ils
engendrent un sous-espace dense. Pour cela, on remarque que H = ⊕ρ∈ĜHρ est
une algèbre. Cela découle de la formule

〈u1, ρ1(g)v1〉〈u2, ρ2(g)v2〉 = 〈u1 ⊗ u2, (ρ1 ⊗ ρ2)(g)(v1 ⊗ v2)〉
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et du fait que ρ1 ⊗ ρ2 se décompose en somme directe de représentations irré-
ductibles, car G est compact. Si ρ : G → GL(V ) est une représentation de G,
la représentation duale ρ∗ : G → GL(V ∗) est définie par ρ∗(g)f = f ◦ ρ(g)−1

pour tout f ∈ V ∗. Cette représentation duale montre que H est aussi stable par
conjugaison complexe, et d’après le théorème de Stone-Weierstrass, H est dense
dans C(G) si H sépare les points, ce qui revient à dire que si ρ(g) = 1 pour tout
ρ ∈ Ĝ, alors g = 1. Cela est clair : si ρ(g) = 1 pour tout g ∈ Ĝ, alors, comme
L2(G) se décompose en somme d’irréductibles, g agit trivialement sur L2(G),
donc g = 1. (Sinon, g · 1U 6= 1U dès que U est un voisinage compact de 1 ne
contenant pas g.)

Exercice 12. On propose une autre démonstration de la densité de H dans
L2(G), qui n’utilise pas le théorème de Stone-Weierstrass, mais plutôt la convo-
lution par des unités approchées.

1. Soit φ ∈ C(G) symétrique à valeurs réelles. Montrer que l’opérateur T :
f 7→ f ∗ φ est un opérateur compact auto-adjoint sur L2(G).

2. En déduire que ses espaces propres pour les valeurs propres non nulles
sont de dimension finie, et que

L2(G) = kerT ⊕
⊕
n

(kerT − λn).

3. En utilisant le fait que T commute à l’action de G régulière à gauche,
montrer que les espaces propres sont stables par l’action régulière à gauche
de G, puis que imT = ⊕n(kerT − λn) est inclus dans le sous-espace H
des coefficients de représentations de dimension finie.

4. Si f est un élément orthogonal à H, montrer que pour tout φ, f ∗ φ est
orthogonal à f , et conclure.

Maintenant que nous avons montré le théorème de Péter-Weyl, la formule
d’inversion de Fourier découle d’un simple calcul d’intégrale.

Démonstration de l’isomorphisme de Fourier. Fixons ρ ∈ Ĝ. Pour f ∈ Hρ,
choisissons A ∈ EndVρ tel que f(g) = 〈A, ρ(g)〉. Par orthogonalité des ca-
ractères,

f̂(g) =

∫
G

〈A, ρ(g)〉ρ∗(g) dg =
A

dimVρ

tandis que

‖f‖2L2(G) =

∫
G

|〈A, ρ(g)〉|2 dg =
‖A‖2HS
dimVρ

et donc f 7→ (dimVρ)
1
2 f̂(ρ) est une isométrie bijective deHρ sur EndVρ. Comme

L2(G) est égal à la somme hilbertienne des Hρ, cela démontre l’isomorphisme
annoncé.

Exercice 13. On considère l’action de G×G sur l’espace L2(G) donnée par

[(g, h) · f ](x) = f(g−1xh).

Montrer que les composantes irréductibles de cette représentation sont les sous-
espaces Hρ du théorème de Péter-Weyl.
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Admettant l’existence de la mesure de Haar, l’analyse harmonique permet
aussi de montrer la convergence des marches aléatoires apériodiques adaptées.

Convergence des marches aléatoires, deuxième démonstration. Soit µ une pro-
babilité adaptée apériodique sur G. On veut voir que µ∗n converge faiblement
vers la mesure de Haar sur G.

Rappelons que l’opérateur de convolution à droite Tµ associé à µ est défini
par

Tµf = f ∗ µ.

Montrons tout d’abord que les opérateurs Tµ∗n = Tnµ convergent simplement
vers 0 sur L2

0(G). Pour cela, notons, pour ρ ∈ Ĝ,

µ̂(ρ) =

∫
G

ρ∗(g)µ(dg).

L’espace L2
0(G) se décompose en somme de représentations irréductibles non

triviales, chacune de dimension finie et stable par Tµ. Comme ‖Tµ‖op ≤ 1 il
suffit de vérifier que Tµ n’a pas de valeur propre de module 1. On raisonne par
contraposée en supposant que Tµf = λf avec |λ| = 1. Cela implique µ̌∗µ∗f = f
et, par stricte convexité de L2(G), f est invariante par S−1S, où S = Suppµ.
Mais alors S−1S est inclus dans le sous-groupe fermé StabG f , et µ n’est pas
adaptée apériodique.

Soit maintenant f ∈ C(G). La suite de fonctions (Tnµ f)n≥1 est équicontinue
et converge vers

∫
G
f dans L2(G), donc elle converge vers

∫
G
f dans C(G). En

particulier,

(Tnµ f)(1) =

∫
G

f(g)µ∗n(dg)→n→∞

∫
G

f,

et (µ∗n) converge faiblement vers la probabilité de Haar sur G.

1.3 La propriété du trou spectral
Nous voulons maintenant étudier la vitesse de convergence de la suite (µ∗n)n≥1

vers la mesure de Haar. Cela se fera par l’étude de la suite (Tnµ )n≥1, où Tµ :
f 7→ µ ∗ f est l’opérateur de convolution associé à µ. Notons que l’analyse des
marches aléatoires à l’aide de la théorie de Fourier nous a permis de montrer la
proposition suivante.

Proposition 1.14. Soit G un groupe compact et µ une probabilité adaptée et
apériodique sur G. La suite d’opérateurs (Tnµ )n≥1 converge simplement vers 0
sur l’espace L2

0(G) = {f ∈ L2(G) |
∫
G
fdm = 0}.

Exercice 14. Démontrer cette proposition directement à partir du théorème 1.2.

Définition 1.15 (Propriété du trou spectral). Nous dirons que la mesure de
probabilité µ sur G admet un trou spectral en 1 dans L2(G) si la suite (Tnµ )n≥1

converge en norme vers 0 dans L2
0(G).

Rappelons que si A est une algèbre de Banach et T ∈ A, le spectre de T
dans A est l’ensemble

SpecA(T ) = {λ ∈ C | T − λ non inversible dans A}
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et le rayon spectral de T

RSA(T ) = max{|λ| ; λ ∈ SpecA(T )}.

Proposition 1.16. Soit A une algèbre de Banach et T ∈ A. Les assertions
suivantes sont équivalentes.

1. La suite (Tn)n≥1 converge en norme vers 0 dans A.
2. RSA(T ) < 1.

Démonstration. L’équivalence découle immédiatement de la formule pour le
rayon spectral

RSA(T ) = inf
n≥1
‖Tn‖ 1

n ,

dont la démonstration est laissée en exercice.

Exercice 15. Soit A une algèbre de Banach et T ∈ A. Montrer que RSA(T ) =

infn≥1‖Tn‖
1
n .

Si µ admet un trou spectral dans L2(G), cette proposition montre que la
valeur propre 1 est isolée dans Spec(Tµ), ce qui justifie la terminologie utilisée.

Plus généralement, si µ est une mesure borélienne finie sur G, on pose

µ̂(ρ) =

∫
G

ρ(g)µ(dg).

Proposition 1.17. Une probabilité borélienne µ sur G admet un trou spectral si,
et seulement si, il existe une constante ε > 0 telle que pour toute représentation
ρ ∈ Ĝ non triviale, RS(µ̂(ρ)) ≤ 1− ε.

Démonstration. L’isomorphisme de Fourier montre que L2
0(G) se décompose en

somme de représentations irréductibles non triviales. Si V ' V ∗ρ est l’une de ces
composantes irréductibles, l’opérateur Tµ préserve V et agit sur V comme son
coefficient de Fourier µ̂(ρ). Par suite, SpecTµ =

⋃
ρ∈Ĝ Spec µ̂(ρ) donc RS(Tµ) =

supρ∈Ĝ RS(µ̂(ρ)) et le résultat est clair.

Exercice 16. Soit µ une mesure apériodique adaptée sur G. Montrer que si
µ est absolument continue par rapport à la mesure de Haar, alors µ admet un
trou spectral.

Exercice 17. Soit G = R/Z et µ = 1
2 (δα + δ−α), avec α 6∈ Q. Montrer que µ

n’admet pas de trou spectral.
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Chapitre 2

Mesures invariantes

Nous avons montré au chapitre précédent que sur un groupe compact G, il
existe une unique probabilité borélienne m invariante. Si B(G) désigne la tribu
borélienne de G, cette mesure m est l’unique application m : B(G) → R+ qui
vérifie les conditions suivantes :

1. (normalisation) m(G) = 1 ;

2. (additivité) ∀(An)n∈N disjoints, m(
⋃
nAn) =

∑
nm(An) ;

3. (invariance) ∀g ∈ G, ∀A, m(gA) = m(A).

Naturellement, on peut compléter la tribu B(G) en lui adjoignant les en-
sembles négligeables pour m, et obtenir ainsi la tribu de Lebesgue L(G), à
laquelle m admet une unique extension. Mais dès que G est infini, il n’est pas
possible de prolonger m à toutes les parties de G.

Exercice 18. Si G est infini, montrer qu’on ne peut pas prolonger m à P(G).

Pour pouvoir étendre le domaine de définition de la mesure de Haar, nous
affaiblissons l’hypothèse d’additivité ci-dessus en la supposant seulement valable
pour les familles finies de parties disjointes. On cherche donc à comprendre les
applications λ : L(G)→ R+ qui vérifient

1. (normalisation) λ(G) = 1 ;

2. (additivité) ∀A,B disjoints, m(A tB) = m(A) +m(B) ;

3. (invariance) ∀g ∈ G, ∀A, m(gA) = m(A).

Nous nous intéresserons dans ce chapitre à deux problèmes étroitement reliés,
posés par Hausdorff [10] et Ruziewicz [1] au début du XXème siècle :

1. (Hausdorff) Peut-on prolonger la mesure de Haar m à toutes les parties
de G, tout en préservant les trois propriétés ci-dessus ?

2. (Ruziewicz) La mesure de Haar est-elle l’unique application L(G) → R+

vérifiant les trois propriétés ci-dessus ?

Dans le cas particulier où G = SOn(R), ces problèmes on joué un rôle crucial
dans la compréhension des sous-groupes de type fini du groupe des rotations,
et ont mené en particulier à la conjecture du trou spectral que nous étudierons
dans les chapitres suivants.

17
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Remarque. En réalité, nous avons construit la mesure de Haar m comme une
forme linéaire positive invariante sur C(G), puis appliqué le théorème de repré-
sentation de Riesz pour justifier que cela donne lieu à une mesure borélienne sur
la tribu des boréliens (puis la tribu complétée) de G. La théorie de l’intégration
permet de prolonger naturellement m en une forme linéaire définie sur tout l’es-
pace L∞(G). Comme il apparaîtra ci-dessous, le problème de Hausdorff revient
est celui de l’existence d’un prolongement de la forme linéaire m à l’espace B(G)
des fonctions bornées sur G, tandis que le problème de Ruziewicz est celui de
l’unicité de m, vue comme forme linéaire sur L∞(G).

2.1 Paradoxe de Banach-Tarski
Dans ce paragraphe, nous cherchons à répondre à la première des deux ques-

tions posées ci-dessus. Soit X un ensemble quelconque, et B(X) l’ensemble des
fonctions bornées à valeurs réelles sur X.

Définition 2.1. Une moyenne sur B(X) est une forme linéaire m′ : B(X)→ R
telle que
(i) (positivité) m′(f) ≥ 0 si f ≥ 0 ;
(ii) (normalisation) m′(1X) = 1.

Si G est un groupe qui agit sur X, nous dirons que m′ est invariante sous
l’action de G si ∀g ∈ G, ∀f ∈ B(X), m′(gf) = m′(f), où G agit sur B(X)
suivant l’action régulière, i.e. (gf)(x) = f(g−1x).

Exercice 19. Montrer qu’une forme linéaire θ positive sur B(X), i.e. vérifiant
θ(f) ≥ 0 si f ≥ 0, est nécessairement continue.

Lemme 2.2. Soit G un groupe agissant sur un espace X. S’il existe une moyenne
invariante sur B(X), alors l’application m : A 7→ m′(1A) définie sur P(X) est
à valeurs dans [0, 1] et a les propriétés suivantes :

1. (normalisation) m(X) = 1 ;
2. (additivité) ∀A,B disjoints, m(A tB) = m(A) +m(B) ;
3. (invariance) ∀g ∈ G, ∀A, m(gA) = m(A).

Réciproquement, toute application qui vérifie ces conditions se prolonge unique-
ment en une moyenne invariante sur B(X).

Démonstration. Par positivité de la forme linéairem′, pour toutA ⊂ X,m(A) =
m′(1A) ≥ 0, et de plus, comme 1X − 1A ≥ 0, 1 −m(A) = m′(1X − 1A) ≥ 0,
donc m(A) ∈ [0, 1]. Les propriétés de normalisation, additivité et d’invariance
de m découlent immédiatement de celles de m′. Réciproquement, si m est une
application sur P(X) vérifiant les propriétés du lemme, elle se prolonge uni-
quement par linéarité à l’espace vectoriel des fonctions en escalier sur X, puis,
par continuité et densité des fonctions en escalier, à B(X) tout entier. Bien sûr,
l’extension m′ vérifie m′(1X) = m(X) = 1, et l’on vérifie sans peine que cette
extension est positive et invariante.

À cause de ce lemme, nous identifierons dans la suite une moyenne sur B(X)
à l’application qu’elle induit sur P(X), et parlerons donc souvent de « moyenne
sur P(X) ». Le problème de Hausdorff énoncé ci-dessus est équivalent à celui de
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l’existence d’une moyenne invariante sur B(G). Pour déterminer si un groupe G
admet une moyenne invariante, nous utiliserons les concepts d’ensembles équi-
décomposables et de décomposition paradoxale.

Définition 2.3 (Ensembles équi-décomposables). Deux parties A et B de X
sont dites équi-décomposables sous l’action de G s’il existe deux partitions finies
A = tni=1Ai et B = tni=1Bi et des éléments gi, i = 1, . . . , n tels que pour chaque
i, Bi = giAi. Si A et B sont équi-décomposables, on note A ∼ B. Si A est
équi-décomposable à une partie de B, on note A . B.

Une réalisation de l’équivalence A ∼ B est une bijection h : A→ B telle que
pour certaines partitions A = tni=1Ai et B = tni=1Bi et certains éléments gi,
i = 1, . . . , n, on ait Bi = giAi et h(ai) = giai pour tout ai ∈ Ai. Alors, si S est
une partie quelconque de A, S ∼ h(S).

Proposition 2.4. Si A . B et B . A, alors A ∼ B.

Démonstration. Soient f : A → B1 ⊂ B et g : B → A1 ⊂ A des réalisations
des inégalités A . B et B . A. Définissons par récurrence C0 = A \ A1 et
Cn+1 = g ◦ f(Cn) et posons C = ∪∞n=0Cn.

On a g−1(A \ C) = B \ f(C). En effet, si x = g−1y, avec y ∈ A \ C, alors
x 6∈ f(C) sans quoi gx = gf(c) ∈ C, car gf(C) ⊂ C. Et réciproquement, si
y ∈ B \ f(C), on peut écrire y = g−1x, avec x ∈ A1 ; alors x 6∈ C, sans quoi
x = (gf)na, a ∈ A \ A1, mais comme x ∈ A1, on doit avoir n ≥ 1, et donc
y = g−1x = f(gf)n−1a ∈ f(C).

Par conséquent, A \ C ∼ B \ f(C), et comme C ∼ f(C), on trouve bien
A ∼ B.

Exercice 20. Faire un dessin qui explique la démonstration ci-dessus.

Corollaire 2.5. Les assertions suivantes sont équivalentes :
(i) Il existe deux parties disjointes A et B dans X telles que A ∼ X ∼ B.
(ii) Il existe une partition X = A tB telle que A ∼ X ∼ B.

Démonstration. Il suffit de vérifier que (i) implique (ii). Cela découle de la
proposition, puisque X \A . X et X ∼ B . X \A.

Définition 2.6 (Décomposition paradoxale). Une décomposition paradoxale de
X est une partition X = A tB telle que A ∼ X ∼ B.

Exercice 21. Montrer que siX admet une décomposition paradoxale, il n’existe
pas de moyenne invariante par G sur B(X).

Exemple. Soit F = 〈a, b〉 un groupe libre engendré par deux générateurs. On
note A+ (resp. A−) l’ensemble des mots réduits commençant par a (resp. a−1),
et on définit de même B+ et B−. Alors, F = A+ tA− tB+ tB− t {1} et

F = A+ t aA− = B+ t bB−

d’où F ∼ A+tA− et F ∼ B+tB−. Avec le corollaire 2.5 ci-dessus, cela montre
que F admet une décomposition paradoxale.

Proposition 2.7. Tout groupe G contenant un sous-groupe libre à deux généra-
teurs admet une décomposition paradoxale. En particulier, un tel groupe n’admet
pas de moyenne invariante sur B(G).
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Démonstration. Soit F un sous-groupe libre de G, et F = A t B une décom-
position paradoxale de F . Soit (xα)α un ensemble de représentants des classes
à gauche de G modulo F . Notons GA = tαAxα et GB = tαBxα. La partition
G = GA tGB est une décomposition paradoxale de G.

Lemme 2.8. Si n ≥ 2, le groupe SOn+1(R) contient un sous-groupe libre à
deux générateurs.

Démonstration. Montrons que les deux éléments

g =
1

3

 1 −2
√

2 0

2
√

2 1 0
0 0 3

 et h =
1

3

3 0 0

0 1 −2
√

2

0 2
√

2 1


engendrent un sous-groupe libre de SO3(R). Notons que les matrices 3g, 3g−1,
3h et 3h−1 sont à coefficients dans l’anneau Z[

√
2], et que par conséquent, pour

tout mot w de longueur k en g et h, il existe des entiers a, b, c ∈ Z tels que

w

1
0
0

 = 3−k

 a

b
√

2
c

 .

De plus, si w est irréductible de longueur k ≥ 1 et se termine par g ou g−1,
alors 3 - b. Plus précisément, on montre par récurrence sur k = `(w) que si
w = uw′g±1, avec u ∈ {g±1, h±1}, alors{

3 - b et 3 | a si u = h±1

3 - b et 3 | c si u = g±1

Les détails de ce calcul sont laissés au lecteur. Cela implique que le groupe
engendré par g et h est libre : si w = w′g±1, l’observation ci-dessus montre

que w

1
0
0

 6=
1

0
0

, et donc w 6= 1 ; et dans le cas général, on peut toujours

conjuguer w à un mot qui se termine par g±1.

Remarque. Plus généralement, d’après l’alternative de Tits, tout sous-groupe
de GLd(R) dont l’adhérence de Zariski n’est pas virtuellement résoluble contient
un groupe libre sur deux générateurs. La démonstration est là encore basée sur
un argument de ping-pong.

Théorème 2.9 (Hausdorff). Si n ≥ 2, il n’existe pas de moyenne invariante
sur l’ensemble des parties de SOn+1(R).

Démonstration. Cela découle immédiatement de l’existence d’un sous-groupe
libre à deux générateurs dans SOn+1(R) et de la proposition 2.7.

Exercice 22. Le but de cet exercice est de montrer qu’il n’existe pas de moyenne
invariante par rotation sur l’ensemble des parties de S2, un résultat dû à Haus-
dorff.

1. Construire un sous-groupe libre F ⊂ SO3(R) et une partie dénombrable
D ⊂ S2 telle que F agisse librement sur S2 \D.
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2. En déduire que S2 \D admet une décomposition paradoxale.
3. Montrer que pour toute partie dénombrable D′ ⊂ S2, les ensembles S2 et

S2 \D′ sont équi-décomposables.
4. Conclure.

Théorème 2.10 (Tarski). Un groupe G admet une moyenne invariante sur
P(G) si, et seulement si, il n’admet pas de décomposition paradoxale.

Remarque. Le théorème de Tarski est valable plus généralement dans le cadre
d’une action de G sur un espace X : il existe une moyenne invariante sur P(X)
si et seulement si X n’admet pas de décomposition paradoxale.

Pour montrer le théorème de Tarski, nous montrerons les caractérisations
équivalentes suivantes des groupes G qui admettent une moyenne invariante sur
B(G). De tels groupes sont dits moyennables en tant que groupes discrets.

Théorème 2.11. Soit G un groupe discret. Les conditions suivantes sont équi-
valentes :
(i) (Følner) Pour tout ε > 0 et tout K ⊂ G fini, il existe U ⊂ G fini tel que

pour tout x ∈ K, |U4xU ||U | ≤ ε.
(ii) (moyennabilité) Il existe une moyenne invariante sur B(G).
(iii) (Tarski) Il n’existe pas de décomposition paradoxale de G.
(iv) (application doublante) Quel que soit K ⊂ G fini, il n’existe pas d’applica-

tion ψ : G→ G vérifiant, pour tout g ∈ G, |ψ−1({g})| ≥ 2 et ψ(g)g−1 ∈ K.

Démonstration. (i)⇒ (ii) Soit H le sous-espace de B(G) engendré par les fonc-
tions de la forme g · f − f , où g ∈ G et f ∈ B(G). Montrons que pour tout
h ∈ H, supg∈G h(g) ≥ 0. Pour cela, on écrit h =

∑n
i=1 kifi − fi, et on note

K = {ki}1≤i≤n. Soit ε > 0 arbitraire et U l’ensemble donné par la condition (i).
Alors,

suph ≥ 1

|U |
∑
u∈U

h(u)

=
1

|U |

n∑
i=1

∑
u∈U

fi(k
−1
i u)− fi(u)

≥ − 1

|U |

n∑
i=1

‖fi‖∞ · |kiU4U |

≥ −nε max
1≤i≤n

‖fi‖∞.

Comme ε > 0 peut être pris arbitrairement petit, cela montre ce qu’on veut.
Pour construire la moyenne invariante, on définit d’abord une forme linéaire
m sur H ⊕ R1G par m(h + λ1G) = λ. D’après le théorème de Hahn-Banach,
on peut prolonger m à B(G) tout entier de sorte que pour tout f ∈ B(G),
m(f) ≤ sup f . L’application m est une forme linéaire positive invariante sur
B(G) ; posant m(A) = m(1A), on obtient la moyenne invariante souhaitée sur
B(G).
(ii)⇒ (iii) Soit m une moyenne invariante sur B(G). Si G = A t B est une
partition de G, alors m(G) = 1 = m(A) +m(B), donc m(A) 6= 1 ou m(B) 6= 1,
et A et B ne sauraient être tous deux équi-décomposables à G.
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(iii)⇒ (iv) On raisonne par contraposée. Soit K ⊂ G un ensemble fini et ψ :

G → G une application doublante telle que pour tout g, ψ(g)g−1 ∈ K. Pour
chaque g ∈ G, choisissons ag tel que ψ(ag) = g, et posons

A = {ag}g∈G et B = G \A,

de sorte que G s’écrit comme réunion disjointe G = AtB. Pour k ∈ K, posons

Ak = {g ∈ A | ψ(g)g−1 = k} et Bk = {g ∈ B | ψ(g)g−1 = k}.

Comme ψ envoie A surjectivement sur G, on doit avoir G = ∪k∈KkAk, et de
même, G = ∪k∈KkBk. Donc G = A tB est une décomposition paradoxale.
(iv)⇒ (i) On raisonne par contraposée. Si G ne satisfait pas la condition de
Følner, il existe ε > 0 et une partie finie K ⊂ G telle que pour toute partie finie
U non vide, |KU \U | ≥ ε|U |. On peut bien sûr supposer que K est symétrique
et contient l’élément neutre. Et même, quitte à remplacer K par Kn, avec n > 2

ε
on peut supposer que pour tout U fini non vide, |KU \ U | ≥ 2|U |.

On considère alors le graphe biparti G t G, où deux éléments g et h sont
reliés s’il existe k ∈ K tel que g = kh. Pour tout U ⊂ G,

|{h ∈ G | ∃g ∈ U : g ↔ h}| ≥ 2|U |.

D’après le lemme des mariages rappelé ci-dessous, il existe deux injections
φ1, φ2 : G→ G telles que :

— ∀g ∈ G, φ1(g)↔ g et φ2(g)↔ g ;
— ∀g, g′ ∈ G, φ1(g) 6= φ2(g′).

On définit une application ψ : G→ G en posant

ψ(h) =

{
g s’il existe g ∈ G tel que h ∈ {φ1(g), φ2(g)}
h sinon.

Tout élément g ∈ G admet au moins deux antécédents par ψ, à savoir φ1(g)
et φ2(g), et on a toujours ψ(g)g−1 ∈ K. Donc ψ est l’application doublante
recherchée.

Lemme 2.12 (Lemme des mariages de Hall). Soit X t Y un graphe biparti de
valence bornée.

1. Si ∀U ⊂ X, |{b ∈ Y | ∃a ∈ U : a ↔ b}| ≥ |U |, alors il existe φ : X → Y
injective telle que ∀a, a↔ φ(a) ;

2. Si ∀U ⊂ X, |{b ∈ Y | ∃a ∈ U : a ↔ b}| ≥ 2|U |, alors il existe φ1, φ2 :
X → Y injectives telles que ∀a, φ1(a)↔ a et φ2(a)↔ a et ∀a, a′, φ1(a) 6=
φ2(a′).

Démonstration. Commençons par montrer le premier point. Étant donnée une
partie U ⊂ X, on note AdjU l’ensemble des voisins de U . Supposons d’abord
|X| < +∞. On raisonne par récurrence sur |X|. Si |X| = 1, alors X = {x} et
|Adjx| ≥ 1, donc le résultat est clair. Supposons donc |X| ≥ 2. On distingue
deux cas.
Premier cas : ∃X ′ ⊂ X : ∅ 6= X ′ 6= X et |AdjX ′| = |X ′|.
Il suffit alors de construire φ sur X ′ à valeurs dans AdjX ′, puis sur X \ X ′ à
valeurs dans AdjX \AdjX ′.
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Second cas : ∀X ′ ⊂ X, |AdjX ′| > |X ′| si X ′ 6= ∅.
On choisit x ∈ X quelconque puis y ∈ Y tel que y ↔ x. Soit X ′ = X \ {x} et
Y ′ = Y \ {y}. Pour tout U ⊂ X ′,

|AdjY ′ U | ≥ |AdjY U | − 1 ≥ |U |

et on peut donc appliquer l’hypothèse de récurrence à X ′ et Y ′ pour conclure.
Supposons maintenant X dénombrable. On écrit alors X = t∞i=1Xi, avec

∀i, |Xi| < +∞ et X1 ⊂ X2 ⊂ . . . , et on note Yi = AdjXi. Tous ces ensembles
sont finis car le graphe X t Y est de valence bornée. La première partie de la
démonstration s’applique donc aux sous-graphes Xi t Yi. Comme, pour chaque
i, il n’y a qu’un nombre fini de possibilités pour φi, on peut supposer, quitte
à extraire, que les φi sont compatibles avec l’inclusion, de sorte que la limite
inductive φ = inj limφi est bien définie, injective, et vérifie ∀x, φ(x)↔ x.

Dans le cas général, on se ramène au cas dénombrable en construisant φ
sur chaque composante connexe du graphe. Une telle composante connexe est
dénombrable car le graphe est de valence bornée.

Enfin, pour montrer la seconde assertion du lemme, il suffit d’appliquer le
premier point au graphe biparti (X tX) t Y .

Exercice 23 (Rotations en dimension 2). Montrer que G = SO2(R) admet une
moyenne invariante sur B(G). (Indication : Utiliser le critère de Følner.)

Pour la suite, nous aurons aussi besoin de généraliser un peu la notion d’en-
sembles équi-décomposables. Étant donnés deux entiersm,n ≥ 1 et deux parties
A,B ⊂ X, nous dirons que mA et nB sont équi-décomposables si l’on peut dé-
composer m copies de A pour former avec les parties obtenues n copies de B
grâce à l’action de G. Nous écrirons alors mA ∼ nB. On laisse le soin au lecteur
d’adapter la démonstration de la proposition 2.4 pour montrer que mA . nB
et nB . mA implique mA ∼ nB. La règle de simplification suivante est un peu
plus subtile.

Proposition 2.13 (Règle de simplification). Si nA ∼ nB pour un certain
n ≥ 1, alors A ∼ B.

Démonstration. L’équivalence A ∼ B signifie qu’il existe un ensemble fini F
d’éléments de G et une partition A = tf∈FAf telle que B s’écrit comme réunion
disjointe B = tf∈F fAf . On peut voir cela comme un graphe biparti A tB, où
chaque point a ∈ A est relié à fa, où f ∈ F est choisi de sorte que a ∈ Af . De la
même manière, l’équivalence nA ∼ nB permet de construire un graphe biparti
A t B de valence n. En effet, pour chacune des n partitions P(i), i = 1, . . . , n

de A, un point a appartient à un unique atome P (i)
a , envoyé sur une partie

giP
(i)
a ⊂ B. Le point a est relié à chaque gia, i = 1, . . . , n. D’après le théorème

de Kőnig rappelé ci-dessous, il existe une application bijective φ : A → B telle
que pour tout a ∈ A, a est relié à φ(a). Cela montre que A ∼ B.

Théorème 2.14 (Kőnig). Soit A t B un graphe biparti régulier de valence
k ∈ N∗. Il existe un couplage bijectif de A et B.

Démonstration. On commence par le cas où le graphe est fini. Soit X ⊂ A et
Y = AdjX. Le graphe est régulier, donc le nombre d’arêtes issues de X est égal
à k|X|, tandis que le nombre d’arêtes issues de Y est égal à k|Y |. Comme ces
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ensembles coïncident — ils sont simplement constitués des arêtes entre X et Y
— cela montre que |X| = |Y |. D’après le lemme des mariages de Hall, il existe
un couplage de A et B, qui est bijectif car |A| = |B|.

Dans le cas général, on remarque que toute composante connexe du graphe
est dénombrable, puisque la valence est finie. Il suffit donc de montrer le résultat
lorsque A et B sont dénombrables. Notons (en)n∈N la suite des arêtes de AtB.
Un couplage M de A et B peut être codé par une suite s = (sn)n∈N, où

sn =

{
1 si en ∈M
0 sinon.

Le couplage est bijectif si pour chaque a ∈ A (resp. b ∈ B), il existe un unique
n ∈ N tel que sn = 1 et a (resp. b) est une extrémité de en. Nous allons
construire la suite (sn) par induction. Une suite finie s = (sn)0≤n≤N est dite
admissible s’il existe un graphe biparti régulier A′ t B′ fini contenant toutes
les extrémités des arêtes en, n = 0, . . . , N et admettant un couplage M ′ tel
que pour n = 0, . . . , N , l’arête en appartient à M ′ si et seulement si sn = 1.
Pour tout N , il existe une suite finie admissible de longueur N . Cela permet de
définir par récurrence la suite (sn) recherchée : on choisit pour chaque N une
suite admissible (sn)0≤n≤N qui prolonge les termes n < N déjà choisis et qui
admet une infinité de prolongements.

Remarque. Dans le théorème de Kőnig, comme dans la démonstration de la
règle de simplification, le graphe peut avoir des arêtes multiples.

Théorème 2.15 (Paradoxe de Banach-Tarski). Soit G un groupe compact. On
suppose que G n’est pas moyennable en tant que groupe discret. Alors G est
équi-décomposable à toute partie d’intérieur non vide U ⊂ G.

Démonstration. Comme G est compact et U d’intérieur non vide, G peut être
recouvert par un nombre fini de translatés de U . Cela montre déjà que pour
un certain n, G . nU . Mais G n’est pas moyennable comme groupe discret,
et admet donc une décomposition paradoxale G ∼ 2G, qui implique G ∼ nG.
Ainsi, nG . nU . Réciproquement, on a bien sûr U . G, et donc nU . nG, puis
nU ∼ nG. D’après la proposition 2.13, U ∼ G, ce qu’il fallait démontrer.

2.2 Problème de Ruziewicz

Dans le paragraphe précédent, le groupeG était vu comme un groupe discret,
et nous avons ainsi donné un critère pour qu’il existe une moyenne invariante
définie sur l’espace B(G) des fonctions bornées sur G. Dorénavant, G sera muni
d’une topologie localement compacte quelconque. Nous avons vu au chapitre 1
qu’il existe une unique mesure de Radon m sur G, appelée mesure de Haar,
ce qui permet de définir l’espace L∞(G) = L∞(G,m) constitué des classes
d’équivalence modulo m de fonctions mesurables bornées.

Définition 2.16. Une moyenne sur L∞(G) est une forme linéaire λ : L∞(G)→
R telle que

(i) (positivité) λ(f) ≥ 0 si f ≥ 0 ;

(ii) (normalisation) λ(1G) = 1.
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Nous dirons que λ est invariante si ∀g ∈ G, ∀f ∈ L∞(X), λ(gf) = λ(f).

Remarque. Si G est muni de la topologie discrète, alors L∞(G) coïncide avec
l’espace B(G) de toutes les fonctions bornées sur G. C’est ce cas que nous avons
étudié au paragraphe précédent. En général, un groupe topologique G est dit
moyennable s’il existe une moyenne invariante sur L∞(G).

Exercice 24. Soit L(G) la tribu complétée pour la mesure de Haar. Montrer
que la donnée d’une moyenne sur L∞(G) est équivalente à celle d’une application
λ : L(G)→ [0, 1] telle que

1. (normalisation) λ(G) = 1 ;
2. (absolue continuité) ∀A, m(A) = 0⇒ λ(A) = 0 ;
3. (additivité) ∀A,B disjoints, λ(A tB) = λ(A) + λ(B).

Vérifier que l’invariance est compatible avec cette équivalence.

Le problème de Ruziewicz concerne l’unicité de la mesure de Haar vue comme
moyenne invariante sur L∞(G). Dans le cas du groupe des rotations, nous y
observerons la même distinction que pour le problème de Hausdorff : si n ≥ 2
la mesure de Haar est l’unique moyenne invariante par rotation sur les parties
mesurables de Sn, tandis que sur S1, il existe de nombreuses autres moyennes
invariantes, comme le montre l’exercice suivant.

Exercice 25. Le but de cet exercice est de démontrer que si G est un groupe
compact métrique moyennable en tant que groupe discret, alors la mesure de
Haar n’est pas l’unique moyenne invariante sur L∞(G).

1. Soit A un Gδ dense de G. Reprendre la démonstration de (i)⇒ (ii) dans
le théorème 2.11, et montrer qu’on peut prolonger la forme linéaire sur
H ⊕ R1G ⊕ R1A définie par λ(h+ α1G + β1A) = α+ β en une moyenne
invariante. (Indication : vérifier que pour tout h ∈ H, supx∈A h(x) ≥ 0).

2. Justifier qu’il existe un Gδ dense A dans G tel que m(A) = 0, et conclure.

Exercice 26. Pour montrer que la réciproque à l’énoncé de l’exercice précédent
est fausse, construire un groupe compact G non moyennable en tant que groupe
discret et sur lequel la mesure de Haar n’est pas l’unique moyenne invariante
sur L∞(G).

Les exercices ci-dessus montrent que la non moyennabilité est une condition
nécessaire mais non suffisante pour que la mesure de Haar soit unique comme
moyenne sur L∞(G). C’est la propriété du trou spectral qui nous fournira un
critère suffisant, grâce au théorème suivant.

Théorème 2.17. Soit G un groupe compact. On suppose qu’il existe une pro-
babilité µ à support fini sur G ayant un trou spectral dans L2(G). Alors la
probabilité de Haar est l’unique moyenne invariante sur L∞(G).

Démonstration. Soit λ une moyenne invariante sur L∞(G). Par densité de L1(G)
dans son bi-dual [5, Lemme III.4], il existe une suite généralisée (fi)i∈I d’élé-
ments de L1(G) telle que pour tout i, fi ≥ 0,

∫
G
fi = 1 et qui converge faiblement

vers λ :
∀φ ∈ L∞(G), lim

i

∫
G

φ(x)fi(x)dx = λ(φ).
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Par invariance de λ sous l’action de G, pour tout g dans G, (gfi)i converge
faiblement vers λ, et donc limi gfi−fi = 0. D’après le théorème de Hahn-Banach,
les adhérences d’une partie convexe sont les mêmes pour les topologies faible et
forte [5, Théorème III.7], on peut obtenir par combinaisons convexes des fi une
suite généralisée (gi)i∈I telle que pour tout γ ∈ Suppµ, limi‖γgi− gi‖1 = 0 ; on
a encore gi ≥ 0 et

∫
G
gi = 1.

Posons hi =
√
gi, de sorte que hi ∈ L2(G), hi ≥ 0 et ‖hi‖2 = 1. Pour chaque

γ dans Suppµ, on majore

‖γhi − hi‖22 =

∫
G

(
(γhi)(x)− hi(x)

)2
dx

≤
∫
G

∣∣(γhi)(x)− hi(x)
∣∣(γhi)(x) + hi(x)

)
dx

= ‖γgi − gi‖1

ce qui montre que limi‖γhi − hi‖2 = 0, et donc limi‖Tµhi − hi‖2 = 0. Par la
propriété du trou spectral, cela implique que (hi) converge dans L2(G) vers 1G.
Mais ‖gi − 1‖1 ≤ 2‖hi − 1‖1 ≤ 2‖hi − 1‖2, et donc

λ = lim
i
gi = 1,

ce qu’il fallait démontrer.

Remarque. On peut comprendre ce théorème et sa démonstration de la façon
suivante. S’il existait une moyenne invariante λ sur L∞(G), on aurait Tµλ = λ. Si
µ est à support fini, en approchant λ par des fonctions, cela permet de construire
des vecteurs presque invariants pour Tµ dans L2(G). Par la propriété du trou
spectral, ces vecteurs doivent converger vers la fonction constante égale à 1, et
λ est égale à la mesure de Haar.

Remarque. On peut adapter la démonstration pour montrer que le théorème
est encore valable si l’on suppose qu’il existe p ∈]1,+∞] et une mesure à support
fini µ telle que l’opérateur Tµ ait un trou spectral dans Lp(G). Il suffit de
remarquer que pour x, y ≥ 0, |x− y|p ≤ xp − yp, ce qui se ramène à |1− t|p ≤
|1− t| ≤ 1− tp pour t ∈ [0, 1].

Par construction, la mesure de Haar est définie sur la tribu B(G) des boré-
liens de G, mais on peut l’étendre naturellement à la tribu L(G) des ensembles
mesurables pour m, obtenue en adjoignant à B(G) les ensembles négligeables
pour m :

L(G) = {A ∈ P(G) | ∃B,B′ ∈ B(G) : B ⊂ A ⊂ B′ et m(B′ \B) = 0}.

Le théorème ci-dessus permet de montrer le résultat d’unicité suivant.

Corollaire 2.18. Soit G un groupe compact. On suppose qu’il existe une mesure
µ à support fini sur G qui admet un trou spectral. Alors, la mesure de Haar est
l’unique application définie sur L(G) vérifiant

1. (normalisation) λ(G) = 1 ;
2. (additivité) ∀A,B disjoints, λ(A tB) = λ(A) + λ(B) ;
3. (invariance) ∀g ∈ G, ∀A, λ(gA) = λ(A).
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Démonstration. Vu le théorème 2.17 et la correspondance établie à l’exercice 24,
il suffit de vérifier qu’une telle application vérifie λ(A) = 0 pour tout A tel que
m(A) = 0. Si G est fini, m est la mesure de comptage, et le résultat est évident.
Si G est infini, il existe une suite (Ui)i≥1 de voisinages ouverts de l’identité
telle que le nombre de translatés de Ui disjoints dans G tend vers l’infini. Par
invariance, cela implique limi λ(Ui) = 0. L’existence d’une probabilité à support
fini ayant un trou spectral implique que G n’est pas moyennable en tant que
groupe discret. D’après le paradoxe de Banach-Tarski, G est équi-décomposable
au voisinage ouvert Ui, et A est donc équi-décomposable à une partie Ai ⊂ Ui.
Mais Ai peut s’écrire comme réunion de translatés de parties de A, et chacun de
ces translatés appartient à L(G), puisque il est inclus dans la partie négligeable
A. Par conséquent, on peut écrire λ(A) = λ(Ai) ≤ λ(Ui), et en passant à la
limite, λ(A) = 0.

Comme pour le paradoxe de Banach-Tarski, le problème de Ruziewicz concerne
à l’origine les mesures sur Sn invariantes par rotation. Dans ce cadre, il faut dé-
terminer s’il existe une mesure à support fini dans SOn+1(R) qui admet un
trou spectral. La réponse a été apportée indépendamment par Margulis [12] et
Sullivan [15] pour n ≥ 4, puis par Drinfeld [6] pour n = 2 et n = 3.

Théorème 2.19 (Margulis, Sullivan, Drinfeld). Si n ≥ 2, il existe une mesure
à support fini dans G = SOn+1(R) qui admet un trou spectral. En particulier,
la mesure de Haar est l’unique application sur L(G) qui vérifie les conditions
du corollaire 2.18.

Exercice 27. Vérifier que les méthodes de ce paragraphe permettent de montrer
que pour n ≥ 2, la mesure de Haar est l’unique application définie sur L(Sn)
qui vérifie les conditions du corollaire 2.18.

2.3 La conjecture du trou spectral
Dans ce dernier paragraphe, on cherche à comprendre quelles mesures ont

la propriété du trou spectral. Ce problème est difficile, et très largement ouvert
aujourd’hui. Nous nous bornerons donc ici à quelques observations élémentaires,
à l’énoncé de la conjecture du trou spectral, et des résultats récents de Bourgain
et Gamburd dont la démonstration occupera une partie de la suite de ce cours.
L’obstruction principale à la propriété du trou spectral est la donnée par la
proposition suivante.

Proposition 2.20. Soit G un groupe compact. On suppose qu’il existe un groupe
abélien infini H et un morphisme de groupes surjectif et continu φ : G→ H. Si
µ est une probabilité à support fini sur G, alors µ n’admet pas de trou spectral
dans L2(G).

Démonstration. L’application L2(H) → L2(G)
f 7→ f ◦ φ est une isométrie, car l’image

de la mesure de Haar sur G par φ est égale à la mesure de Haar sur H. Cela
permet d’identifier L2(H) à un sous-espace fermé de L2(G). En outre L2(H)
est stable par l’action de G, et admet donc un supplémentaire fermé invariant.
Par suite, le spectre de Tµ comme opérateur sur L2(G) contient le spectre de
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Tµ comme opérateur sur L2(H), et il suffit de montrer la proposition dans le
cas où G = H est abélien, ce que nous supposons donc dans la suite.

Soit µ une probabilité à support fini dans G, et S = Suppµ. Tout d’abord,
le groupe engendré par S est abélien, il existe donc une suite de parties Un telles
que

lim
n→∞

|SUn4Un|
|Un|

= 0.

On peut choisir une suite de réels εn > 0 tels que pour chaque n, les boules
B(s, εn), pour s ∈ Un sont disjointes, et comme G est infini, on peut supposer
de plus que limn→∞|Un|m(B(1, εn)) = 0. Posons alors fn =

∑
s∈Un 1B(s,εn) et

notons que
∫
G
fn = ‖fn‖22 = |Un|m(B(1, εn)). Par ailleurs, pour t ∈ S,

‖tfn − fn‖22 ≤ |tUn4Un||B(1, εn)| ≤ |SUn4Un||B(1, εn)|

d’où

lim
n→∞

‖Tµfn − fn‖22
‖fn‖22

= 0.

Soit enfin gn = fn−
∫
G
fn. Comme Tµgn− gn = Tµfn− fn et

∫
G
fn = o(‖fn‖2),

on a encore
lim
n→∞

‖Tµgn − gn‖2
‖gn‖2

= 0.

Donc (gn) est une suite de vecteurs presque invariants pour Tµ dans L2
0(G), et

µ n’a pas la propriété du trou spectral.

Remarque. La proposition ci-dessus est encore valable si l’on suppose seule-
ment que le groupe H est abstraitement moyennable. C’est tout ce que nous
avons utilisé dans la démonstration.

La proposition ci-dessus assure que si G admet un quotient abélien, il existe
des mesures adaptées apériodiques sur G qui n’admettent pas de trou spectral.
La conjecture qui nous intéresse stipule une réciproque à cette observation,
du moins si G est un groupe de Lie connexe. Dans ce cadre, la structure des
groupes de Lie compacts montre que l’absence de quotient abélien infini équivaut
à l’hypothèse que le centre de G est fini.

Conjecture (Conjecture du trou spectral). Toute mesure adaptée sur un groupe
de Lie G compact connexe à centre fini admet un trou spectral dans L2(G).

Remarque. Comme G est connexe, il n’est pas nécessaire de supposer que µ
est apériodique. En effet, la connexité implique que G n’a pas de quotient fini,
et comme G est semi-simple (par le théorème de structure des groupes de Lie
compacts, cela est équivalent au fait que G est à centre fini) on en déduit que
G n’admet pas de quotient abélien. Pour tout sous-groupe distingué H, l’image
de µ dans G/H est adaptée, et ne saurait donc être supportée par un singleton.

Telle que nous l’avons énoncée, la conjecture du trou spectral est peut-être
excessive, car à l’heure actuelle, on ne connaît même pas d’exemple de groupe
compact infini sur lequel toute mesure apériodique adaptée admet un trou spec-
tral. En fait, les seuls exemples de mesures µ à support fini ayant la propriété du
trou spectral sont dans des cas où le groupe G admet une structure algébrique,
et reposent sur les propriétés arithmétiques des éléments du support de µ. Le
théorème le plus général, montré récemment grâce aux avancées remarquables
de Bourgain et Gamburd [4, 3] sur le sujet, est énoncé ci-dessous.
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Théorème 2.21. Soit G un groupe de Lie compact connexe à centre fini et
µ une probabilité adaptée sur G. On suppose que dans une certaine base de
l’algèbre de Lie g de G, tous les éléments Ad g, g ∈ Suppµ sont des matrices à
coefficients algébriques. Alors µ admet un trou spectral.

Exercice 28. Construire une mesure adaptée sur SO3(R) à support fini dans
SO3(Q).

Exercice 29. Soit G un groupe topologique et D(G) le sous-groupe fermé de
G engendré par les commutateurs xyx−1y−1, x, y ∈ G.

1. Montrer que D(G) est égal à l’intersection de tous les noyaux de mor-
phismes continus G→ H, avec H abélien.

2. Nous dirons qu’un groupe compact G est parfait si le sous-groupe fermé
D(G) est d’indice fini dans G. Montrer que le groupe compact G = AN

5

est parfait.
3. Construire une mesure adaptée sur G qui n’admet pas de trou spectral.
4. Vérifier que G est abstraitement moyennable.
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Chapitre 3

Combinatoire additive

Dans ce chapitre, nous présentons quelques outils de combinatoire additive
— distance de Ruzsa, inégalité de Plünnecke, etc. — dont nous aurons besoin
dans la démonstration du théorème 2.21.

La combinatoire additive peut se définir comme l’étude des propriétés com-
binatoires des groupes. Typiquement, dans un groupe G, étant données deux
parties finies A et B, on cherche à étudier les liens entre le cardinal de l’en-
semble produit AB = {ab ; a ∈ A, b ∈ B} et les propriétés algébriques des
parties A et B. Mais commençons par un exemple élémentaire qui illustre bien
les problèmes que nous aborderons.

Exercice 30. Soit A une partie finie d’un groupe G, et AA = {ab ; a, b ∈ A}.

1. Si |AA| = |A|, montrer qu’il existe un groupe fini H et un élément a
normalisant H tel que A = aH.

2. On suppose maintenant |AA| < 3
2 |A|. On veut voir qu’il existe un sous-

groupe fini H et a normalisant H tels que A ⊂ aH et |H| < 3
2 |A|.

(a) Vérifier que ces conditions donnent bien |AA| < 3
2 |A|.

(b) Soit H = A−1A. Montrer que tout x ∈ H s’écrit de k > |A|/2 façons
différentes x = d1c

−1
1 = · · · = dkc

−1
k .

(c) Montrer que H est un sous-groupe fini normalisé par A.

(d) Montrer que si a ∈ A et B = a−1A, alors a−1BaB = H, et conclure.

3.1 Calcul de Ruzsa

Dans ce paragraphe, on se place dans un groupe G quelconque.

Définition 3.1 (Distance de Ruzsa). Étant données deux parties finies A et B
de G, on pose

d(A,B) = log
|AB−1|√
|A||B|

.

Exercice 31. Montrer que d(A,B) ≥ 0 avec égalité si et seulement si A et B
sont des classes à gauche d’un même sous-groupe fini.

31
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Lemme 3.2 (Inégalité triangulaire). Soient A, B et C des parties finies de G.
Alors

d(A,C) ≤ d(A,B) + d(B,C).

Démonstration. Pour chaque x dans AC, fixons une décomposition x = axcx,
avec ax ∈ A et cx ∈ C. L’application

B ×AC−1 → AB−1 ×BC−1

(b, x) 7→ (axb
−1, bcx)

est injective, donc |B||AC−1| ≤ |AB−1||BC−1|.

Dans la suite, si A est une partie deG et n ≥ 1, on note An l’ensemble produit
An = {a1a2 . . . an ; a1, . . . , an ∈ A}. En ce qui nous concerne, la conséquence
la plus importante de l’inégalité de Ruzsa est la suivante.

Proposition 3.3 (Ensembles à petit triplement). Soit A ⊂ G tel que |A3| ≤
K|A|. Alors, pour tout n ≥ 3, |An| ≤ K2n−5|A|. Plus généralement, si ε1, . . . , εn ∈
{±1}, alors |Aε1Aε2 . . . Aεn | ≤ K5n|A|.

Démonstration. Soit n ≥ 3. D’après l’inégalité de Ruzsa,

d(An−1, A−2) ≤ d(An−1, A−1) + d(A−1, A) + d(A,A−2)

et donc |An+1| ≤ |An| |A
2|
|A|
|A3|
|A| . Par récurrence, cela montre déjà la première

assertion.
La démonstration de la seconde inégalité est analogue. Notons pour simplifier

An = Aε1Aε2 . . . Aεn . On commence par écrire,

d(An−1, A
−εn+1A−εn) ≤ d(An−1, A

−εn) + d(A−εn , A) + d(A,A−εn+1A−εn)

i.e.

|An+1| ≤ |An|
|AAεn |
|A|

|AAεnAεn+1 |
|A|

.

Pour majorer les deux derniers quotients indépendamment des valeurs de εn et
εn+1, on utilise encore l’inégalité de Ruzsa. D’abord, d(A,A2) ≤ d(A,A−1) +
d(A−1, A2) donne

|AA−2|
|A|

≤ |A
2|
|A|
|A3|
|A|
≤ K2,

et de même, échangeant les rôles de A et A−1, |A−1A2| ≤ K2|A|. Enfin, écrivant
d(A,A−1A) ≤ d(A,A−1) + d(A−1, A−1A), on trouve

|AA−1A|
|A|

≤ |A
2|
|A|
|A−1A2|
|A|

≤ K3.

Ainsi, on a toujours |An+1| ≤ K5|An| et par récurrence, la proposition est
démontrée.
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Exercice 32. Montrer que l’énoncé analogue à la proposition 3.3 n’est pas
valable si l’on suppose seulement |A2| ≤ K|A|.

Définition 3.4 (Sous-groupes approximatifs). Soit K ≥ 1. Un sous-groupe K-
approximatif de G est une partie A qui vérifie les propriétés suivantes :

— 1 ∈ A et A−1 = A ;
— il existe X ⊂ G tel que |X| ≤ K et AA ⊂ AX.

Lemme 3.5 (Lemme de recouvrement de Ruzsa). Soient A et B deux parties
finies de G et K ≥ 0 tel que |AB| ≤ K|A|. Alors, il existe X ⊂ B tel que
|X| ≤ K et B ⊂ A−1AX.

Démonstration. Soit X = {b1, . . . , bn} une famille maximale d’éléments de B
telle que les ensembles Ab1, . . . , Abn soient disjoints. Comme tous ces ensembles
sont inclus dans AB, on doit avoir n ≤ K. De plus, par maximalité de la famille,
pour tout b ∈ B, il existe i tel que Ab∩Abi 6= ∅, et par conséquent b ∈ A−1Abi,
puis B ⊂ A−1AX.

Avec la proposition 3.3, ce lemme permet de caractériser les ensembles à
petit triplement en termes de sous-groupes approximatifs.

Proposition 3.6 (Caractérisation du petit triplement). Étant donné une partie
finie A ⊂ G et K ≥ 2 les assertions suivantes sont équivalentes.
(i) |A3| ≤ KO(1)|A|
(ii) ∃H sous-groupe KO(1)-approximatif tel que A ⊂ H et |H| ≤ KO(1)|A|.

Démonstration. Il est clair que la seconde assertion implique la première. En
effet, A3 ⊂ H3 ⊂ HX2, donc |A3| ≤ |X|2|H| ≤ KO(1)|H| ≤ KO(1)|A|.

Réciproquement, montrons que si |A3| ≤ K|A|, alors H = (A ∪A−1 ∪ {1})2

est un sous-groupe KO(1)-approximatif. Comme cet ensemble est symétrique,
il suffit de voir que H ⊂ HX pour un certain X tel que |X| ≤ KO(1). Soit
A1 = A ∪ A−1 ∪ {1}. L’ensemble A5

1 est inclus dans la réunion des parties de
la forme Aε1Aε2Aε3Aε4Aε5 , où εi ∈ {−1, 0, 1}, et d’après la proposition 3.3
chacune de ces parties vérifie |Aε1Aε2Aε3Aε4Aε5 | ≤ KO(1)|A|. Donc |A1H

2| =
|A5

1| ≤ KO(1)|A1|. D’après le lemme de recouvrement de Ruzsa, il existe une
partie X ⊂ H telle que |X| ≤ KO(1) et H2 ⊂ A−1

1 A1X = HX.

Dans la suite, nous voudrons aussi comprendre les parties A et B qui sa-
tisfont l’inégalité |AB| ≤ K|A| 12 |B| 12 . La proposition suivante en donne une
caractérisation en termes de sous-groupes approximatifs. La démonstration est
sensiblement plus difficile que celle de la caractérisation des ensembles à petit
triplement, et sera donnée au paragraphe 3.3, une fois que nous aurons introduits
les outils nécessaires.

Proposition 3.7 (Caractérisation du petit doublement). Pour deux parties
finies A,B ⊂ G et K ≥ 2, les assertions suivantes sont équivalentes.

1. |AB| ≤ KO(1)|A| 12 |B| 12 ;
2. Il existe un sous-groupe KO(1)-approximatif H et X,Y ⊂ G tels que
|X|, |Y | ≤ KO(1) et A ⊂ XH et B ⊂ HY .

Remarque. Il est facile de voir que la seconde assertion implique la première :
AB ⊂ XHHY donc |AB| ≤ KO(1)|HH| ≤ KO(1)|H|. L’autre implication est
plus difficile à démontrer.
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3.2 Le lemme de Balog-Szemerédi-Gowers
Définition 3.8 (Énergie multiplicative). L’énergie multiplicative de deux par-
ties finies A,B ⊂ G est

E(A,B) = |{(a, b, a′, b′) ∈ A×B ×A×B | ab = a′b′}|.

Commençons par noter quelques propriétés importantes de l’énergie multi-
plicative. Étant donnée une partie S ⊂ A×B, nous noterons

A ·S B = {ab ; (a, b) ∈ S}.

Proposition 3.9. L’énergie multiplicative de deux ensembles A et B satisfait
les propriétés suivantes.
(i) E(A,B) = ‖1A ∗ 1B‖22.
(ii) Pour tous g, h ∈ G, E(gA,Bh) = E(A,B).
(iii) E(A,A−1) = E(A−1, A) ;

(iv) |A||B| ≤ E(A,B) ≤ |A| 32 |B| 32 .

(v) Si |AB| ≤ K|A| 12 |B| 12 , alors E(A,B) ≥ |A|
3
2 |B|

3
2

K .

(vi) Si E(A,B) ≥ 1
K |A|

3
2 |B| 32 , alors il existe une partie S ⊂ A × B telle que

|S| ≥ |A||B|2K2 et |A ·S B| ≤ 2K|A| 12 |B| 12 .

Démonstration. (i) On calcule∑
z

(1A ∗ 1B(z))2 =
∑
z

(
∑
xy=z

1A(x)1B(y))2

=
∑
z

∑
xy=z=x′y′

1A(x)1B(y)1A(x′)1B(y′)

=
∑

x,y,x′,y′:xy=x′y′

1A(x)1B(y)1A(x′)1B(y′)

= E(A,B)

(ii) évident
(iii) Le résultat découle d’un simple calcul :

E(A,A−1) = |{(a1, a2, a3, a4) ∈ A×4 | a1a
−1
2 = a3a

−1
4 }|

= |{(a1, a2, a3, a4) ∈ A×4 | a−1
2 a4 = a−1

1 a3}|
= E(A−1, A).

(iv) Le point (v) découle de l’exercice ci-dessous, en prenant X = A × B et
φ : (a, b) 7→ ab.

(v) Pour faire voir (vi), on pose

S = {(a, b) | ab a au moins
1

2K
|A|1/2|B|1/2 représentations sous la forme a′b′}.

Il est clair que |A ·S B| ≤ 2K|A|1/2|B|1/2. De plus,

|A|3/2|B|3/2

K
≤ E(A,B) ≤ |S||A|1/2|B|1/2 +

1

2K
|A|1/2|B|1/2|A||B|
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donc |S| ≥ |A||B|2K .

Exercice 33. Soient X et Y deux ensembles finis et ϕ : X → Y . On note
Eϕ = |{(x1, x2) ∈ X ×X | ϕ(x1) = ϕ(x2)}|. Montrer que |ϕ(X)| ≥ |X|

2

Eϕ
.

Exercice 34. Montrer que E(B,A) 6= E(A,B) en général.

L’intérêt principal de l’énergie multiplicative provient du lemme ci-dessous,
qui permet de construire des ensembles à petit doublement à partir d’ensembles
A et B dont l’énergie multiplicative E(A,B) est grande.

Lemme 3.10 (Balog-Szemerédi-Gowers, énergie multiplicative). Soit K ≥ 2
un paramètre, et A,B deux parties finies d’un groupe G telles que

E(A,B) ≥ 1

K
|A| 32 |B| 32 .

Alors il existe A′ ⊂ A et B′ ⊂ B tels que
(i) |A′| ≥ K−O(1)|A| et |B′| ≥ K−O(1)|B| ;
(ii) |A′B′| ≤ KO(1)|A| 12 |B| 12 .

Ce lemme découle d’un résultat de théorie des graphes dû aux mêmes au-
teurs.

Lemme 3.11 (Balog-Szemerédi-Gowers, chemins de longueur 3). Soit n ∈ N,
K ≥ 2, et A t B un graphe biparti, avec |A|, |B| ≤ n. On note E l’ensemble
des arêtes, et on suppose que |E| ≥ n2

K . Alors, il existe des ensembles A′ ⊂ A et
B′ ⊂ B tels que
(i) |A′| ≥ K−O(1)|A| et |B′| ≥ K−O(1)|B| ;
(ii) pour tout (a, b) ∈ A′×B′, il existe au moins K−O(1)n2 chemins de longueur

3 entre a et b.

Remarque. Attention ! Les chemins qui relient (a, b) ∈ A′×B′ peuvent passer
par des points hors de A′ tB′.

Notations. Pour x ∈ A t B, on note V (x) l’ensemble des voisins de x. Pour
X ⊂ A tB on note V (X) = ∩x∈XV (x) l’ensemble des voisins communs à tous
les points de X.

Exercice 35. Nous dirons qu’un sous-graphe A′tB′ dans AtB est totalement
connecté si toute paire de points (a, b) ∈ A′ ×B′ est reliée par une arête.

1. Montrer que s’il existe A′, B′ satisfaisant le point (i) et tels que le sous-
graphe A′ t B′ soit totalement connecté, alors on a bien le point (ii) ci-
dessus.

2. Sous les hypothèses du lemme, construire A′ tB′ totalement connecté tel
que |A′||B′| ≥ n

K .
3. Sous les hypothèses du lemme, construire A′ tB′ totalement connecté tel

que |A′| ≥ 2 et |B′| ≥ n
K3 .

4. Sous les hypothèses du lemme, construire A′ tB′ totalement connecté tel
que min(|A′|, |B′|) ≥ logn

2 logK .
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5. Montrer que sous les hypothèses du lemme, il n’existe pas nécessairement
A′ t B′ totalement connecté satisfaisant (i). (Indication : Considérer un
graphe aléatoire.)

6. Le lemme ci-dessus implique qu’il existe un sous-graphe A′tB′ qui vérifie
(i) et qui est totalement connecté pour les chemins de longueur 3. Vérifier
ce résultat directement.

Démonstration du lemme 3.11. Pour x ∈ AtB, nous noterons V (x) l’ensemble
des voisins de x. Pour que tous les éléments de B aient beaucoup d’arêtes, on
commence par restreindre le graphe à A tB0, où

B0 = {b ∈ B | |V (b)| ≥ n

2K
}.

Le nombre total d’arêtes vérifie encore |E| ≥ n2

2K .
On considère maintenant un point x choisi aléatoirement uniformément dans

A. Alors,

E[|V (x)|] =
1

|A|
|E| ≥ 1

n
|E| ≥ n

2K
.

Nous dirons que deux éléments b, b′ dans B sont mal connectés si l’ensemble
V (b, b′) de leurs voisins communs vérifie |V (b, b′)| ≤ n

128K3 . Notons N(x) le
nombre de couples (b, b′) d’éléments de V (x) mal connectés. Si (b, b′) est un tel
couple, on a évidemment x ∈ V (b, b′), et la probabilité de cet événement est
donc majorée par 1

128K3 . Par conséquent,

E[N(x)] ≤ n2

128K3
.

Soit Z(x) ⊂ V (x) l’ensemble des éléments b mal connectés à au moins n
32K2

éléments de V (x). Naturellement, N(x) ≥ |Z(x)| n
32K2 , et donc

E[|Z(x)|] ≤ n

4K
.

Cela permet de choisir un point x ∈ A tel que B′ = V (x)\Z(x) vérifie |B′| ≥ n
4K .

Ensuite, on pose
A′ = {a ∈ A | |V (a) ∩B′| ≥ n

16K2
}.

Soit R le nombre d’arêtes partant de B′. Alors,

n2

8K2
=

n

2K

n

4K
≤ R ≤ |A′|n+

n2

16K2
,

et donc |A′| ≥ n2

16K2 .
Reste à minorer le nombre de chemins de longueur 3 entre deux points a ∈ A′

et b ∈ B′. Pour cela, on remarque que l’ensemble

M = {b′ ∈ B′ | (b, b′) est mal connecté}

vérifie |M | ≤ n
32K2 , tandis que |V (a) ∩ B′| ≥ n

16K2 , et donc il existe au moins
n

16K2 éléments b′ dans V (a) bien connectés à b. Pour chaque tel b′, il existe au
moins n

256K3 chemins de longueur 2 entre b et b′, donc le nombre de chemins de
longueur 3 entre a et b est minoré par n2

212K5 , ce qu’il fallait démontrer.
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Démonstration du lemme 3.10. D’après le dernier point de la proposition 3.9, il
existe S ⊂ A×B tel que, notant π : (a, b) 7→ ab l’application produit,

|S| ≥ |A||B|
KO(1)

et |π(S)| ≤ KO(1)|A| 12 |B| 12 .

Comme |S| ≥ |A||B|
KO(1) , il existe b ∈ B tel que |{a ∈ A | (a, b) ∈ S}| ≥ |A|

KO(1) . Mais
l’application π est injective en restriction à cette fibre, et donc |A| ≤ KO(1)|B|.
Échangeant les rôles de A et B, on a aussi |B| ≤ KO(1)|A|. Posant alors n =
max(|A|, |B|), on observe que les hypothèses du lemme sont satisfaites pour le
graphe biparti A tB défini par la partie S, avec la constante KO(1).

Soient A′ et B′ les ensembles qui résultent de l’application du lemme. On a
bien sûr |A′| ≥ K−O(1)|A| et |B′| ≥ K−O(1)|B|. Notons que A′B′ ⊂ (A·SB)(A·S
B)−1(A ·S B). En effet, si (a, b) ∈ A′ ×B′, il existe un chemin a↔ b′ ↔ a′ ↔ b
et donc

ab = ab′(a′b′)−1a′b ∈ (A ·S B)(A ·S B)−1(A ·S B).

De plus, tout produit ab dans A′B′ admet K−O(1)n2 représentations de cette
forme. Donc

|A′B′| ≤ KO(1)n−2|A ·S B|3 ≤ KO(1)n = KO(1)|A|1/2|B|1/2.

3.3 Le lemme de Petridis et ses applications
Pour conclure la démonstration de la proposition 3.7, nous utiliserons aussi

le lemme suivant, dû à Petridis.

Lemme 3.12 (Petridis). Soit A et B deux parties finies de G et B0 ⊂ B tel que
le rapport |AB0|

|B0| soit minimal ; on note K0 ce rapport. Alors, pour toute partie
X de G,

|AB0X| ≤ K0|B0X|.

Démonstration. On procède par récurrence sur le cardinal de X.
Si |X| = 1, alors |AB0X| = |AB0| = K0|B0| = K0|B0X|.
Supposons le résultat connu pour |X| = n ≥ 1. Soit X une partie de cardinal
n+ 1 et x un élément de X. Notons X ′ = X\{x}. Alors,

|AB0X| = |AB0X
′|+ |AB0x| − |(AB0X

′) ∩ (AB0x)|
≤ K0|B0X

′|+K0|B0x| − |(AB0X
′) ∩ (AB0x)|

≤ K0|B0X
′|+K0|B0x| − |AZx|,

où Z = {z ∈ B0|Azx ⊂ AB0X
′}. On remarque que Z ⊃ B0 ∩ B0X

′x−1 et que
par conséquent |Z| ≥ |B0x∩ (B0X

′)|. De plus, comme Z ⊂ B, par définition de
K0, |AZ| ≥ K0|Z|. L’inégalité ci-dessus donne alors ce qu’on veut :

|AB0X| ≤ K0|B0X
′|+K0|B0x| −K0|(B0x) ∩ (B0X

′)|
= K0|B0X|.

Ceci achève la récurrence.
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Nous pouvons maintenant démontrer la caractérisation des ensembles à petit
doublement à partir des sous-groupes approximatifs.

Démonstration de la proposition 3.7. Par l’inégalité de Ruzsa d(A,A) ≤ d(A,B)+
d(B,A) ≤ 2 logK i.e. |AA−1| ≤ K2|A|. Par conséquent, E(A,A−1) = E(A−1, A) ≥
K−C |A|3. D’après le lemme 3.10 appliqué à A = A−1 et B = A, il existe une
partie A1 ⊂ A telle que |A1| ≥ K−C |A| et |A−1

1 A1| ≤ K−C |A|. Comme A1 ⊂ A,
on a aussi |A1A

−1
1 | ≤ K−C |A|.

Soit A2 ⊂ A1 tel que le rapport |A1A
−1
2 |

|A2| soit minimal. D’après le lemme de
Petridis, pour toute partie X finie

|A1A
−1
2 X| ≤ KO(1)|A−1

2 X|. (3.1)

Cela implique en particulier que |A1| ≤ KO(1)|A2|. De plus, A2 ⊂ A1 donc
|A−1

2 A2| ≤ KO(1)|A2|. Soit alors A3 ⊂ A2 tel que le rapport |A
−1
2 A3|
|A3| soit mini-

mal. D’après le lemme de Petridis, pour tout X fini,

|A−1
2 A3X| ≤ KO(1)|A3X| ≤ KO(1)|A2X|. (3.2)

Cela implique |A2| ≤ KO(1)|A3|. De plus, appliquant successivement les inéga-
lités (3.2), (3.1) et (3.2) ci-dessus,

|(A−1
3 A3)2A−1

3 | ≤ |A
−1
2 A3(A−1

3 A3A
−1
3 )|

≤ KO(1)|A3A
−1
3 A3A

−1
3 |

≤ KO(1)|A1A
−1
2 A3A

−1
3 |

≤ KO(1)|A−1
2 A3A

−1
3 |

≤ KO(1)|A3A
−1
3 |

≤ KO(1)|A−1
3 |.

Le lemme de recouvrement de Ruzsa montre donc que (A−1
3 A3)2 ⊂ (A−1

3 A3)T ,
avec |T | ≤ KO(1) et H = A−1

3 A3 est donc un sous-groupe KO(1)-approximatif.
Comme |AA−1

3 | ≤ |AA−1| ≤ KO(1)|A3|, on a aussi, par recouvrement de Ruzsa,
A ⊂ XH, avec |X| ≤ KO(1). Enfin, |A3B| ≤ |AB| ≤ KO(1)|A3| donc B ⊂ HY ,
avec |Y | ≤ KO(1).

Une autre application du lemme de Petridis est une variante de la pro-
position 3.3 pour les groupes abéliens, dans laquelle il suffit de supposer que
l’ensemble considéré est à petit doublement. Ce résultat est connu sous le nom
d’inégalité de Plünnecke. Si (G,+) est un groupe abélien, et A,B ⊂ G, on note

A+B = {a+ b ; a ∈ A, b ∈ B}

et pour n ∈ N∗,
nA = {a1 + · · ·+ an ; ai ∈ A}.

Théorème 3.13 (Inégalité de Plünnecke). Si A et B sont deux parties d’un
groupe abélien (G,+) vérifiant |A+B| ≤ K|B|, alors, pour tous entiers naturels
m et n,

|mA− nA| ≤ Km+n|B|.
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Démonstration. Choisissons B0 ⊂ A tel que |A+B0|
|B0| = K0 soit minimal ; en

particulier K0 ≤ K. Grâce au lemme de Petridis appliqué successivement, on
obtient

|B0 +mA| = |A+B0 + (m− 1)A| ≤ K0|B0 + (m− 1)A| ≤ · · · ≤ Km
0 |B0|,

et de même,
|B0 + nA| ≤ Kn

0 |B0|.

On utilise alors l’inégalité triangulaire de Ruzsa pour conclure :

|mA− nA||B0| ≤ |B0 +mA||B0 + nA| ≤ Km+n
0 |B0|2

d’où
|mA− nA| ≤ Km+n|B|.

Exercice 36. Soit G un groupe abélien et X,Y1, . . . , Yk des parties finies de G.
On suppose que |X + Yi| ≤ Ki|X|, i = 1, . . . , k.

1. Montrer qu’il existe Z0 ⊂ X tel que |Z0| ≥ |Z0|
2 et |Z0 + Y1 + Y2| ≤

4K1K2|Z0|. (Indication : Utiliser le lemme de Petridis, et si |X0| < |X|
2 ,

appliquer une nouvelle fois le lemme à l’ensemble X \X0, et ainsi de suite.)
2. Montrer par récurrence qu’il existe Z ⊂ X tel que |Z + Y1 + · · ·+ Yk| �k

(
∏k
i=1Ki)|Z|.

3. Montrer qu’on peut en outre imposer |Z| ≥ |X|2 à la question précédente.

3.4 Somme-produit dans les corps finis
Étant donné un groupe ambiant G, nous avons commencé à étudié au pa-

ragraphe précédent les parties A telles que |A2| ≤ K|A|. Dans ce paragraphe,
nous nous placerons dans un cadre un peu plus riche, en supposant que la partie
A est incluse dans un anneau. On dispose alors de deux opérations, somme et
produit, et l’on cherche donc à comprendre quelles parties A peuvent satisfaire
simultanément |A2| ≤ K|A| et |A+A| ≤ K|A|. Le premier résultat remarquable
sur le sujet est sans doute le théorème suivant, montré par Erdős et Szemerédi
[8] en 1983.

Théorème 3.14 (Somme-produit dans Z). Il existe τ > 0 tel que pour toute
partie finie A ⊂ Z,

|A+A|+ |A ·A| ≥ |A|1+τ .

Solymosi [14] à démontré que le théorème était valable pour τ = 1
3 . Le

meilleur exposant, égal à 1
3 + 2

1167 a été obtenu récemment par Rudnev et Stevens
[13]. La conjecture ci-dessous sur la valeur optimale de l’exposant τ , due à Erdős
et Szemerédi, n’a pas encore été résolue.

Conjecture (Erdős et Szemerédi). Pour tout ε > 0, il existe n0 tel que si
|A| ≥ n0, on peut prendre τ = 1− ε dans l’inégalité ci-dessus.

Nous allons montrer une généralisation du résultat ci-dessus valable dans un
corps quelconque.



40 CHAPITRE 3. COMBINATOIRE ADDITIVE

Théorème 3.15 (Somme-produit dans un corps quelconque). Il existe τ > 0
tel que l’énoncé suivant soit vérifié.
Soit A une partie finie d’un corps F quelconque. Si |A + A| + |A · A| ≤ K|A|,
alors on a l’alternative suivante :

— soit |A| ≤ KO(1) ;
— soit il existe un sous-corps fini FA tel que |FA| ≤ KO(1)|A| et A ⊂

xFA ∪X pour x ∈ A et |X| ≤ KO(1).

Exercice 37. Vérifier que cet énoncé est optimal, au sens où tout ensemble qui
vérifie l’une des deux conditions du théorème vérifie |A+A|+ |A ·A| ≤ KO(1)|A|.

Exercice 38 (Somme-produit en caractéristique nulle). Montrer qu’il existe
τ > 0 tel que si F est un corps de caractéristique nulle et A ⊂ F , alors |A +
A|+ |A ·A| ≥ |A|1+τ . En déduire le résultat d’Erdős et Szemerédi cité ci-dessus.

Exercice 39 (Somme-produit dans les corps finis). On note Fp = Z/pZ. Mon-
trer qu’il existe τ > 0 tel que pour tout Fp et tout A ⊂ Fp,

|A+A|+ |A ·A| ≥ |A|(min{|A|, p
|A|
})τ .

Que peut-on dire dans un corps fini Fq, q = pn quelconque ?

Avant de chercher à démontrer le théorème 3.15, il est plus facile d’étudier les
parties qui ne croissent pas sous l’action simultanée de l’addition et de la multi-
plication. La démonstration du théorème 3.15 se ramènera à ce cas particulier,
qui d’ailleurs est souvent suffisant dans les applications.

Théorème 3.16 (Somme-produit, deuxième version). Soit F un corps quel-
conque. Si A ⊂ F est une partie finie telle que |A + AA| ≤ K|A|, alors
|A| ≤ KO(1) ou il existe un sous-corps fini B ⊃ A tel que |B| ≤ KO(1)|A|.

Démonstration. Quitte à remplacer A par A ∪ {0, 1}, on peut supposer que
0, 1 ∈ A. On considère alors

B = {a1 − a2

a3 − a4
| ai ∈ A, a3 − a4 ∈ F \ {0}}.

Premier cas : B est stable par · et +.
Comme B est fini, et contient 0 et 1, c’est un sous-corps de F , et B ⊃ A.
Pour chaque x ∈ B, fixons une représentation x = ax

bx
, avec ax ∈ A − A et

bx ∈ (A−A) \ {0}. Notons aussi A∗ = A \ {0}. L’application

A∗ ×B → A(A−A)× (A−A)A
(a, x) 7→ (aax, bxa)

est injective, donc

|B| ≤ |AA−AA|
2

|A∗|
≤ KO(1)|A|.

Second cas : ∃x, y ∈ B : x+ y 6∈ B ou xy 6∈ B.
Selon le cas, écrivons x + y = e1

e2
ou xy = e1

e2
, avec e1 ∈ [(A − A)(A − A) +

(A− A)(A− A)] ∪ (A− A)(A− A) et e2 ∈ (A− A)(A− A) \ 0, et considérons
l’application

φ : A×A → e1A+ e2A
(a, b) 7→ e1a+ e2b.
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Si a − a′ 6= 0, l’égalité e1a + e2b = e1a
′ + e2b

′ implique e1
e2

= b′−b
a−a′ ∈ B.

Par contraposée, φ(a, b) = φ(a′, b′) implique a = a′, puis b = b′. Donc cette
application est injective,

|e1A+ e2A| = |φ(A×A)| = |A|2.

Pour conclure, reste à voir que |e1A + e2A| ≤ KO(1)|A|. Cela découle de la
proposition 3.17 ci-dessous.

Proposition 3.17. Soit A une partie finie d’un anneau telle que |A + AA| ≤
K|A|. Pour s ∈ N∗, on note 〈A〉s l’ensemble des sommes ou différences d’au
plus s produits d’au plus s éléments de A. Alors |〈A〉s| ≤ KOs(1)|A|.

Démonstration. Par l’inégalité de Plünnecke et le lemme de recouvrement de
Ruzsa, la condition |A + AA| ≤ K|A| implique que A − A est un sous-groupe
KO(1)-approximatif.

Montrons d’abord que pour tout x ∈ 〈A〉s, il existe Xx,s tel que |Xx,s| ≤
KOs(1) et xA ⊂ A−A+Xx,s. Cela se voit par récurrence sur s. Pour s = 1, par
recouvrement de Ruzsa, AA ⊂ A− A+X, pour |X| ≤ KO(1), donc le résultat
est clair. Ensuite, on remarque que si xA ⊂ A−A+Xx,s et yA ⊂ A−A+Xy,s,
alors (x+ y)A ⊂ xA+ yA ⊂ A−A+A−A+Xx,s +Xy,s ⊂ A−A+Xx+y,s+1

et de même, (x− y)A ⊂ A− A + Xx−y,s+1. Enfin, xyA ⊂ xA− xA + xXy,s ⊂
A−A+A−A+Xx,s −Xx,s + xXy,s ⊂ A−A+Xxy,s+1.

Montrons maintenant par récurrence qu’il existe Xs ⊂ 〈A〉s tel que |Xs| ≤
KOs(1) et As ⊂ A− A+Xs. Cela a déjà été vu pour s = 2. Supposons donc le
résultat démontré pour s ≥ 2. Alors,

A+As+1 ⊂ A+A(A−A+Xs) ⊂ A+AA−AA+AXs.

Par la première partie de la démonstration, AXs ⊂ A − A + X ′, où X ′ =
∪x∈XsXx,s, donc |A+As+1| ≤ |A+AA−AA+A−A+X ′| ≤ KOs(1)|A| puis
As+1 ⊂ A−A+Xs+1, par inégalité de Ruzsa.

Pour conclure, notons que 〈A〉s+1 = As+1 ± · · · ±As+1 ⊂ A−A+ · · ·+A−
A+Xs ± · · · ±Xs et donc |〈A〉s+1| ≤ KOs(1)|A|.

L’exercice suivant donne une version de l’énoncé valable dans un anneau
quelconque. On s’aperçoit qu’en général, il faut comprendre la position de A
par rapport aux éléments non inversibles de l’anneau.

Exercice 40 (Somme-produit dans un anneau). Soit R un anneau quelconque,
dont on note R× les éléments inversibles et R0 = R \ R×. Si A ⊂ R est une
partie finie telle que |A + AA| ≤ K|A|, montrer que l’une des deux assertions
suivantes est vérifiée :

— |(A−A) ∩R0| ≥ K−O(1)|A| ;
— il existe un sous-anneau fini B ⊃ A tel que |B| ≤ KO(1)|A|.

Pour démontrer le théorème 3.15, nous aurons besoin du lemme suivant, qui
est en quelque sorte analogue à la classification des ensembles à petit doublement
par les sous-groupes approximatifs.

Lemme 3.18 (Katz-Tao). Soit A une partie finie d’un corps quelconque F telle
que |A+A|+ |A ·A| ≤ K|A|. Il existe une partie A′ ⊂ A telle que

1. |A′| ≥ K−O(1)|A| ;
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2. |A′ +A′| ≤ KO(1)|A| et |A′A′ +A′A′| ≤ KO(1)|A|.

Démonstration. Soit A ⊂ F et K ≥ 2 tel que |A + A| + |AA| ≤ K|A|. Par
l’inégalité de Schwarz,

|AA|

( ∑
z∈AA

(
∑
x∈A

1xA(z))2

)
≥

( ∑
z∈AA

∑
x∈A

1xA(z)

)2

= (
∑
x∈A
|xA|)2 = |A|4

et comme |AA| ≤ K|A|, ∑
x,y∈A

|xA ∩ yA| ≥ |A|
3

K
.

Fixons b ∈ A tel que
∑
x∈A|xA ∩ bA| ≥

|A|2
K , puis

A′ = {a ∈ A | |aA ∩ bA| ≥ |A|
2K
}.

Notons que |A′| ≥ |A|2K . De plus, pour a ∈ A′, si X = |aA ∩ bA|, alors |X| ≥ |A|2K
et {

|X + aA| ≤ K|A| ≤ 2K2|X|
|X + bA| ≤ K|A| ≤ 2K2|X|.

Soit a1, a2, a3, a4 ∈ A′. Par recouvrement de Ruzsa, aiA ⊂ b(A − A) + X pour
un certain X tel que |X| ≤ KO(1), et donc (a1a2−a3a4)A ⊂ b2(A−A)+Y avec
|Y | ≤ KO(1). Par conséquent, pour chaque c ∈ A′A′ − A′A′, il existe y ∈ Y tel
que pour au moins K−O(1)|A| éléments a ∈ A, ca ∈ b2(A−A)+y. Donc il existe
au moins K−O(1)|A| différences cu = c(a−a′) telles que cu ∈ b2(A−A+A−A).
En d’autres termes, l’élément c admet au moins K−O(1)|A| représentations de
la forme v

u , avec v ∈ A−A et u ∈ b2(A−A+A−A). Comme |A| ≤ |A−A| ≤
|b2(A−A+A−A)| ≤ KO(1)|A|, cela implique |A′A′ −A′A′| ≤ KO(1)|A|.

Nous pouvons enfin démontrer le théorème 3.15.

Démonstration du théorème 3.15. Soit A ⊂ F tel que |A+A|+ |A ·A| ≤ K|A|.
D’après le lemme 3.18, il existe une partie A′ ⊂ A telle que |A′| ≥ K−O(1)|A|,
|A′ − A′| ≤ KO(1)|A| et |A′A′ − A′A′| ≤ KO(1)|A|. Fixons a ∈ A′ \ {0} et
notons Ā = a−1A′. Si |Ā| ≤ KO(1) on a aussi |A| ≤ KO(1). Sinon, comme Ā
vérifie les hypothèses du théorème 3.16 pour KO(1), le corps FA engendré par Ā
vérifie |FA| ≤ KO(1)|A|. De plus, par recouvrement de Ruzsa, A ⊂ aFA +X et
A ⊂ FAY , avec |X|, |Y | ≤ KO(1). Donc A est inclus dans une réunion d’au plus
KO(1) ensembles de la forme a[(FA+x)∩FAy]. Or, si f+x = gy et f ′+x = g′y,
on trouve f − f ′ = (g − g′)y puis f − f ′ = g − g′ = 0 ou y = f−f ′

g−g′ ∈ FA. Cela
montre que l’intersection (FA + x) ∩ FAy est égale à FA, vide, ou réduite à un
singleton, et le théorème est démontré.

Exercice 41. Soit p un nombre premier, et soit A ⊂ Fp tel que |A| > √p.
1. Montrer que tout élément x ∈ Fp peut s’écrire x = a1−a2

a3−a4 .

2. En déduire qu’il existe b = b1−b2
b3−b4 tel que |{(a1, a2, a3, a4) ∈ A×4 | b =

a1−a2
a3−a4 }| ≤

|A|4
p .

3. Conclure que A(A−A) +A(A−A) = Fp.



Chapitre 4

Combinatoire discrétisée

Le théorème somme-produit démontré au chapitre précédent illustre bien les
méthodes de la combinatoire additive, mais pour montrer la propriété du trou
spectral dans les groupes compacts, nous aurons besoin de résultats analogues où
le cardinal est remplacé par le nombres de recouvrement à une certaine échelle
δ. À l’origine, ces énoncés ont été introduits par Katz et Tao [11] pour résoudre
la conjecture suivante :

Conjecture (Erdős-Volkmann, résolue par Edgar-Miller [7]). Tout sous-anneau
borélien strict dans R est de dimension de Hausdorff nulle.

Exercice 42. Le but de cet exercice est de démontrer le théorème d’Edgar et
Miller.

1. (Théorème de Marstrand) Soit A ⊂ Rn borélien tel que dimH A > 1.
Montrer que pour presque toute forme linéaire φ : Rn → R, φ(A) est de
mesure de Lebesgue positive.

2. Soit A un sous-anneau mesurable de R tel que dimH A > 0. Justifier qu’il
existe n ∈ N∗ et φ ∈ (Rn)∗ tels que φ(An) = R.

3. Montrer que si n est l’entier minimal tel qu’il existe φ ∈ (Rn)∗ tel que
φ(An) = R, alors φ : An → R est injective. En déduire que n = 1 puis
A = R.

Peu après la publication de la solution d’Edgar et Miller, Jean Bourgain [2]
est parvenu à mettre en œuvre la méthode suggérée par Katz et Tao [11] et a
donné une autre démonstration de la conjecture, beaucoup plus technique, mais
avec l’avantage de montrer au passage la proposition suivante.

Proposition 4.1 (Bourgain). Pour tout σ > 0, il existe τ > 0 tel que l’énoncé
suivant soit vérifié. Soit A ⊂ R une partie borélienne de dimension de Hausdorff
dimH A ∈ [σ, 1− σ]. Alors dimH A+AA ≥ ε+ dimH A.

La démonstration de cette proposition passe par celle d’un énoncé analogue
« discrétisé », conjecturé par Katz et Tao [11], qui a trouvé depuis de nombreuses
autres applications. Pour A ⊂ R et δ > 0, on note N(A, δ) le cardinal minimal
d’un recouvrement de A par des boules de rayons δ.

Théorème 4.2 (Somme-produit discrétisé dans R). Pour tout σ ∈]0, 1[, il existe
ε > 0 tel que l’énoncé suivant soit vérifié pour tout δ > 0 suffisamment petit.

Soit A ⊂ [0, 1] tel que

43
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(i) N(A, δ) ≤ δ−σ−ε ;
(ii) pour tout ρ ≥ δ et tout x ∈ [0, 1], N(A ∩B(x, ρ), δ) ≤ δ−ερσN(A, δ).
Alors

N(A+AA, δ) ≥ δ−εN(A, δ).

En termes de dimension de Hausdorff, la première condition sur l’ensemble
A correspond à l’inégalité dimH A ≤ σ+ ε, et la deuxième à dimH A ≥ σ− ε. Il
est toutefois important de noter qu’il ne suffit pas de supposer N(A, δ) ≥ δ−σ+ε,
il faut aussi éviter que l’ensemble A soit concentré dans une boule B(x, ρ), avec
ρ ∈ [δ, δε].

Exercice 43. Montrer que pour A = B( 1
2 , δ

1−σ), on a N(A, δ) = δ−σ et pour-
tant N(A+AA, δ) ≤ 2N(A, δ).

À l’aide d’un analogue discrétisé du lemme 3.18, on peut montrer que sous
les hypothèses du théorème 4.2, on a même

max(N(A+A, δ), N(AA, δ)) ≥ δ−εN(A, δ).

Cependant, l’exercice suivant montre que l’énoncé analogue pour la dimension
de Hausdorff n’est pas valable. À une échelle δ fixée, l’un des deux ensembles
A + A ou AA croît, mais on peut construire A de sorte qu’à certaines échelles
arbitrairement petites, A + A ne croît pas et à d’autres, AA ne croît pas ; cela
permet de majorer la dimension de Hausdorff de chaque ensemble.

Exercice 44. Soit α ∈]0, 1[ fixé.
1. Construire une partie A ⊂ R telle que dimH A = dimH A+A = α. Montrer

qu’on peut même imposer que A soit un sous-groupe.
2. Montrer qu’il existe une partie A ⊂ R telle que dimH A = dimH AA = α.
3. Construire A ⊂ [1, 2] tel que dimH A = dimH A+A = dimH AA = α.

Le premier but de ce chapitre est de donner une démonstration simple du
théorème 4.2, basée sur un article récent de Guth, Katz et Zahl [9]. Nous étu-
dierons ensuite les généralisations de ce résultat à C ou à d’autres algèbres
matricielles de dimension supérieures. Mais pour commencer, nous expliquons
brièvement comment les résultats du chapitre précédent s’adaptent à notre nou-
veau cadre de travail.

4.1 Nombres de recouvrement
Définition 4.3. Soit E un espace métrique, X ⊂ E et δ > 0. Le nombre de
recouvrement de X à l’échelle δ — ou entropie de X à l’échelle δ — noté N(X, δ)
est le cardinal minimal d’un recouvrement de X par des boules de rayon δ :

N(X, δ) = min{N ∈ N | ∃(xi)1≤i≤N : X ⊂
N⋃
i=1

B(xi, δ)}.

Dans la suite, nous considérons seulement le cas où E est un espace vectoriel
réel de dimension finie, isométrique à Rd muni de sa norme euclidienne. L’espace
métrique E est donc doublant : il existe une constante CE , telle que pour tout
x ∈ E et tout r > 0, la boule B(x, r) peut être recouverte par CE boules de
rayon r

2 . En d’autres termes, N(B(x, r), r2 ) = O(1). Cela implique en particulier
la proposition suivante, dont nous ferons souvent usage implicitement.
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Proposition 4.4. Soit E un espace métrique doublant. À certaines constantes
multiplicatives près ne dépendant que que E, si X ⊂ E et X ′ est une partie
δ-séparée maximale dans X, alors N(X, δ) � |X ′|.

Démonstration. Par la propriété de doublement, N(X, δ2 ) � N(X, δ). Or, si
X ⊂

⋃N
i=1B(xi,

δ
2 ), chaque boule B(xi,

δ
2 ) contient au plus un élément de X ′,

car X ′ est δ-séparé. Cela montre déjà que |X ′| � N(X, δ). Réciproquement,
par maximalité de X ′, on a X ⊂

⋃
x∈X′ B(x, 2δ), donc |X ′| ≥ N(X, 2δ) �

N(X, δ).

Exercice 45. Vérifier que tout espace vectoriel normé de dimension finie est un
espace métrique doublant. Donner un exemple d’espace métrique non doublant.

Les propriétés de combinatoire additive démontrées au paragraphe 3.1 ci-
dessus pour le cardinal admettent toutes des analogues pour le nombre de re-
couvrement à l’échelle δ. Nous utiliserons en particulier le résultat suivant.

Théorème 4.5 (Inégalités de Plünnecke). Soient X,Y1, . . . , Yk des parties bor-
nées de Rd. On suppose que N(X + Yi, δ) ≤ KiN(X, δ), i = 1, . . . , k. Il existe
alors X0 ⊂ X tel que N(X0 + Y1 + · · ·+ Yk, δ)�k (

∏k
i=1Ki)N(X0, δ). On peut

de plus supposer que N(X0, δ)� N(X, δ).

Démonstration. Nous allons nous ramener à l’inégalité de Plünnecke usuelle en
approchant chaque partie par une partie finie de G = δZd. Pour Z ⊂ Rd, on
pose Z ′ = G ∩ Z(2δ), de sorte que N(Z, δ) � |Z ′|. Par conséquent, pour chaque
i, |X ′+Y ′i | � Ki|X ′|. D’après l’exercice 36, il existe X ′0 ⊂ X ′ tel que |X ′0| ≥ X′

2

et |X ′0 +Y ′1 + · · ·+Y ′k| �k (
∏k
i=1Ki)|X ′0|. Par suite, posant X0 = X ∩ (X ′0)(2δ),

on a bien N(X0, δ) ≥ |X ′0| � N(X, δ) et

N(X0 + Y1 + · · ·+ Yk, δ)�k (

k∏
i=1

Ki)N(X0, δ).

On laisse au lecteur le soin de vérifier que l’inégalité et de lemme de recou-
vrement de Ruzsa peuvent aussi s’adapter pour les nombres de recouvrement,
ainsi que la proposition suivante.

Proposition 4.6. Soit E une algèbre réelle de dimension finie et A une partie
de E telle que N(A+AA, δ) ≤ KN(A, δ). Pour s ∈ N∗, on note 〈A〉s l’ensemble
des sommes ou différences d’au plus s produits d’au plus s éléments de A. Alors
N(〈A〉s, δ) ≤ KOs(1)N(A, δ).

4.2 Somme-produit discrétisé dans R
Comme ce cas est un peu plus facile, nous commencerons par l’étude du phé-

nomène somme-produit discrétisé dans R. Notre but est de démontrer le théo-
rème 4.2 énoncé ci-dessus. La démonstration est analogue à celle du théorème
somme-produit démontré au chapitre précédent, mais un nouveau paramètre
intervient, qui sert à contrôler les éléments mal inversibles, i.e. trop proches de
zéro, dans A−A.
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Démonstration du théorème 4.2. Soit A ⊂ [0, 1] une partie satisfaisant les condi-
tions suivantes :
(i) N(A, δ) ≤ δ−σ+ε ;
(ii) pour tout ρ ≥ δ et tout x ∈ [0, 1], N(A ∩B(x, ρ), δ) ≤ δ−ερσN(A, δ) ;
(iii) N(A+AA, δ) ≤ δ−εN(A, δ).
On veut en déduire une inégalité ε ≥ ε(σ) > 0. Fixons un paramètre γ ∈]0, 1

2 [
dont la valeur exacte sera choisie plus tard, et posons A0 = A − A, A1 =
A0 \B(0, δγ) et B = A0A

−1
1 . En d’autres termes,

B =

{
a1 − a2

a3 − a4
; ai ∈ A, |a3 − a4| > δγ

}
.

Notons que par l’inégalité de Ruzsa N(A0, δ) � δ3εN(A, δ) tandis que l’hypo-
thèse de non concentration implique N(A1, δ) ≥ N(A, δ)(1− δσγ)� N(A, δ).

Posons δ1 = δ1−2γ . L’ensemble B doit vérifier l’une des deux assertions
suivantes :
(A) B(2δ1) ⊃ [0, 1].
(B) Il existe b ∈ B ∩ [0, 1] tel que d( b2 , B) ≥ δ1 ou d( b+1

2 , B) ≥ δ1.
Supposons en effet que la seconde assertion ne soit pas vérifiée. Alors, l’ensemble
B(2δ1) est stable par les opérations b 7→ b

2 et b 7→ b+1
2 . Comme 0, 1 ∈ B(2δ1), cela

implique que B(2δ1) contient tous les rationnels dyadiques, puis que B(2δ1) =
[0, 1].
Premier cas : (A)
Soit B′ une partie δ1-séparée dans B, et pour chaque x ∈ B′ fixons une repré-
sentation x = ax

bx
, avec ax ∈ A0 et bx ∈ A1. Soit aussi A′ une partie δ1-séparée

dans Ã = A \B(0, δγ). L’application

A′ ×B′ → AA0 ×A1A
(a, x) 7→ (aax, bxa)

est injective à échelle δ. En effet, si{
aax = u+O(δ)
bxa = v +O(δ)

alors x = ax
bx

= u
v +O( δ

abx
) = u

v +O(δ1) donc x ∈ B′ est uniquement déterminé,
puis a = v

bx
+O( δbx ) = v

bx
+O(δ1) est aussi déterminé dans A′. Par conséquent,

N(B, δ1) ≤ N(AA−AA, δ)2

|A′|
.

Or, d’après l’inégalité de Ruzsa, N(AA − AA, δ) ≤ δ2εN(A, δ), et par ailleurs,
|A′| � N(Ã, δ1) ≥ δ2γN(Ã, δ)� δ2γN(A, δ), donc

N(B, δ1)� δ−2γ−4εN(A, δ).

Mais comme B(2δ1) ⊃ [0, 1], on a aussi N(B, δ1)� δ−1
1 = δ−1+2γ et donc

δ−σ−ε ≥ N(A, δ) ≥ δ−1+4γ+4ε,
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d’où ε ≥ 1−σ−4γ
5 .

Second cas : (B)
Si d( b2 , B) ≥ δ1, on écrit b

2 = e1
e2
, avec e1 ∈ A0 et e2 ∈ 2A1, tandis que si

d( b+1
2 , B) ≥ δ1, on écrit b+1

2 = e1
e2
, avec e1 ∈ A0 +A1 et e2 ∈ 2A1.

Nous voulons d’abord minorer N(e1A+ e2A, δ). Soit

Q = {(a1, a2, a3, a4) ∈ A×4 | e2a1 + e1a4 = e2a2 + e1a3 +O(δ)}.

L’inégalité qui définit Q implique∣∣∣∣a1 − a2

a3 − a4
− e1

e2

∣∣∣∣� δ|e2|−1|a3 − a4|−1 ≤ δ1−γ |a3 − a4|−1.

Comme d( e1e2 , B) ≥ δ1−2γ , on doit avoir |a3− a4| ≤ δγ . Si a4 est connu à δ près,
par non concentration, il y a au plus δγσ−εN(A, δ) possibilités pour a3. Ensuite,
si a1, a3, a4 sont connus à δ près, comme

a2 +
e1

e2
a3 = a1 +

e1

e2
a4 +O(|e2|−1δ)

l’hypothèse de non concentration montre qu’il y a au plus |e2|−σδσ−εN(A, δ)
possibilités pour a2, et ainsi

N(Q, δ) ≤ |e2|−σδσ(1+γ)−2εN(A, δ)4.

Avec l’inégalité de Schwarz cela donne

N(e1A1 + e2A1, δ) ≥
N(A, δ)4

N(Q, δ)
≥ |e2|σδ−σ(1+γ)+2ε.

D’autre part, on peut aussi majorer

N(e1A+ e2A, δ) ≤
1

N(A, |e2|)
N(A+ e1A+ e2A, δ)

≤ δ−ε|e2|σN(A+AA−AA+AA−AA+AA−AA, δ)
≤ |e2|σδ−10εN(A, δ).

Ainsi, N(A, δ) ≥ δ−σ(1+γ)+12ε et donc ε ≥ σγ
10 .

Dans les deux cas, ε ≥ min( 1−σ−4γ
5 , σγ12 ), et choississant γ = 1−σ

4+ 5σ
12

, on obtient

ε ≥ σ(1−σ)
53 .

Exercice 46. Vérifier que le théorème ci-dessus n’est pas valable pour les en-
sembles A ⊂ BC(0, 1). Quelle hypothèse faudrait-il ajouter ?

Nous aurons même besoin d’une version du théorème somme-produit valable
dans le corps C des complexes. La démonstration est quasiment identique à
celle présentée dans dans le cas réel, mais évidemment, il faut ajouter comme
hypothèse que l’ensemble A n’est pas inclus dans un δε-voisinage de R.

Théorème 4.7 (Somme-produit discrétisé dans C). Pour tout σ ∈]0, 2[, il existe
ε > 0 tel que l’énoncé suivant soit vérifié pour tout δ > 0 suffisamment petit.

Soit A ⊂ BC(0, 1) tel que
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(i) N(A, δ) ≤ δ−σ−ε ;
(ii) pour tout ρ ≥ δ et tout x ∈ [0, 1], N(A ∩B(x, ρ), δ) ≤ δ−ερσN(A, δ) ;
(iii) il existe a ∈ A tel que d(a,R) ≥ δε.
Alors

N(A+AA, δ) ≥ δ−εN(A, δ).

Démonstration. Soit A ⊂ BC(0, 1) une partie satisfaisant les conditions sui-
vantes :
(i) N(A, δ) ≤ δ−σ+ε ;
(ii) pour tout ρ ≥ δ et tout x ∈ [0, 1], N(A ∩B(x, ρ), δ) ≤ δ−ερσN(A, δ) ;
(iii) il existe a ∈ A tel que d(a,R) ≥ δε ;
(iv) N(A+AA, δ) ≤ δ−εN(A, δ).
On veut en déduire une inégalité ε ≥ ε(σ) > 0. Fixons un paramètre γ ∈]0, 1

2 [
dont la valeur exacte sera choisie plus tard, et posons A0 = A − A, A1 =
A0 \B(0, δγ) et B = A0A

−1
1 . En d’autres termes,

B =

{
a1 − a2

a3 − a4
; ai ∈ A, |a3 − a4| > δγ

}
.

Notons que par l’inégalité de Ruzsa N(A0, δ) � δ2εN(A, δ) tandis que l’hypo-
thèse de non concentration implique N(A1, δ) ≥ N(A, δ)(1− δσγ)� N(A, δ).

Posons δ1 = δ1−2γ . L’ensemble B doit vérifier l’une des deux assertions
suivantes :
(A) B(2δ1) ⊃ [0, 1].
(B) Il existe b ∈ B ∩ [0, 1] tel que d( b2 , B) ≥ δ1 ou d( b+1

2 , B) ≥ δ1.
Supposons en effet que la seconde assertion ne soit pas vérifiée. Alors, l’ensemble
B(2δ1) est stable par les opérations b 7→ b

2 et b 7→ b+1
2 . Comme 0, 1 ∈ B(2δ1), cela

implique que B(2δ1) contient tous les rationnels dyadiques, d’où B(2δ1) ⊃ [0, 1].
Premier cas : (A)
Soit a ∈ A tel que d(a,R) ≥ δε. Comme [0, 1] ⊂ B(2δ1), on a

N(aB +B, δ1)� δεδ−2
1 = δ−2+4γ+ε.

D’autre part, notant A2 = A(A − A)(A − A) + (A − A)(A − A) et A3 = (A −
A)(A−A) \B(0, δ2γ),

aB +B ⊂ A2A
−1
3 = C

Soit C ′ une partie δ1-séparée dans C, et pour chaque x ∈ C ′ fixons une repré-
sentation x = ax

bx
, avec ax ∈ A2 et bx ∈ A3. Soit aussi A′ une partie δ1-séparée

dans Ã = A \B(0, δγ). Soit enfin A4 = AA2 et A5 = AA3. L’application

A′ × C ′ → A4 ×A5

(a, x) 7→ (aax, bxa)

est injective à échelle δ. En effet, si{
aax = u+O(δ)
bxa = v +O(δ)
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alors x = ax
bx

= u
v +O( δ

abx
) = u

v +O(δ1) donc x ∈ C ′ est uniquement déterminé,
puis a = u

ax
+O( δ

ax
) = u

ax
+O(δ1) est aussi déterminé. Par conséquent,

N(C, δ1) ≤ N(A4, δ)N(A5, δ)

|A′|
� δ−4γ−98εN(A, δ)� δ−σ−4γ−99ε.

Ainsi
δ−σ−4γ−99ε ≥ δ−2+4γ+ε,

et donc ε ≥ 2−σ−8γ
100 .

Second cas : (B)
Si d( b2 , B) ≥ δ1, on écrit b

2 = e1
e2
, avec e1 ∈ A0 et e2 ∈ 2A1, tandis que si

d( b+1
2 , B) ≥ δ1, on écrit b+1

2 = e1
e2
, avec e1 ∈ A0 +A1 et e2 ∈ 2A1.

Nous voulons d’abord minorer N(e1A+ e2A, δ). Soit

Q = {(a1, a2, a3, a4) ∈ A×4
1 | e2a1 + e1a4 = e2a2 + e1a3 +O(δ)}.

L’inégalité qui définit Q implique∣∣∣∣a1 − a2

a3 − a4
− e1

e2

∣∣∣∣� δ|e2|−1|a3 − a4|−1 ≤ δ1−γ |a3 − a4|−1.

Comme d( e1e2 , B) ≥ δ1−2γ , on doit avoir |a3− a4| ≤ δγ . Si a4 est connu à δ près,
par non concentration, il y a au plus δγσ−εN(A, δ) possibilités pour a3. Ensuite,
si a1, a3, a4 sont connus à δ près, comme

a2 +
e1

e2
a3 = a1 +

e1

e2
a4 +O(|e2|−1δ)

l’hypothèse de non concentration montre qu’il y a au plus |e2|−σδσ−εN(A, δ)
possibilités pour a2, et ainsi

N(Q, δ) ≤ |e2|−σδσ(1+γ)−2εN(A, δ)4.

Avec l’inégalité de Schwarz cela donne

N(e1A1 + e2A1, δ) ≥
N(A, δ)4

N(Q, δ)
≥ |e2|σδ−σ(1+γ)+2ε.

D’autre part, on peut aussi majorer

N(e1A+ e2A, δ) ≤
1

N(A, |e2|)
N(A+ e1A+ e2A, δ)

≤ δ−ε|e2|σN(A+ 4AA− 4AA, δ)

≤ |e2|σδ−10εN(A, δ).

Ainsi, N(A, δ) ≥ δ−σ(1+γ)+12ε et donc ε ≥ σγ
12 .

Dans tous les cas, ε ≥ min( 2−σ−8γ
100 , σγ12 ), et choisissant γ convenablement,

on obtient ε ≥ σ(2−σ)
300 .
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Remarque. Le théorème 4.7 est encore valable si l’on remplace l’hypothèse de
non concentration par l’hypothèse un peu plus faible

∀ρ ≥ δ, N(A, ρ) ≥ δερ−σ.

Cela découle simplement de l’observation suivante : si A vérifie cette hypo-
thèse et est concentré à une certaine échelle ρ, i.e. vérifie N(A ∩ B(x, ρ), δ) ≥
δ−2ερσN(A, δ) pour une certaine boule B(x, ρ), alors

N(A+A, δ)� N(A, ρ)N(A ∩B(x, ρ), δ) ≥ δ−εN(A, δ),

et la conclusion du théorème somme-produit est vérifiée.

Un argument formel permet même d’affaiblir encore l’hypothèse de non
concentration, ce qui nous sera utile plus tard.

Théorème 4.8 (Somme-produit discrétisé dans C). Pour tout σ ∈]0, 2[ et tout
κ > 0, il existe ε > 0 tel que l’énoncé suivant soit vérifié pour tout δ > 0
suffisamment petit.

Soit A ⊂ BC(0, 1) tel que
(i) N(A, δ) ≤ δ−σ−ε ;
(ii) pour tout ρ ≥ δ, N(A, ρ) ≥ δερ−κ ;
(iii) il existe a ∈ A tel que d(a,R) ≥ δε.
Alors

N(A+AA, δ) ≥ δ−εN(A, δ).

Démonstration. Le théorème 4.7 et la remarque ci-dessus montrent qu’il existe
ε > 0 tel que pour tout σ′ ∈ [κ, σ], pour tout δ suffisamment petit, si un ensemble
A vérifie les conditions
(i) N(A, δ) ≤ δ−σ′−ε0 ;
(ii) il existe a ∈ A tel que d(a,R) ≥ δε0 ;
(iii) N(A+AA, δ) ≤ δ−ε0N(A, δ) ;
alors il existe ρ ≥ δ tel que N(A, ρ) ≤ δε0ρ−σ

′
. Par conséquent, si N(A +

AA, δ) ≤ δ−ε0N(A, δ), il existe δ1 ≥ δ tel que

N(A, δ1) ≤ δε0δ−σ1 ≤ δ−σ+ε0
1 .

Si N(A+AA, δ1) ≤ δ−ε01 N(A, δ1), on obtient de même δ2 ≥ δ1 tel que

N(A, δ2) ≤ δε01 δ
−σ+ε0
2 ≤ δ−σ+2ε0

2 .

Et ainsi de suite, tant que N(A + AA, δk−1) ≤ δ−ε0k−1N(A, δk−1), il existe δk ≥
δk−1 tel que

N(A, δk) ≤ δε0k−1δ
−σ+(k−1)ε0
k ≤ δ−σ+kε0

k .

Par conséquent, pour k ≤ b σε0 c, on doit avoir

N(A+AA, δk) ≥ δ−ε0k N(A, δk).

Notons que δεδ−κ1 ≤ N(A, δ1) ≤ δε0δ−σ1 et donc δ1 ≤ δ
ε0

2(σ−κ) si ε > 0 est

suffisamment petit. De même, δk ≤ δ
ε0

2(σ−κ)
k−1 , et par conséquent

δk ≤ δ
ε0

2(σ−κ)
k−1 ≤ · · · ≤ δ(

ε0
2(σ−κ) )

k
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et donc δ−ε0k ≥ δ−2ε si ε > 0 est choisi de sorte que 2ε < ε0

(
ε0
κ

)k. Soit alors
Bδk = B(x, δk) une boule de A tel que N(A∩Bδk , δ) soit maximal. Cela implique
en particulier N(A ∩Bδk , δ) ≥

N(A,δ)
N(A,δk) et par conséquent

N(A+A+AA, δ) ≥ N(A ∩Bδk , δ)N(A+AA, δk)

≥ N(A, δ)

N(A, δk)
N(A+AA, δk)

≥ δ−ε0k N(A, δ).

Pour conclure, on utilise l’inégalité de Ruzsa

N(A+A+AA, δ) ≤
(
N(A+AA, δ)

N(A, δ)

)2

N(A, δ).

Enfin remarquons que si A ⊂ BC(0, 1) est une partie non concentrée, une
application itérée du théorème 4.8 montre qu’à l’aide d’un nombre borné de
sommes et de produits d’éléments de A, on peut obtenir tout élément dans une
boule B(0, δε0), où ε0 > 0 est arbitrairement petit.

Proposition 4.9. Étant donnés κ, ε0 > 0, il existe s ∈ N∗ tel que l’énoncé
suivant soit vérifié pour tout δ > 0 suffisamment petit.

Soit A ⊂ BC(0, 1) vérifiant :
1. il existe a ∈ A tel que d(a,R) ≥ δε ;
2. pour tout ρ ≥ δ, N(A, ρ) ≥ δερ−κ.

Alors, notant 〈A〉s l’ensemble des éléments qui s’écrivent comme somme d’au
plus s produits de longueur au plus s d’éléments de A,

N(〈A〉s, δ) ≥ δ−2+ε0 .

Démonstration. Il suffit de choisir un entier ` tel que κ + (` − 1)ε > 2 − ε0 et
d’appliquer le théorème 4.8 successivement aux parties Ak définies par{

A0 = A
∀k ≥ 1, Ak = Ak−1 +Ak−1Ak−1.

Comme N(A0, δ) ≥ δ−κ−ε, on obtient N(A`, δ) ≥ δ−2+ε0 , et comme A` ⊂ 〈A〉s
pour s = 22` , le résultat est démontré.
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Chapitre 5

Analyse dans les groupes de
Lie

Soit G un groupe de Lie compact à centre fini. On munit G de la distance
associée à une métrique riemmanienne invariante à gauche et à droite. Si X
est une partie de G et δ > 0 une échelle, on note N(X, δ) le cardinal minimal
d’un recouvrement de X par des boules de rayon δ. On note aussi X(δ) le δ-
voisinage de X dans G. La démonstration du théorème 2.21 se fonde sur l’énoncé
combinatoire suivant.

Théorème 5.1 (Théorème produit discrétisé). Soit G un groupe de Lie compact
à centre fini. Il existe un voisinage de l’identité U dans G tel que pour tout κ > 0,
il existe ε > 0 tel que l’énoncé suivant soit vérifié.

Soit A ⊂ U une partie vérifiant
(i) N(A, δ) ≤ δ− dimG+σ ;
(ii) pour tout sous-groupe fermé distingué connexe N CG,

∀ρ ≥ δ, N(πG/N (A), ρ) ≥ δερ−κ;

(iii) pour tout sous-groupe fermé connexe H < G, il existe x ∈ A tel que
d(x,H) ≥ δε.

Alors,
N(AAA, δ) ≥ δ−εN(A, δ).

Remarque. L’hypothèse de compacité n’est pas essentielle, l’important est que
l’algèbre de Lie g du groupe soit parfaite, i.e. vérifie [g, g] = g.

Comme la démonstration de ce résultat général est trop longue pour être in-
cluse dans ce cours, nous la présenterons seulement pour le groupe G = SO3(R)
des rotations en dimension 3. Ce cas particulier nécessitera déjà une grande par-
tie des outils d’analyse et de combinatoire nécessaires à la démonstration dans
le cas général. Notons que SO3(R) est localement isomorphe à SU2(R) = {g ∈
SL2(C) | gg∗ = 1}, le théorème produit est donc le même pour chacun de ces
deux groupes, et comme les calculs sont un peu plus simples dans SU2(R), nous
nous placerons dans ce cadre pour le restant du chapitre. Les seuls sous-groupes
connexes de G = SU2(R) sont des tores de dimension 1, qui ne sont pas dis-
tingués ; dans ce cadre, le résultat que nous voulons démontrer s’énonce donc
comme suit.

53
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Théorème 5.2 (Théorème produit discrétisé dans SU2(R)). Soit G = SU2(R)
et σ, κ > 0 des paramètres fixés. Il existe ε > 0 tel que l’énoncé suivant soit
vérifié.

Soit A ⊂ G une partie vérifiant
(i) N(A, δ) ≤ δ−3+σ ;
(ii) pour tout ρ ≥ δ, N(A, ρ) ≥ δερ−κ;

(iii) pour tout sous-groupe fermé connexe H < G, il existe x ∈ A tel que
d(x,H) ≥ δε.

Alors,
N(AAA, δ) ≥ δ−εN(A, δ).

5.1 Construction d’un tore riche
L’idée de la démonstration du théorème 5.1 est de se ramener au phénomène

somme-produit discrétisé dans C. Le cas de G = SU2(R) est un peu plus simple,
car les tores maximaux sont de dimension 1, isomorphes au groupe des complexes
de module 1. C’est la proposition suivante qui nous permettra construire, à
partir d’un sous-groupe approximatif dans G, les parties non concentrées de C
auxquelles nous appliquerons le théorème somme-produit.

Proposition 5.3 (Existence d’un tore riche). Soit A ⊂ G tel que
1. ∀H < G, ∃a ∈ A : d(a,H) ≥ δε ;
2. N(AAA, δ) ≤ δεN(A, δ).

Il existe un tore T dans G tel que N(A6 ∩ T (δ1−O(ε)), δ) ≥ δO(ε)N(A, δ)
1
3 .

Commençons par un lemme sur les éléments qui stabilisent presque un vec-
teur dans une représentation linéaire.

Lemme 5.4. Soit G un groupe de Lie compact et V une représentation linéaire
de G.

1. Pour tout v ∈ V , il existe une constante c > 0 telle que pour tout g ∈ G,
d(gv, v) ≥ c · d(g,Hv), où Hv = Stab v.

2. Si V ne contient pas de vecteur invariant, il existe une constante C > 0
telle que pour tout v ∈ V unitaire, il existe un sous-groupe fermé strict H
tel que pour tout g ∈ G, si d(gv, v) ≤ ε, alors d(g,H) ≤ Cε.

Démonstration. Soit W un supplémentaire de h dans g et U un voisinage de 0
dansW tel que Y 7→ eY ·v soit un difféomorphisme de U sur son image. Il existe
c0 > 0 tel que si d(g,Hv) < c0, on peut écrire g = eY h, avec h ∈ Hv et Y ∈ U ,
d’où

d(gv, v) = d(eY v, v) � ‖Y ‖ � d(g,Hv).

Comme par ailleurs, la fonction continue g 7→ d(gv,v)
d(g,Hv) est strictement positive

sur le compact d(g,Hv) ≥ c0, on trouve bien qu’il existe c > 0 tel que pour tout
g ∈ G, d(gv, v) ≥ cd(g,Hv). Cela montre la première partie du lemme.

Pour la seconde partie, fixons v0 un vecteur unitaire dans V , D’après le pre-
mier point du lemme, pour tout x dans G, l’inégalité d(gxv0, xv0) ≤ ε implique
d(g,Hxv0) ≤ C0ε, pour une constante C0 qui ne dépend que de v0. Notons h0
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l’algèbre de Lie de Hv0 = Stab v0, et W0 tel que g = h0 ⊕W0. Dans un voi-
sinage Uv0 de v0, tout vecteur v peut s’écrire v = eY (v0 + u), avec Y ∈ W0

et u ∈ (W0v0)⊥, et cette écriture est unique. Supposons d(gv, v) ≤ ε. On a
alors gv = geY (v0 + u) donc ε ≥ d(gv, v) ≥ d(geY v0, e

Y v0). Par conséquent,
d(g,HeY v0) ≤ C0ε. Pour conclure, il suffit de prendre un recouvrement fini de
la sphère unité dans V par des petits ouverts Uv0 .

Exercice 47. Montrer que le sous-groupe H dans le deuxième point du lemme
n’est pas nécessairement égal à Stab v.

Lemme 5.5. Soit A ⊂ G à distance au moins ρ de tout sous-groupe. Il existe
des éléments g1, g2, g3 ∈ A2 tels que le jacobien de l’application φ : g 7→
(Tr g1g,Tr g2g,Tr g3g) vérifie

|Jφ(1)| ≥ ρO(1).

Démonstration. Le jacobien Jφ(1) est égal au déterminant de l’application

φ : M2(C) → C4

X 7→ (TrX,Tr g1X,Tr g2X,Tr g3X)

. Notons g0 = 1 et commençons par fixer g1 tel que d(g1, g0) ≥ ρ. Ensuite, soit
V1 = Cg0 ⊕ Cg1 ≤ M2(C). Comme V1 ∩ G = Z(g1), il existe g2 ∈ A tel que
d(g2, V1) ≥ ρ. Soit alors V2 = Cg0 ⊕ Cg1 ⊕ Cg2 ≤ M2(C). Cet espace n’est pas
un idéal à gauche de M2(C) car il contient g0 = 1 donc il existe u ∈ A tel que
d(u,StabG V2) ≥ ρ. D’après le lemme 5.4, cela implique d(uV2, V2)� ρ et donc,
pour un certain i ∈ {0, 1, 2}, d(ugi, V2) � ρO(1). Posant g3 = ugi on obtient la
famille souhaitée, car detφ = det(g0, g1, g2, g3).

Démonstration de la proposition 5.3. D’après le lemme 5.5,

N(Tr(AAA), δ)3 ≥
3∏
i=1

N(Tr(giA), δ) ≥ δO(ε)N(A, δ)

i.e. N(Tr(AAA), δ) ≥ δO(ε)N(A, δ)
1
3 . Par le principe des tiroirs, il existe donc

a ∈ A3 tel que l’ensemble Ca(δ) = {g ∈ G | |Tr(g)− Tr(a)| ≤ δ} vérifie

N(A9 ∩ Ca(δ), δ) ≤ N(A9, δ)

N(Tr(AAA), δ)
≤ δ−O(ε)N(A, δ)

2
3 .

Mais A9 ∩Ca(δ) contient tous les éléments gag−1, g ∈ A, et il doit donc exister
g0 ∈ A tel que

N({g ∈ A | gag−1 = g0ag
−1
0 +O(δ)}, δ) ≥ δO(ε)N(A, δ)

1
3 .

Comme d(a, 1) ≥ δε, le lemme 5.4 montre que gag−1 = g0ag
−1
0 +O(δ) implique

d(g−1
0 g, Za) = O(δ1−ε), et donc

N(A6 ∩ T (O(δ1−ε)), δ) ≥ δO(ε)N(A, δ)
1
3 .
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5.2 Croissance dans la représentation adjointe
Pour montrer l’expansion dans G, on commence par démontrer l’expansion

via somme et produit dans la représentation adjointe. On rappelle que si g =
Lie G, la représentation adjointe Ad : G→ GL(g) est définie par

(Ad g)X = gXg−1.

Comme G = SU2(R) est simple, la représentation adjointe est irréductible, et
l’algèbre engendrée par AdG dans End g est égale à End g 'M3(R).

Proposition 5.6. Soit A ⊂ G tel que
1. ∀H < G, ∃a ∈ A : d(a,H) ≥ δε ;
2. N(AAA, δ) ≤ δ−εN(A, δ).
3. ∀ρ ≥ δ, N(A, ρ) ≥ δερ−κ ;

On note A1 = AdA ⊂ End g l’image de A par la représentation adjointe. Pour
tout ε0 > 0, il existe s ∈ N∗ tel que

N(〈A1〉s, δ) ≥ δ−9(1−ε0).

Démonstration. D’après la proposition 5.3, les deux premières conditions sur A
impliquent qu’il existe un tore T tel que

N(A6 ∩ T (δ1−O(ε)), δ) ≥ δO(ε)N(A, δ)
1
3 .

En outre, on peut supposer que l’ensemble A′ = T ∩ (A6)(δ1−O(ε)) vérifie, pour
tout ρ ≥ δ,

N(A′ ∩Bρ, δ) ≤ δ−O(ε)ρ
κ
3N(A′, δ).

En effet, si ce n’est pas le cas, en conjugant par des éléments de A en bonne
position, on obtient N(AC ∩ Bρ, δ) ≥ δ−O(ε)ρκN(A′, δ)3 ≥ δ−O(ε)ρκN(A, δ),
ce qui implique N(AC+1, δ) ≥ N(A, ρ)N(AC ∩ Bρ, δ) ≥ δ−O(ε)N(A, δ), et par
l’inégalité de Ruzsa, cela contredit N(AAA, δ) ≤ δ−εN(A, δ).

On considère maintenant l’image T1 = (AdT ) du tore T dans la représen-
tation adjointe G → GL(g) ' GL3(R). La sous-algèbre engendrée par T1 dans
M3(R) s’identifie à C, et dans cette identification, l’ensemble A′1 = AdA′ vérifie
les hypothèses de la proposition 4.9 et donc, pour un certain s0,

N(〈A′1〉s0 , δ) ≥ δ−2+ε0 .

En particulier, il existe un vecteur unitaire η ∈M3(R) tel que

N(〈A′1〉s0 ∩ η[0, 1], δ) ≥ δ−1+ε0 .

Comme G×G agit irréductiblement sur M3(R) par X 7→ aXb−1 et A est à dis-
tance au moins δε de tout sous-groupe dans G, le lemme 5.4 montre qu’il existe
des éléments ai, bi ∈ A9, i = 1, . . . , 9 tels que, notant Vi = Vect{ajηbj ; j ≤ i},

∀i = 1, . . . , 9, d(aiηbi, Vi−1) ≥ δO(ε).

Par suite, posant s = 9(s0 + 18),

N(〈A1〉s, δ) ≥ δO(ε)
9∏
i=1

N(ai〈A′1〉s0bi ∩ aiηbi[0, 1], δ)

≥ δO(ε)δ−9(1−ε0).
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5.3 Application exponentielle
Commençons par une observation élémentaire sur l’application exponentielle

au voisinage de 0. Soit ρ ∈]0, 1
2 [ et X,Y ∈ Bg(0, ρ). Alors, à l’ordre 1, eX+Y =

eXeY et donc
d(eX+Y , eXeY ) = O(ρ2).

Si l’on ajoute un terme correctif à eXeY , on peut améliorer la précision de
l’approximation. En effet, un calcul élémentaire montre que

e−2Y e−2Xe2X+2Y = 1 + 2[X,Y ] +O(ρ3)

= (eXeY e−Xe−Y )2 +O(ρ3)

et donc, notant (g, h) = ghg−1h−1,

d(e2X+2Y , e2Xe2Y (eX , eY )2) = O(ρ3).

En poursuivant cette analyse grâce à la formule de Campbell-Hausdorff, on
peut montrer par récurrence que pour tout k ∈ N∗, il existe un entier mk tel
que emk(X+Y ) soit approchable à l’ordre k par un mot en eX et eY . C’est le
contenu du lemme suivant.

Lemme 5.7. Fixons s ∈ N∗. Pour chaque k ∈ N∗, il existe mk ∈ N∗ et un mot
wk ∈ Fs, le groupe libre sur s générateurs, tel que

∀X1, . . . , Xs ∈ Bg(0, ρ), d(exp(mk(X1 + · · ·+Xs)), w(eX1 , . . . , eXs)) ≤ ρk+1.

Démonstration. On construit le mot wk et l’entier mk par récurrence sur k.
Pour k = 1, w1(x1, . . . , xs) = x1 . . . xs car eX1+···+Xs = eX1 . . . eXs + O(ρ2).
Supposons construits mk−1 ∈ N∗ et wk−1 tels que

emk−1(X1+···+Xs) = wk−1(eX1 , . . . , eXs) +O(ρk).

D’après la formule de Campbell-Hausdorff, l’expression logwk−1(eX1 , . . . , eXs)
admet un développement à tout ordre en somme de crochets de Lie des éléments
X1, . . . , Xs ; en particulier, on peut écrire à l’ordre k, pour certains rationnels
ri, i ∈ J1, sKk,

mk−1(X1 + · · ·+Xs) = logwk−1(eX1 , . . . , eXs)

+
∑

(i1,...,ik)∈J1,sKk
ri[Xi1 , [Xi2 , [. . . , [Xik−1

, Xik ] . . . ]]] +O(ρk+1).

En multipliant par un dénominateur nk commun à tous les ri, on obtient
mk, nk ∈ N∗ et des entiers ai tels que

mk(X1 + · · ·+Xs) = logwk−1(eX1 , . . . , eXs)nk

+
∑

(i1,...,ik)∈J1,sKk
ai[Xi1 , [Xi2 , [. . . , [Xik−1

, Xik ] . . . ]]] +O(ρk+1).

Notons que si (x, y) = xyx−1y−1, alors

[Xi1 , [Xi2 , [. . . , [Xik−1
, Xik ] . . . ]]] = log(eXi1 , (eXi2 , (. . . , (eXik−1 , eXik ) . . . )))+O(ρk+1).
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On peut donc poser

wk(x1, . . . , xs) = wk−1(x1, . . . , xs)
∏
i

(xi1 , (xi2 , (. . . , (xik−1
, xik) . . . )))−ai

pour avoir le développement à l’ordre k souhaité.

Partant du tore riche construit au paragraphe précédent, et grâce à l’action
adjointe, ce lemme va nous permettre de transformer une expression somme-
produit dans la représentation adjointe en un produit dans G, et ainsi, de dé-
montrer le théorème 5.1.

Démonstration du théorème 5.1 pour G = SU2(R). L’hypothèse de non concen-
tration sur A permet d’obtenir x = eX ∈ AA−1 tel que d(x, 1) � δε0 . Si s est
l’entier donné par la proposition 5.6, on a

N(〈A1〉s ·X, δ) ≥ ‖X‖δ6N(〈A1〉s, δ) ≥ ‖X‖δ−3+9ε0 ≥ δ−3+10ε0 ,

et comme l’application exponentielle est un difféomorphisme local au voisinage
de l’identité

N(exp(〈A1〉s ·X), δ)� δ−3+10ε0 ,

Posons k = 1
ε0

et notons m = mk ∈ N∗ et w = wk ∈ Fk les éléments donnés par
le lemme 5.7. Pour a1, . . . , as ∈ As, notons Xi = (Ad ai)X et xi = e(Ad ai)X =
aixa

−1
i ∈ As+2. Alors, le lemme 5.7 appliqué avec ρ = δε0 donne

exp[ms(X1 + · · ·+Xs)] = w(eX1 , . . . , eXs) +O(δ).

Par conséquent, si ` = `(w) est la longueur du mot w,

exp[ms(X1 + · · ·+Xs)] ⊂ A(s+2)` ·B(1, O(δ)),

d’où
N(A(s+2)`, δ)� N(exp(ms〈A1〉s ·X)), δ)� δ−3+10ε0 .

Prenant ε0 tel que 3 − 10ε0 = 3+σ
2 et ε > 0 tel que 2(s + 2)`ε < 3−σ

2 , cela
implique N(A(s+2)`, δ) ≥ δ−2(s+2)`εN(A, δ) et donc, par l’inégalité de Ruzsa

N(A3, δ) ≥ δ−εN(A, δ).



Chapitre 6

Aplanissement et trou
spectral

Dans ce chapitre, nous achevons la démonstration du théorème 2.21, suivant
la méthode développée par Bourgain et Gamburd [4, 3]. Le théorème produit 5.1
et les méthodes de combinatoire additive des chapitres 3 et ?? vont nous per-
mettre de montrer que la propriété du trou spectral pour une mesure symétrique
µ est équivalente à une certaine propriété de non concentration de la marche
aléatoire au voisinage des sous-groupes.

Définition 6.1 (Mesures presque diophantiennes). Une probabilité symétrique
µ sur G est dite presque diophantienne s’il existe des constantes C, c > 0 et
n0 ∈ N telles que pour tout n ≥ n0 et tout sous-groupe fermé H tel que
dimH < dimG,

µ∗n({g ∈ G | d(g,H) ≤ e−Cn}) ≤ e−cn.

Le résultat que nous montrerons dans ce chapitre est le suivant.

Théorème 6.2. Une probabilité symétrique µ sur G admet un trou spectral si
et seulement si elle est presque diophantienne.

Commençons par vérifier le sens facile de cette équivalence : si µ admet un
trou spectral, alors µ est presque diophantienne.

Trou spectral ⇒ Condition presque diophantienne. Pour ρ > 0, on définit un
élément de L2

0(G) en posant f = 1H(ρ)−m(H(ρ)). Notons que ‖f‖2 � ‖1H(ρ)‖ �
m(H(ρ))1/2 ≤ ρ1/2. Donc pour n = Cµ log 1/ρ, notant p = dimH,

‖Tnµ 1H(2ρ)‖2 � ρd−p.

Or,

‖Tnµ 1H(2ρ)‖2 =

(∫
(

∫
1H(2ρ)(xy)µ∗n(dx))2dy

)1/2

=

(∫
(µ∗n(H(2ρ)y)2dy

)1/2

≥ |H(ρ)|1/2µ∗n(H(ρ))

59
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et donc
µ∗n(H(ρ))� ρ

d−p
2 .

La suite du chapitre a pour but de démontrer l’implication réciproque.

6.1 Aplanissement
Nous utiliserons la famille d’unités approchées (Pδ)δ>0 définie par

Pδ(x) =
1B(1,δ)(x)

|B(1, δ)|
.

Si ν est une probabilité sur G et δ > 0, on note νδ = ν ∗ Pδ la régularisée de ν
à l’échelle δ, et

‖ν‖2,δ = ‖ν ∗ Pδ‖2.

Le lemme central dans la démonstration du théorème 6.2 est le suivant. C’est
l’analogue pour les mesures de probabilité du théorème produit discrétisé, et il
s’en déduit à l’aide du lemme de Balog-Szemerédi-Gowers.

Lemme 6.3 (Aplanissement L2). Étant donné σ, κ > 0, il existe ε > 0 tel que
l’énoncé suivant soit vérifié pour tout δ > 0 suffisamment petit.
Soit ν une probabilité sur G telle que
(i) ‖ν‖2,δ ≥ δ−σ ;
(ii) ∀H < G, ∀ρ ≥ δ, (ν ∗ ν̌)(H(ρ)) ≤ ρκ.
Alors,

‖ν ∗ ν‖2,δ ≤ δε‖ν‖2,δ.

Démonstration. Supposons que ν vérifie
(i) ‖ν‖2,δ ≥ δ−σ ;
(ii) ∀H < G, ∀ρ ≥ δ, (ν ∗ ν̌)(H(ρ)) ≤ ρκ.
(iii) ‖ν ∗ ν‖2,δ ≥ δε‖ν‖2,δ.

Nous approcherons la densité νδ = ν ∗Pδ de ν à l’échelle δ par des ensembles
de niveau dyadiques. Posant

∀i ≥ 1, Ai = {x | 2i ≤ νδ(x) ≤ 2i+1},

on a ∑
1≤i≤d log 1

δ

2i1Ai(x) ≤ νδ(x) ≤ 1 + 2
∑

1≤i≤d log 1
δ

1Ai(x).

La troisième condition sur ν implique∥∥∥∥∥∥
∑

1≤i,j�log 1
δ

2i+j1Ai ∗ 1Aj

∥∥∥∥∥∥
2

≥ δε‖ν‖2,δ

et donc il existe i, j tels que

2i+j‖1Ai ∗ 1Aj‖2 ≥ δ2ε‖ν‖2,δ.
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Comme ‖2i1Ai‖1 ≤ 1 et ‖2i1Ai‖2 ≤ ‖ν‖2,δ, cela implique

‖ν‖2,δ ≥ ‖2i1Ai‖1‖2j1Aj‖2 ≥ 2i+j‖1Ai‖1‖1Aj‖2 ≥ δ2ε‖ν‖2,δ

et donc
1 ≥ 2i|Ai| ≥ δ2ε et ‖ν‖2,δ ≥ 2j |Aj |

1
2 ≥ δ2ε‖ν‖2,δ.

Les mêmes encadrements sont encore valables si l’on échange i et j, d’où, à un
facteur δO(ε) près,

‖ν‖2,δ � 2
i
2 � 2

j
2

et
|Ai| � |Aj | � 2−i � 2−j .

Par suite, l’énergie multiplicative de Ai et Aj est minorée :

E(Ai, Aj) = ‖1Ai ∗ 1Aj‖22 ≥ δO(ε)|Ai|
3
2 |Aj |

3
2 .

D’après le lemme de Balog-Szemerédi-Gowers (lemme 3.10), et la classification
des ensembles à petit doublement (proposition 3.7), il existe un sous-groupe
δO(ε)-approximatif H et deux éléments x, y ∈ G tels que

— |H| ≤ δ−O(ε)|Ai|
1
2 |Aj |

1
2 ;

— |Ai ∩ xH| ≥ δO(ε)|Ai| et |Aj ∩Hy| ≥ δO(ε)|Aj |.
Notons que νδ(xH) ≥ δO(ε) et vu l’hypothèse de non concentration sur ν, cela
implique que xH n’est pas inclus dans un δO(ε)-voisinage d’un sous-groupe
fermé strict. Cela implique aussi N(H, ρ) = N(xH, ρ) ≥ δO(ε) 1

maxx νδ(B(x,ρ) ≥
ρ−κ/2δO(ε). (En effet, pour tout x dans G, on peut majorer νδ(B(x, ρ))2 ≤
ν ∗ ν̌(B(1, 2ρ))``δ−ερκ.)

D’après le théorème produit, il existe τ > 0 tel que si ε > 0 est suffisamment
petit, on doit avoir N(H3, δ) ≥ δ−τN(H, δ). Par conséquent, τ ≤ O(ε), et ε > 0
est minoré, ce qu’il fallait démontrer.

Grâce à une application itérée du lemme d’aplanissement, nous allons mon-
trer la proposition suivante.

Proposition 6.4. Soit µ une probabilité symétrique presque diophantienne sur
G. Pour tout σ > 0, il existe une constante c0 > 0 telle que pour tout n suffi-
samment grand, si δ = e−c0n, alors

‖µn‖2,δ ≤ δ−σ.

Démonstration. Rappelons que pour tout n suffisamment grand,

∀H < G, µn(H(e−Cn)) ≤ e−cn.

Posant κ = c
C , cela implique que pour tout n ≥ n0,

∀H < G, ∀ρ ≥ e−Cn, µn(H(ρ)) ≤ ρκ.

Comme µ est symétrique, cela montre que pour tout N ≥ n0, la mesure ν =
µN vérifie les hypothèses du lemme 6.3 pour tout δ ≥ e−CN . Définissons par
récurrence {

ν0 = µN
∀k ≥ 1, νk = νk−1 ∗ νk−1.
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Tant que ‖νk‖2,δ ≥ δ−σ, le lemme 6.3 montre que ‖νk+1‖2,δ ≤ δ−τ‖νk‖2,δ. Par
conséquent, il existe k ≤ dimG

2τ tel que ‖νk‖2,δ ≤ δ−σ. Si n = 2kN et c0 = C
2k
,

comme νk = µ2kN = µn et δ = e−CN = e−c0n, on obtient

‖µn‖2,δ ≤ δ−σ.

Cela montre la propriété souhaitée lorsque n = 2kN pour N assez grand. Le
cas général en découle, quitte à diminuer un peu la valeur de c0, car on peut
toujours écrire n = 2kN + p, p ∈ J0, 2k − 1K et donc

‖µn‖2,δ ≤ ‖µ2kN‖2,δ ≤ δ−σ.

6.2 Analyse de Fourier
Rappelons la classification des représentations unitaires irréductibles de G =

SU2(R).

Théorème 6.5. Pour chaque m ≥ 1, il existe à équivalence près une unique
représentation irréductible de G = SU2(R) sur un espace de dimension m. Cette
représentation est donnée par l’action régulière de G sur l’espace Vn = Cn[X,Y ]
des polynômes homogènes de degré m en deux variables X,Y :

(g · P )

(
X
Y

)
= P

(
g−1

(
X
Y

))
.

Démonstration. Une représentation de SU2(R) est un morphisme SU2(R) →
GLd(C). Comme SU2(R) est simplement connexe, ces représentations sont en
bijection avec les représentations de l’algèbre de Lie

su2 = {X ∈ sl2(C) | X∗ +X = 0}.

Et comme su2 ⊕ isu2 = sl2(C), une telle représentation se prolonge uniquement
en une représentation C-linéaire sl2(C)→ gld(C). Il s’agit donc de classifier les
représentations de l’algèbre de Lie complexe sl2(C). On utilise pour cela la base

h =

(
1 0
0 −1

)
e =

(
0 1
0 0

)
f =

(
0 0
1 0

)
qui vérifie [h, e] = 2e, [h, f ] = −2f et [e, f ] = h. Soit π : sl2(C) → gl(V ) une
représentation de dimension finie de sl2(C). Comme C est algébriquement clos,
l’endomorphisme π(h) admet une valeur propre :

∃v ∈ V \ {0}, λ ∈ C : π(h)v = λv.

On écrit alors

π(h)π(e)v = π(e)π(h)v + [π(h), π(e)]v = (λ+ 2)π(e)v

et par récurrence
π(h)π(e)kv = (λ+ 2k)π(e)kv.
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Les vecteurs π(e)kv, k ≥ 0 sont linéairement indépendants s’ils sont non nuls, car
ils sont associés à des valeurs propres distinctes de π(h). Comme dimV < +∞,
il existe k tel que π(e)kv = 0, et par conséquent, quitte à changer λ,

∃v0 6= 0 : π(e)v0 = 0 et π(h)v0 = λv0.

Pour i ≥ 0, notons vi = π(f)iv0. On vérifie facilement par récurrence sur i que
π(h)vi = (λ − 2i)vi et donc il existe n tel que π(f)n+1v0 = 0. Si n ∈ N∗ est
l’entier minimal qui satisfait cette égalité, les vecteurs v0, . . . , vn sont linéaire-
ment indépendants. Montrons que V = Vect(v0, . . . , vn). Pour cela, il suffit de
vérifier que W = Vect(v0, . . . , vn) est stable par l’action de sl2(C). Comme W
est clairement stable par π(f) et π(h), il reste à montrer la stabilité par π(e). On
montre par récurrence que π(vi) ∈ Vect(v0, . . . , vi−1). Tout d’abord, π(e)v0 = 0,
puis π(e)v1 = π(e)π(f)v0 = [π(e), π(f)]v0 = λv0 et ensuite

π(e)vi+1 = π(e)π(f)vi = π(h)vi + π(f)π(e)vi

= (λ− 2i)vi + π(f)π(e)vi

et comme π(e)vi ∈ Vect(v0, . . . , vi−1), on trouve bien π(e)vi+1 ∈ Vect(v0, . . . , vi).
Pour conclure, on remarque que λ = n car

Trπ(h) = Tr(π(e)π(f)− π(f)π(e)) = 0

i.e.

0 =

n∑
i=0

(λ− 2i) = (n+ 1)λ− n(n+ 1).

Cela permet d’exprimer les matrices de π(e), π(f) et π(h) dans la base v0, . . . , vn
et de vérifier qu’elles correspondent bien à la représentation de sl2(C) sur Cn[X,Y ],
dans la base canonique.

Cette description du dual unitaire de G permet d’expliciter la formule de
Parseval. Pour m ∈ N∗, et f ∈ L1(G), on note

f̂(m) =

∫
G

f(g)ρn(g)∗ dg,

où ρn : G→ GL(Vn) est l’unique représentation irréductible de G de dimension
m. Alors,

∀f ∈ L2(G), ‖f‖22 =
∑
m≥1

m‖f̂(m)‖2HS .

C’est la croissance linéaire enm de la dimension des représentations irréductibles
de G qui va nous permettre de déduire de la proposition 6.4 que toute mesure
presque diophantienne admet un trou spectral.

Démonstration du théorème 6.2. D’après la proposition 6.4 appliquée avec σ =
1
4 , pour tout n assez grand, si δ = e−c0n,

‖µn‖22,δ ≤ δ−
1
2 .
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Or, par la formule de Parseval appliquée à f = µn ∗ Pδ,

‖µn‖22,δ =
∑
m≥1

m‖µ̂(m)nP̂δ(m)‖2HS

≥ m‖µ̂(m)nP̂δ(m)‖2HS
≥ m‖µ̂(m)nP̂δ(m)‖2op.

Choisissons m = b 1
10δ c, de sorte que ‖P̂δ(m)− 1‖op ≤ 1

2 . On a alors

‖µ̂(m)n‖2op ≤ 2‖µ̂(m)nP̂δ(m)‖2op ≤ m−1δ
1
2 ≤ 100m−

1
2

et par conséquent, comme m � δ−1 = ec0n,

‖µ̂(m)n‖
1
n
op ≤ 10

1
n e−

c0
4 ≤ 1− ε,

pour un certain ε > 0 indépendant de m, suffisamment grand. Comme µ est
adaptée apériodique, on a aussi pour toutm 6= 1, ‖µ̂(m)‖ < 1, et par conséquent
la mesure µ admet un trou spectral en 1, ce qu’il fallait démontrer.



Chapitre 7

Non concentration des
marches aléatoires

Le but de ce chapitre est de conclure la démonstration du théorème 2.21.
Nous commençons par en rappeler l’énoncé.

Théorème 7.1. Soit µ une mesure adaptée sur G = SU2(R) dont le support est
constitué de matrices à coefficients algébriques. Alors µ admet un trou spectral.

Vu le théorème 6.2 démontré au chapitre précédent, il suffit de faire voir
que toute mesure adaptée sur G dont le support est constitué de matrices à
coefficients algébriques vérifie la condition presque diophantienne :

∃n0, C, c > 0 : ∀H < G, ∀n ≥ n0, µ∗n(H(e−Cn)) ≤ e−cn.

Nous procéderons pour cela en deux étapes. Dans un premier lieu, nous montre-
rons que pour toute mesure µ adaptée, on peut majorer uniformément µ∗n(H) ≤
e−cn pour tout n suffisamment grand et tout sous-groupe fermé strict H < G.
Ensuite, nous vérifierons que si µ est supportée par un ensemble S fini constitué
d’éléments à coefficients algébriques, il existe une constante C > 0 telle que
pour tout sous-groupe fermé H < G et tout n ≥ n0, il existe H ′ < G tel que

Sn ∩H(e−Cn) ⊂ H ′.

Avec ce qui précède, cette inclusion permet alors de majorer µ∗n(H(e−Cn)) ≤
µ∗n(H ′) ≤ e−cn.

7.1 Moyennabilité et probabilité de retour
Avant d’étudier la propriété presque diophantienne d’une marche aléatoire,

il convient d’abord de comprendre à quelle condition la probabilité de retour en
l’identité décroit exponentiellement. C’est ce que nous faisons dans cette partie,
en présentant le critère de moyennabilité de Kesten.

Nous avons vu au chapitre 2 qu’un groupe discret Γ est dit moyennable si
pour toute partie finie K ⊂ Γ et tout ε > 0, il existe une partie finie U ⊂ Γ
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telle que |KU4U ||U | ≤ ε. Lorsque Γ est de type fini, cette propriété est équivalente
à une décroissance sous-exponentielle de la probabilité de retour en l’identité
pour une marche aléatoire symétrique.

Théorème 7.2 (Critère de Kesten). Un groupe de type fini est moyennable si
et seulement si, pour toute probabilité symétrique µ adaptée,

limµ∗2n({1}) 1
2n = 1.

Pour démontrer ce critère, il est commode d’interpréter la moyennabilité
d’un groupe de type fini Γ comme une propriété géométrique de son graphe de
Cayley.

Notations. Soit G = (V,E) un graphe, i.e. un ensemble de sommets V et un
ensemble d’arêtes E ⊂ V ×V . Étant donné une partie A quelconque d’un graphe
G, nous noterons la frontière de A

∂A = {e ∈ E | e = (a, b) a ∈ A, b 6∈ A} = E ∩ (A× (V \A)) .

Définition 7.3. Un graphe G est dit non moyennable s’il existe c > 0 tel que
pour toute partie finie A ⊂ V , |∂A| ≥ c|A|.

Exercice 48. Vérifier qu’un arbre régulier de valence v ≥ 3 est non moyennable.

Donnons tout de suite quelques caractérisations des graphes non moyen-
nables. Ci-dessous, étant donnée une fonction f : V → R sur l’ensemble des
sommets d’un graphe G = (V,E), on note ∇f : E → R l’application définie par
∇f(e) = f(e+) − f(e−), où e = (e+, e−). (Si le graphe n’est pas orienté, cette
application n’est définie qu’au signe près, mais cela n’a pas d’importance, car
nous considérerons seulement |∇f |.)

Proposition 7.4. Soit G un graphe quelconque. On note Cc(G) l’ensemble des
fonctions à support fini dans G. Les assertions suivantes sont équivalentes.
(i) G est non moyennable ;
(ii) ∃C ≥ 0 : ∀f ∈ Cc(G), ‖f‖1 ≤ C‖∇f‖1 ;
(iii) ∃C ≥ 0 : ∀f ∈ Cc(G), ‖f‖2 ≤ C‖∇f‖2 ;

Démonstration. (i)⇒ (ii) Comme ‖∇f‖1 ≥ ‖∇|f |‖1, on peut supposer f ≥ 0.
Soit alors, pour t ≥ 0, At = {f ≥ t}. On utilise alors la formule de la coaire
‖∇f‖1 =

∫∞
0
|∂At|dt pour minorer

‖∇f‖1 ≥ c
∫ ∞

0

|At|dt = c

∫ ∞
0

|{f ≥ t}|dt = c‖f‖1.

(ii)⇒ (iii)

‖f‖22 = ‖f2‖1 ≤ C‖∇f2‖1 = C
∑
|f(e+)2 − f(e−)2|

= C
∑
|f(e+)− f(e−)||f(e+) + f(e−)|

≤ C‖∇f‖2
√∑

|f(e+) + f(e−)|2

≤ 2C‖∇f‖2‖f‖2.

(iii)⇒ (i) Il suffit de prendre f = 1A pour obtenir la définition de la non
moyennabilité.
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Exercice 49. Démontrer la formule de la coaire sur un graphe quelconque :
pour f ∈ Cc(G) à valeurs positives, si At = {f ≥ t}, alors ‖∇f‖1 =

∫∞
0
|∂At|dt.

Définition 7.5 (Graphe de Cayley). Soit Γ = 〈S〉 un groupe de type fini
engendré par un ensemble fini symétrique S de générateurs. Le graphe de Cayley
G(Γ, S) de Γ pour S est le graphe sur l’ensemble de sommets Γ dans lequel deux
éléments sont reliés s’ils diffèrent par un élément de s :

a↔ b ⇔ ∃s ∈ S : b = sa.

Proposition 7.6. Un groupe de type fini Γ = 〈S〉 est non moyennable si et
seulement si son graphe de Cayley G(Γ, S) est non moyennable. Cette propriété
ne dépend pas du système (symétrique) de générateurs S.

Démonstration. Si le graphe de Cayley G(Γ, S) est non moyennable, il est clair
que Γ est non moyennable, puisque en prenant K = S, pour toute partie finie
non vide U , on aura |SU4U ||U | ≥ c.

Réciproquement, supposons Γ non moyennable. Il existe donc une partie
finie K ⊂ Γ telle que pour toute partie finie non vide U , |KU4U ||U | ≥ c. Si S
est une partie génératrice finie symétrique de Γ quelconque, il existe n ∈ N∗
tel que Sn ⊃ K. Par conséquent, pour toute partie finie, |SnU \ U | ≥ c|U |.
Posant c′ = n−1|Sn|−1c, on obtient donc qu’il existe s1 . . . sn ∈ Sn tel que
|s1 . . . snU \ U | ≥ nc′|U |. Or

|s1 . . . snU \ U | ≤
∑
k

|s1 . . . skU \ s1 . . . sk−1U | =
∑
k

|skU \ U |

et par suite, pour un certain k

|skU \ U | ≥ c′|U |.

Cela montre que G(Γ, S) est non moyennable.

Dans le cas des graphes de Cayley, la moyennabilité s’intérprète naturelle-
ment à l’aide d’opérateurs de convolution. Étant donnée une mesure sur Γ, on
note Pµ : L2(Γ)→ L2(Γ) l’opérateur de convolution défini par

Pµf(x) =
∑
x∈Γ

µ(g)f(xg).

Proposition 7.7. Soit Γ un groupe de type fini et S une partie finie génératrice.
Les assertions suivantes sont équivalentes.
(i) Γ est moyennable ;
(ii) ∀ε > 0 : ∃f ∈ L2(Γ), ∀s ∈ S : ‖f − sf‖2 ≥ ε‖f‖2 ;
(iii) pour toute probabilité µ sur Γ, ‖Pµ‖ = 1 ;
(iv) il existe une probabilité adaptée µ sur Γ telle que ‖Pµ‖ = 1.

Démonstration. Remarquons que ‖∇f‖22 =
∑
x∈Γ

∑
s∈S |f(x)−f(sx)|2 =

∑
s∈S‖f−

sf‖22. L’équivalence (i) ⇔ (ii) découle donc du troisième point de la proposi-
tion 7.4.
(ii)⇒ (iii)

Soit µ une probabilité adaptée sur Γ moyennable. Étant donné ε > 0 on peut
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choisir S fini tel que µ(S) ≥ 1 − ε. D’après ce qui précède, il existe f ∈ L2(Γ)
tel que ∀s ∈ S, ‖f − sf‖2 ≤ ε‖f‖2. Cela implique

‖f − Pµf‖2 ≤
∑
s∈S

µ(s)‖f − sf‖2 +
∑
s6∈S

µ(s)‖f − sf‖2

≤ ε‖f‖2 + 2ε‖f‖2.

Par conséquent, ‖Pµ‖ ≥ 1 et donc ‖Pµ‖ = 1 pour toute probabilité µ sur Γ.
(iii)⇒ (iv)

Évident.
(iv)⇒ (i)
Supposons qu’il existe une probabilité adaptée µ vérifiant ‖Pµ‖ = 1. Sans perte
de généralité, on peut supposer que 1 ∈ S = Suppµ. Soit (fn) une suite de
vecteurs unitaires dans L2(Γ) tels que lim‖Pµf‖2 = 1. Comme

‖Pµfn‖22 =

∫
〈s−1tfn, fn〉µ(ds)µ(dt)

et pour tout s, t, |〈s−1tfn, fn〉| ≤ ‖fn‖22 = 1, la convergence ‖Pµfn‖22 → 1
implique que pour presque tout s, t, 〈s−1tfn, fn〉 → 1, i.e. ‖fn − s−1tfn‖22 =
2 − 2〈s−1tfn, fn〉 → 0. Ainsi, la suite de vecteurs (fn) est presque invariante
par l’ensemble symétrique SS−1 ⊃ S qui engendre Γ. Cela montre que Γ est
moyennable.

Pour conclure la démonstration du théorème 7.2, il reste seulement à dé-
montrer le théorème suivant.

Théorème 7.8 (Kesten). Soit Γ un groupe de type fini et µ une probabilité
symétrique sur Γ. La norme de l’opérateur de convolution Pµ : L2(Γ) → L2(Γ)
est donnée par la formule

‖Pµ‖ = lim
n→∞

(
µ∗2n({1})

) 1
2n .

Démonstration. Une inégalité est facile à vérifier :

µ∗2n(1) = 〈P 2n
µ 1e,1e〉 = ‖Pnµ 1e‖22 ≤ ‖Pµ‖2n.

Pour la réciproque, on applique le théorème spectral à l’opérateur symétrique
Pµ : L2(Γ)→ L2(Γ). En restriction au sous-espace cyclique He engendré par 1e,
Pµ est conjugué à l’opérateur de multiplication f 7→ (t 7→ tf(t)) sur L2(SpecPµ,me),
où me est la mesure spectrale donnée par me(f) = 〈f(Pµ)1e,1e〉. Par consé-
quent, en restriction à He, on a

‖Pµ|He‖ = max Suppme = lim
n→∞

(∫
SpecPµ

t2nme(dt)

) 1
2n

= lim
n→∞

〈P 2n
µ 1e,1e〉

1
2n

= lim
n→∞

µ∗2n(e)
1
2n .
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Plus généralement, en restriction au sous-espace cyclique Hv engendré par v ∈
L2(Γ), Pµ est conjugué à la multiplication par t dans L2(SpecPµ,mv), avec
mv(f) = 〈f(Pµ)v, v〉. Or, écrivant v =

∑
x v(x)1x, on observe que

〈f(Pµ)v, v〉 =
∑
x,y

v(x)v(y)〈f(Pµ)1x,1y〉,

et comme pour tous x, y, et A ⊂ SpecPµ,

〈1A(Pµ)1x,1y〉 ≤ ‖1A(Pµ)1x‖2 = ‖1A(Pµ)1e‖2

la mesuremv est absolument continue par rapport àme. En particulier, max Suppmv ≤
max Suppme. Pour conclure, on décompose L2(Γ) en somme orthogonale de
sous-espaces cycliques de la formeHv, ce qui montre que ‖Pµ‖ ≤ supv‖Pµ|Hv‖ =

‖Pµ|He‖ = limn→∞ µ∗2n(e)
1
2n .

Exercice 50. Cet exercice a pour but de démontrer la version du théorème
spectral utilisée dans la démonstration ci-dessus. On considère donc un espace
de Hilbert réel H et un opérateur symétrique T : H → H. On suppose en outre
qu’il existe v ∈ H tel que l’espace engendré par la suite (Tnv)n≥0 est dense dans
H ; on dit que H est cyclique. Notons S = SpecT le spectre de T , i.e. l’ensemble
des éléments λ ∈ C tel que T n’est pas inversible dans l’algèbre des opérateurs
bornés sur H. Nous voulons démontrer qu’il existe une mesure borélienne mT

sur S et un isomorphisme U : L2(S,mT ) → H tel que T = UMU−1, où M :
L2(S)→ L2(S) est l’opérateur f 7→ (t 7→ tf(t)) de multiplication par t.

1. On note RS [t] l’ensemble des applications polynomiales restreintes à S.
Montrer que l’application RS [t]→ H; f 7→ f(T )v est bien définie.

2. Montrer que l’expression mT (f) = 〈v, f(T )v)〉 définit une forme linéaire
sur RS [t] qui induit une mesure borélienne finie sur S. Justifier que cette
mesure est positive.

3. Montrer que l’application définie à la première question induit une isomé-
trie bijective U : L2(S,mT )→ H qui a les propriétés souhaitées.

4. Expliquer la notation f(T ) pour f ∈ L∞(S).

7.2 Alternative de Tits
Théorème 7.9 (Alternative de Tits). En caractéristique zéro, un groupe li-
néaire contient soit un sous-groupe résoluble d’indice fini, soit un groupe libre à
deux générateurs.

Démonstration.

Corollaire 7.10. Si la composante neutre de l’adhérence de Zariski de Γ n’est
pas résoluble, alors Γ contient un sous-groupe libre à deux générateurs.

Démonstration. On raisonne par contraposée. Si Γ ne contient pas de sous-
groupe libre, d’après l’alternative de Tits, il existe Γ0 < Γ résoluble tel que
[Γ : Γ0] < +∞. Alors, l’adhérence de Zariski de Γ0 est résoluble, et comme
celle-ci est d’indice fini dans l’adhérence de Zariski de Γ, elle en contient la
composante neutre, qui doit aussi être résoluble.
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Corollaire 7.11. Soit G un groupe semi-simple et µ une mesure adaptée sur
G. Il existe une constante c > 0 telle que pour tout n ≥ 1, µ∗n({1}) ≤ e−cn.

Dans le cas où G = SU2(R) et le sous-groupe engendré par le support de µ
est libre, on peut même montrer la proposition suivante, qui permet de majorer
la mesure d’un sous-groupe fermé pour la loi de la marche aléatoire au temps n.

Proposition 7.12. Soit µ une mesure adaptée sur G = SU2(R) tel que S =
Suppµ est fini et engendre un groupe libre. Il existe c > 0 tel que pour tout n
suffisamment grand et tout sous-groupe fermé H < G,

µ∗n(H) ≤ e−cn.

Cette proposition est valable plus généralement dans tout groupe semi-simple
G, et même si le sous-groupe engendré par µ n’est pas libre, mais la démons-
tration est plus délicate. En effet, dans SU2(R), tous les sous-groupes fermés
stricts sont abéliens à indice fini près, et cela va nous permettre de majorer leur
mesure en utilisant simplement la borne de Kesten sur la probabilité de retour
en l’identité. Nous utiliserons le lemme suivant.

Lemme 7.13. Soit F un groupe libre et u, v ∈ F deux éléments quelconques.
Si uv = vu, alors il existe w ∈ F et m,n ∈ Z tels que u = wm et v = wn. En
d’autres termes, tout sous-groupe abélien de F est cyclique.

Démonstration. On procède par récurrence sur `(u) + `(v). Le résultat est clair
si `(u) + `(v) ≤ 1.

Quitte à échanger u et v, on peut supposer que `(u) ≤ `(v). On distingue
alors plusieurs cas :

— Si le mot uv est réduit, alors vu aussi, car ces deux mots ont la même
longueur. Par conséquent, u est un segment initial de v, i.e. v = uv′. On a
alors uv′ = v′u, et par récurrence, pour un certain w, u = wm, v′ = wn

′
.

Posant n = n′ +m, cela montre ce qu’on veut.
— Si u−1 est un segment initial de v, on conclut aussi facilement par récur-

rence.
— Si uv n’est pas réduit et u−1 ne divise pas v, on écrit u = u′t et v = t−1v′

de sorte que uv = u′v′ soit réduit. Alors, u′v′ = t−1v′u′t.
— si u′−1 est un segment final de v′, on écrit v′′ = v′u′−1 puis u′v′′u′−1 =

t−1v′′t. Cela donne tu′v′′ = v′′tu′ et par récurrence tu′ = wk0 et
v′′ = w`0. Posant w = t−1w0t, on vérifie facilement que u = wm

et v = wn pour certains entiers m,n.
— sinon, on écrit v′ = v′′s et u′ = s−1u′′ de sorte que v′u′ = v′′u′′ soit

réduit. Cela donne s−1u′′v′′s = t−1v′′u′′t. Comme par construction,
ces mots sont réduits, on doit avoir `(s) = `(t), puis, comme s est
un segment final de t, nécessairement t = s. Par suite, u′′v′′ = v′′u′′,
et par récurrence u′′ = wm0 et v′′ = wn0 . Posant w = t−1w0t, et
nous souvenant que t = s, on trouve bien u = t−1u′′t = wm et
v = t−1v′′t = wn.

Nous pouvons maintenant démontrer la proposition 7.12.
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Démonstration de la proposition 7.12. D’après le théorème de Jordan, il existe
une constante C ≥ 0 telle que tout sous-groupe fini de SU2(R) contient un sous-
groupe abélien d’indice au plus C. Par ailleurs, les seules sous-algèbres de Lie
propres de su2 sont les sous-algèbres de dimension 1. Par conséquent, si H est un
sous-groupe fermé infini strict de SU2(R), son algèbre de Lie est abélienne, donc
sa composante neutre est un tore T , pour lequel [H : H ∩ T ] ≤ 2. Ainsi, dans
tous les cas, si H est un sous-groupe fermé strict de G, il existe un sous-groupe
abélien H0 ≤ H tel que [H : H0] ≤ C.

Soit Γ = 〈S〉 le sous-groupe engendré par µ. Comme Γ est non moyennable,
il existe une constante c > 0 telle que pour tout x ∈ Γ et tout n ≥ 0,

µ∗2n(x) ≤ µ∗2n(1) ≤ e−cn.

Par ailleurs, comme H0 est abélien, d’après le lemme 7.13, le sous-groupe H0∩Γ
est cyclique. Cela permet de majorer, pour tout 2n ∈ N,

|H0 ∩ S2n| ≤ 2n,

et comme µ∗2n est supportée par S2n,

µ∗2n(H0) =
∑

x∈S2n∩H0

µ∗2n(x) ≤ ne−cn.

Pour conclure, on remarque que, par symétrie de µ, pour tout x ∈ G, µ∗n(H0x)2 ≤
µ∗2n(H0), et donc

µ∗n(H) =
∑

x∈H/H0

µ∗n(H0x) ≤ C
√
ne−

cn
2 ≤ e−cn

pour tout n suffisamment grand.

7.3 Une propriété diophantienne
Si on ajoute une hypothèse d’algébricité sur les coefficients des éléments de

Suppµ, on peut déduire facilement de la borne de Kesten que la mesure est
presque diophantienne.

Proposition 7.14. Soit µ une mesure adaptée sur G = SU2(R), à support fini
constitué de matrices à coefficients algébriques qui engendrent un groupe libre.
Alors µ est presque diophantienne.

La démonstration de cette proposition se fonde sur l’observation suivante.

Lemme 7.15. Soit S un ensemble fini d’éléments de Q. Il existe une constante
C > 0 telle que pour tout n ∈ N∗, pour toute somme x = s11 . . . s1n + · · · +
sk1 . . . skn de produits de longueur au plus n d’éléments de S, si x 6= 0, alors
|x| ≥ k−Ce−Cn.

Démonstration. Soit K le corps de nombres engendré par S, d = [K : Q], et
OK l’anneau des entiers de K. Soit q ∈ N∗ tel que pour tout s ∈ S, qs ∈ OK .
Alors, qnx ∈ OK et par conséquent qdnN(x) = N(qx) ∈ Z. Si x 6= 0, on a donc

q−dn ≤ |N(x)| =
d∏
i=1

|σi(x)|
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d’où

|x| ≥ q−dn∏d
i=2|σi(x)|

.

Il existe une constante C0 = C0(S) telle que pour tout i, |σi(x)| ≤ keC0n et
donc

|x| ≥ k−de−Cn,

où C est choisi tel que eC = qdedC0n.

Démonstration de la proposition 7.14. Soit U un voisinage ouvert de l’identité
dans SU2(R) tel que pour tout sous-groupe fermé H, le sous-groupe engendré
par U ∩H soit abélien. Notons S = Suppµ et S′ l’ensemble des coefficients des
éléments de S. Les coefficients d’un mot w de longueur n en les éléments de
S sont des sommes d’au plus n produits de longueur au plus n d’éléments de
S′. D’après le lemme ci-dessus appliqué à S′, on a donc, pour une constante C
dépendant de S,

d(w, 1) ≥ e−Cn.

Si w1, w2 ∈ U ∩H(e−5Cn), alors d([w1, w2], 1) ≤ e−5Cn et comme `([w1, w2]) ≤
4n, la condition diophantienne implique [w1, w2] = 1. Ainsi, U ∩H(e−5Cn) ∩ Sn
est une partie commutative de SU2(R), elle est donc incluse dans un tore H ′, et
d’après la proposition 7.12,

µ∗n(U ∩H(e−5Cn)) ≤ µ∗n(H ′) ≤ e−cn.
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