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Abstract

We give elementary proofs of stronger versions of several recent results
on intrinsic Diophantine approximation on rational quadric hypersurfaces
X ⊂ Pn(R). The main tool is a refinement of the simplex lemma, which
essentially says that rational points on X which are sufficiently close to
each other must lie on a totally isotropic rational subspace of X.

1 Introduction
The classical theory of Diophantine approximation studies the way points x ∈
Rn are approximated by rational points p

q ∈ Qn, taking into account the trade-
off between the size of q and the distance between p

q and x; see
cassels, schmidt
[5, 23] for

a general introduction. Sometimes x is assumed to lie on a certain subset of
Rn, for example a smooth manifold X; this leads to the theory of Diophantine
approximation on manifolds, in which there is no distinction between rational
points which do or do not lie in X (this is referred to as ambient approximation).

Let now X be a rational quadric hypersurface of Rn, let x ∈ X and let
p
q ∈ Qn be such that the distance between x and p

q is less than ψ(q), where
ψ is decaying fast enough, namely limt→∞ t2ψ(t) = 0. Then p

q must lie on X
whenever q is large enough! This elementary observation, due to Dickinson and
Dodson

dickinsondodson
[10] for n = 2 and more generally to Druţu, see

drutu
[11, Lemma 4.1.1],

has in part motivated a new field of intrinsic approximation, which examines
the quality to which points on a manifold are approximated by rational points
lying on that same manifold. The paper

kleinbockmerrill
[18] studies the case X = Sn−1, the unit

sphere in Rn. Later in
fkmsquadric
[12] the results of

kleinbockmerrill
[18] were significantly strengthened and

extended to the case of X being an arbitrary rational quadric hypersurface. An
even more general framework was developed in

fkmsgeneral
[13]. Roughly speaking, in order

to exhibit points on submanifolds X ⊂ Rn which are close enough to rational
points of X, one has to make use of the structure of X (indeed, in general it
is not even guaranteed that X ∩ Qn is not empty). On the other hand, it is
shown in

fkmsgeneral
[13] that to prove some negative results, that is, to show that many

points of X are not too close to rational points, one often does not need to know
much about X. The main tool on which the argument of

fkmsgeneral
[13] is based is the

Simplex Lemma originating in Davenport’s work
davenport
[9]. The version presented infkmsgeneral

[13, Lemma 4.1] is very general – it applies to any manifold embedded in Rn –
∗D.K. was supported in part by NSF grant DMS-1600814.
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and at the same time precise enough to yield some satisfying theorems in the
case of quadric hypersurfaces.

The purpose of this note is to show that in the special case where X is a
rational quadric hypersurface, one can give more elementary and more geometric
proofs of the results of

fkmsgeneral
[13]. This new approach will also yield more precise

theorems. The main point is that one can prove a version of the simplex lemma
with arbitrary hyperplanes replaced by Q-isotropic subspaces of X; this, in turn,
yields refined information on the diophantine properties of X.

A detailed account of the results that are derived here is given in the next
section. After that, in §

sec:simplex
3 we prove the simplex lemma for quadrics, Lemma

simplexquadric
3.1,

which is central in all the subsequent developments. Applications of the simplex
lemma to Diophantine approximation on quadrics are presented in §

sec:diophantine
4. Those

results are proved along the same lines as the analogous statements for Diophan-
tine approximation in the Euclidean space Rn, but the proofs are included to
make the paper self-contained. Finally, in §

sec:open
5 we discuss some open problems and

possible further directions for the study of intrinsic Diophantine approximation
on projective varieties.

Acknowledgements. The authors are grateful to Emmanuel Breuillard, Niko-
lay Moshchevitin and Barak Weiss for motivating discussions.

2 General setting and main results of the paper
exposition

Since it will make the proofs more transparent, we shall from now on always work
in the projective setting. We denote by Pn(R) the n-dimensional real projective
space. The natural map from Rn+1 to Pn(R) will be denoted by x 7→ [x]. We
now endow Rn+1 with the standard Euclidean norm ‖ · ‖, and explain how this
defines a distance on Pn(R). The distance between two elements x and y in
Pn(R) is equal to the sine of the angle between the two lines in Rn+1:

dist(x, y) := | sin(x, y)|.

Equivalently,

dist(x, y) =
‖vx ∧ vy‖
‖vx‖‖vy‖

,

where vx and vy are any nonzero vectors on x and y respectively, vx ∧vy is the
exterior product of vx and vy, and the Euclidean norm is naturally extended
to ∧2(Rn+1) so that ‖vx ∧ vy‖ is the area of the parallelogram spanned by vx
and vy.

If v = [v] ∈ Pn(Q), where v = (v1, . . . , vn+1) is an integer vector with
coprime coordinates, the height of v is simply

H(v) := max
1≤i≤n+1

|vi|.

Given a point x in Pn(R) we want to study how well x is approximated by points
v in Pn(Q).
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Remark 2.1. In order to go back to the setting of Diophantine approximation
in Rn, one can consider an affine chart from an open subset of Pn(R) to Rn+1.
For example, if U = {[(x1, . . . , xn+1)] : xn+1 6= 0}, one can use the chart

U → Rn,
[(x1, . . . , xn+1)] 7→ ( x1

xn+1
, . . . , xn

xn+1
).

We consider a projective rational quadric X, given as the set of zeros of a
rational quadratic form Q in n+ 1 variables. Namely, for such Q let us consider

X = [Q−1(0)] =
{
x ∈ Pn(R) : x = [x] with Q(x) = 0

}
. (2.1) eq:X

Let us say that a subspace E ⊂ Rn+1 is totally isotropic if Q|E ≡ 0. If E is
as above, the projection [E] ⊂ X of E onto Pn(R) will be referred to as a totally
isotropic projective subspace. Recall that the Q-rank rkQX of the quadric X
is the maximal dimension of a totally isotropic rational subspace of Rn+1. If
rkQX > 0, this is the same as the maximal dimension of a totally isotropic
rational projective subspace of X plus one. In particular, rkQX > 0 if and only
if X(Q) 6= ∅.

Given a point x in X, we shall be interested in the quality of rational ap-
proximations v ∈ X(Q) to x. The basic theory of such approximations has been
developed in

fkmsquadric
[12]. In particular it was proved there

fkmsquadric
[12, Theorem 5.1] that if

rkQX > 0 and X is nonsingular (2.2) eq:nonsing

(recall that a quadric hypersurface X is said to be nonsingular if the quadratic
form that defines it is nondegenerate, i.e. has nonzero discriminant1), then for
every x ∈ X there exists Cx > 0 and a sequence (vk)

∞
1 in X(Q) such that

vk → x and dist(vk, x) ≤
Cx

H(vk)
. (2.3) dirichlet

Thus if one defines the Diophantine exponent of x by

β(x) := inf
{
β > 0 | ∃ c > 0 : ∀ v ∈ X(Q), dist(x, v) ≥ cH(v)−β

}
, (2.4) eq:beta

then it follows that under the assumption (
eq:nonsing
2.2), β(x) ≥ 1 for all x ∈ X.

On the other hand, it is shown in
fkmsgeneral
[13, Theorem 1.5] that the opposite in-

equality β(x) ≤ 1 is true for Lebesgue-almost every x ∈ X in the generality
when X is not just a rational quadric but an arbitrary non-degenerate hyper-
surface. Moreover, the same is true if the Lebesgue measure is replaced by an
absolutely decaying measure (see §

sec:diophantine1
4.1 for definitions and more detail).

This naturally leads to a question of exhibiting other measures µ on X such
that β(x) ≤ 1 for µ-almost all x ∈ X. This is reminiscent to the subject of
Diophantine approximation on manifolds and fractals, which has been exten-
sively developed during recent decades for ambient approximation in Rn, seebernikdodson
[3],

kleinbock-margulis
[17] and

KLW
[16], for example. Measures satisfying the above property are usu-

ally called extremal. We shall also say that a submanifold Y ⊂ X is extremal
if so is the Lebesgue measure on Y (by which we mean the restriction to Y of
the k-dimensional Hausdorff measure where k = dimY ).

Our first theorem, which is actually a special case of a more general result,
Theorem

extremalquadric
4.2, refines

fkmsgeneral
[13, Theorem 1.5] for rational quadrics X as follows:

1This is also equivalent to X being nonsingular as a projective algebraic variety.
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exi Theorem 2.2 (Extremality of submanifolds of large dimension). Let X be a ra-
tional quadric hypersurface in Pn(R), and let Y be a smooth submanifold of X
with dimY ≥ rkQX. Then β(x) ≤ 1 for Lebesgue-almost every x ∈ Y .

In the case where X has Q-rank one, the above theorem provides a very
simple and satisfactory answer to the problem of Diophantine approximation on
submanifolds of X: any positive-dimensional submanifold Y ⊂ X is extremal.
Note that there is no non-degeneracy condition on the submanifold Y . This
comes in contrast to the case of approximation in Rn, where one has to require
that the submanifold is not included in an affine subspace.

In view of Theorem
exi
2.2, it is natural to ask, given a submanifold Y of X of

dimension at least rkQX and a fixed β > 1, how large the intersection Y ∩Wβ

can be, where Wβ denotes the set of points in X whose Diophantine exponent
is at least β. Note that it was proved in

fkmsquadric
[12, Theorem 6.4] that whenever X

satisfies (
eq:nonsing
2.2), the Hausdorff dimension of Wβ is equal to n−1

β . Also in
fishmanmerrillsimmons
[14] some

upper estimates for the Hausdorff dimension of Y ∩Wβ were obtained in the
case when Y supports an absolutely decaying and Ahlfors-regular measure (see
§
sec:diophantine2
4.2 for details). Our second application of the simplex lemma strengthens the
main result of

fishmanmerrillsimmons
[14]. Here is a special case of a more general result, Theorem

hausdorffexponent
4.6:

bei Theorem 2.3 (β-approximable points on submanifolds of large dimension). Let
X be a rational quadric hypersurface in Pn(R), and let Y be a k-dimensional
smooth submanifold of X with k ≥ rkQX. Then one has

dimH(Y ∩Wβ) ≤ k − (k + 1− rkQX)(1− 1
β ).

As the third application of our simplex lemma, we study the winning prop-
erty of the set BAX of badly approximable points on X. Schmidt introduced
games in his landmark paper

schmidt_games
[22] in order to study the set of badly approx-

imable numbers in Rn. He defined a winning property for subsets of Rn, and
showed the following:
• Any countable intersection of winning sets is winning ;
• If S is winning and f : Rn → Rn is a C1-diffeomorphism, then f(S) is

winning;
• If S ⊂ Rn is winning then it has Hausdorff dimension n.

Then, Schmidt also showed that the set of badly approximable numbers in Rn is
winning. Variants of the Schmidt game were subsequently studied in numerous
papers, among which

bfkrw
[4] is the most relevant for the present purposes.

In our setting, the set of badly approximable points on the quadric X is

BAX := {x ∈ X | ∃ c > 0 : ∀ v ∈ X(Q), dist(x, v) ≥ cH(v)−1}. (2.5) eq:defba

We define in §
sec:diophantine3
4.3 a version of Schmidt’s game, and show the associated winning

property for the set BAX . As a corollary of this isotropically winning property,
we get the following.

bai Theorem 2.4 (Thickness of BAX on submanifolds of large dimension). Let X
be a rational quadric hypersurface in Pn(R). Then for any C1 submanifold
Y ⊂ X of dimension at least rkQX,

dimH(BAX ∩ Y ) = dimY.
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The properties of the set BAX have been studied in
fkmsgeneral
[13]. In particular, it

was shown
fkmsgeneral
[13, Theorem 4.3] that BAX is hyperplane absolute winning (see

§
sec:diophantine3
4.3 for the definition and more detail); this gave the conclusion of the above
theorem for Y = X. The refined version given above has the advantage that it
is optimal: indeed, if Y is any totally isotropic rational projective subspace of
X of dimension rkQX − 1, then BAX ∩ Y = ∅.

3 Diagonal flows and the simplex lemma
sec:simplex

The purpose of this section is to derive a simplex lemma, Lemma
simplexquadric
3.1, for rational

points on a rational quadric hypersurface X ⊂ Rn+1. For the proof, we shall
relate good rational approximations to x ∈ X to the behavior of some diagonal
orbit in the space of lattices in Rn+1.

Recall that the classical simplex lemma states that for each n ∈ N there
exists c = c(n) > 0 such that if x is a point in Rn and ρ ∈ (0, 1), then there
exists an affine hyperplane containing all rational points with denominator at
most cρ−

n
n+1 inside the ball B(x, ρ). The proof is based on the observation that

any affinely independent n + 1 rational points with denominators at most D
define inside B(x, ρ) a simplex whose volume can be bounded below by 1

n!Dn+1 .
Therefore, one must have 1

n!Dn+1 ≤ Vol
(
B(x, ρ)

)
= vnρ

n, where vn is the volume
of the unit ball in Rn, and hence D ≥ (n!vn)

− 1
n+1 ρ−

n
n+1 . For a detailed proof,

we refer the reader to
kristensenthornvelani
[20, Lemma 4]. The simplex appearing in the proof gave

its name to the lemma.
Here we consider a rational quadratic formQ on Rd and study rational points

on X as in (
eq:X
2.1).

simplexquadric Lemma 3.1 (Simplex lemma for quadric hypersurfaces). Let X be a rational
quadric hypersurface in Pn(R). Then there exists c > 0 such that for every ball
Bρ ⊂ X of radius ρ ∈ (0, 1) the set

Bρ ∩ {v ∈ X(Q) | H(v) ≤ cρ−1}

is contained in a totally isotropic rational projective subspace of X.

Let FQ be the symmetric bilinear form associated to the quadratic form Q
defining X. The kernel of Q is defined by

kerQ = {x = [x] ∈ Pn(R) | ∀y ∈ Rn+1, FQ(x,y) = 0}.

Assuming that X(Q)rkerQ is non-empty, we may write, in some rational basis
of Rn+1,

Q(x1, . . . , xn+1) = 2x1xn+1 + Q̃(x2, . . . , xn), (3.1) qgoodform

where Q̃ is a quadratic form in n− 1 variables. Let G = SOQ(R) be the group
of unimodular linear transformations of Rn+1 preserving the quadratic form Q.
The group G acts transitively on X r kerQ, which may be identified with the
quotient space X ' P\G, where P is the stabilizer of the isotropic line [e1]
in the standard representation. In fact, for x ∈ X r kerQ, we may choose
ux ∈ G ∩On+1(R) such that uxx = [e1].

We shall consider the diagonal subgroup at = diag(e−t, 1, . . . , 1, et) in G,
and if x ∈ X, let

gxt = u−1x atux.
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The lemma below is due to Kleinbock-Merrill
kleinbockmerrill
[18] in the case of projective

spheres, and to Fishman-Kleinbock-Merrill-Simmons
fkmsquadric
[12, Lemma 7.1] in the

general case. To make the paper self-contained, we provide a proof here.

daniquadric Lemma 3.2 (Dani correspondence for quadric hypersurfaces). Let Q be as in
(
qgoodform
3.1), and write X for the associated rational quadric hypersurface in Pn(R).
With the above notation, there exists C > 0 such that for x ∈ X and v ∈ X, we
have, for all t ∈ R,

‖gxt v‖ ≤ Cmax(e−tH(v), H(v) dist(x, v), etH(v) dist(x, v)2),

where v ∈ Zn+1 is a representative of v with coprime integer coordinates.

Proof. Fix C0 ≥ 2 larger than max‖w‖=1 |Q̃(w)|, so that for all w in Rn−1,
|Q̃(w)| ≤ C0‖w‖2. With ux as above, write

uxv = v1e1 + v2e2 + · · ·+ vn+1en+1.

Letting w = v2e2 + · · ·+ vnen, we have

uxg
x
t v = e−tv1e1 +w + etvn+1en+1,

and therefore, since ux is in On+1(R),

‖gxt v‖ ≤ 3max(e−t|v1|, ‖w‖, et|vn+1|). (3.2) gtxv

Now note that |v1| ≤ H(v) and H(v) ≥ 1√
n+1
‖v‖, so

√
n+ 1H(v) dist(x, v) ≥ ‖u−1x e1 ∧ v‖ = ‖e1 ∧ uxv‖

= ‖e1 ∧ (w + vn+1en+1)‖ = ‖w + vn+1en+1‖ ≥ ‖w‖.

Moreover, Q(uxv) = 0 yields

|vn+1| =
|Q̃(w)|
2|v1|

≤ C0‖w‖2

2|v1|
,

so that, provided dist(x, v) ≤
√
2
2 ,

|vn+1| ≤
C0

2

H(v) dist(x, v)2√
1− dist(x,v)2

H(v)2

≤ C0H(v) dist(x, v)2.

Of course, if dist(x, v) ≥
√
2
2 , we also have |vn+1| ≤ H(v) ≤ C0H(v) dist(x, v)2,

because C0 ≥ 2. Going back to (
gtxv
3.2), we find the desired inequality, with

C = max(3C0,
√
n+ 1).

We can now prove the simplex lemma.

Proof of Lemma
simplexquadric
3.1. Let Q be a quadratic form defining the hypersurface X.

The result is obvious if X(Q) ⊂ kerQ, so we may assume that X(Q)r kerQ is
non-empty. Then, replacing Q if necessary by an integer multiple, we may find
an integer basis of Rn+1 in which Q has the form (

qgoodform
3.1).
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Let C1 = max‖v‖=1 |Q(v)|, so that for all v ∈ Rn+1, |Q(v)| ≤ C1‖v‖2, and
let c = 1

C
√
5C1

, where C is the constant given by Lemma
daniquadric
3.2. We need to show

that any family v1, . . . , vs of points in X(Q) ∩B(x, ρ) satisfying H(vi) ≤ cρ−1,
i = 1, . . . , s, generates a totally isotropic subspace. For each vi, we take a
representant vi in Zn+1 with coprime integer coordinates. It is enough to show
that for all i and j, Q(vi±vj) = 0, and since the quadratic form Q takes integer
values at integer points, it suffices to check that for all i and j, |Q(vi ± vj)| is
less than 1.

Now, choosing t > 0 such that et = ρ−1, Lemma
daniquadric
3.2 shows that ‖gxt vi‖ ≤ Cc.

Then, we write

Q(vi ± vj) = Q(gxt vi ± gxt vj)) ≤ C1‖gxt vi ± gxt vj‖2 ≤ 4C1(Cc)
2 =

4

5
.

This implies what we want.

spheres Remark 3.3. In the case when X = Sn−1 is the (n − 1)-dimensional sphere,
identified with the subset of Rn defined by the equation x21 + · · ·+ x2n = 1, one
can give a more direct proof of the simplex lemma. Indeed, if p1

q1
and p2

q2
are

two distinct rational points on Sn−1 of height at most ρ−1

2 , we have∥∥∥∥p1

q1
− p2

q2

∥∥∥∥2 = 2− p1 · p2

q1q2
≥ 1

q1q2
≥ 4ρ2,

so that any open ball of radius ρ contains at most one rational point of height
at most ρ−1

2 . In fact, such a direct computation can also be made for a general
quadric hypersurface, but we chose to give a more geometric proof of Lemma

simplexquadric
3.1.

Remark 3.4. When the quadratic form Q has Q-rank one, the only isotropic
rational projective subspaces are points in X(Q). This makes the consequences
of the simplex lemma more spectacular in the particular case of Q-rank one.

4 Applications to Diophantine approximation
sec:diophantine

In this section, as before, X is a rational quadric hypersurface in Pn(R) defined
by a rational quadratic form Q. We are concerned with intrinsic Diophantine
approximation on X, which is the study of the quality of approximations of a
point x in X by rational points v lying on X. On that matter, the simplex
lemma has several simple consequences, which we now explain.

4.1 Extremality
sec:diophantine1

Recall that the Diophantine exponent of a point x ∈ X was defined by (
eq:beta
2.4).

Our next theorem generalizes Theorem
exi
2.2 using the following definition.

def-ad Definition 4.1. Given a positive parameter α, a finite Borel measure µ on
the quadric hypersurface X will be called α-isotropically absolutely decaying,
abbreviated as α-IAD, if there exists a constant C > 0 such that for every x ∈ X
and every totally isotropic rational projective subspace L ⊂ X,

∀ ε > 0 ∀ ρ ∈ (0, 1), µ
(
B(x, ρ) ∩ L(ερ)

)
≤ Cεαµ

(
B(x, ρ)

)
, (4.1) eq:ad
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where L(τ) denotes the neighborhood of size τ of the set L. We shall say that
µ is isotropically absolutely decaying (IAD) if it is α-IAD for some α > 0.

extremalquadric Theorem 4.2 (IAD measures are extremal). Let X be a rational quadric in
Pn(R), and let µ be an IAD measure on X. Then β(x) ≤ 1 for µ-almost every
x ∈ X.

Remark 4.3. Recall that a measure µ is called α-absolutely decaying if (
eq:ad
4.1)

holds for some C > 0, every x ∈ X and every subspace L ⊂ Pn(R), and
absolutely decaying if it is α-absolutely decaying for some α > 0. It follows
from

fkmsgeneral
[13, Theorem 1.5] that for any absolutely decaying measure µ on X one has

β(x) ≤ 1 for µ-almost every x ∈ X. In fact it holds more generally whenX is not
just a rational quadric but an arbitrary non-degenerate smooth hypersurface.

Absolutely decaying measures are IAD but not vice versa. In particular, the
Lebesgue measure on a smooth proper submanifold Y of X with dimY ≥ rkQX
is not absolutely decaying but α-IAD with α = dimY − rkQX +1; so Theoremexi
2.2 is a corollary from Theorem

extremalquadric
4.2.

Proof of Theorem
extremalquadric
4.2. The argument follows the lines of the proof of

PV
[21, Theo-

rem 1], see also
W
[24] for a one-dimensional version. By the Borel–Cantelli lemma,

it is enough to check that for all ε > 0,∑
k≥1

µ

({
x ∈ X

∣∣∣∣ ∃ v ∈ X(Q) :
2k ≤ H(v) < 2k+1

dist(x, v) ≤ 2−k(1+ε)

})
<∞.

Fix k ≥ 1. There exists an integer K such that we may cover X by a family of
balls Bi = B(xi, 2

−k(1+ ε
2 )), i = 1, . . . , N , so that any intersection of more than

K distinct balls is empty. By Lemma
simplexquadric
3.1, for k large enough, for each i, the set

of points v ∈ X(Q) ∩ Bi satisfying 2k ≤ H(v) < 2k+1 is contained in a totally
isotropic rational subspace Li, and therefore, by the IAD property of µ for some
C,α > 0 one has

µ

({
x ∈ Bi

∣∣∣∣ ∃ v ∈ X(Q) :
2k ≤ H(v) < 2k+1

dist(x, v) ≤ 2−k(1+ε)

})
≤ µ

(
Bi ∩ L(2−k(1+ε))

i

)
≤ C2−kα ε2µ(Bi).

Summing over all balls Bi, and using the fact that the cover (Bi)i∈N has multi-
plicity at most K, we get

µ

({
x ∈ X

∣∣∣∣ ∃ v ∈ X(Q) :
2k ≤ H(v) < 2k+1

dist(x, v) ≤ 2−k(1+ε)

})
≤ KC2−kα ε2 .

Since this last bound is summable in k, this concludes the proof of the theorem.

Remark 4.4. When rkQ(X) = 1, all the subspaces L appearing in Definition
def-ad
4.1

are zero-dimensional, and isotropic absolute decay coincides with weak absolute
decay as defined in

bgsv
[2]. Moreover, in the case where X is a sphere, Theorem

extremalquadric
4.2

can be viewed as a corollary of
bgsv
[2, Theorem 2].
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Remark 4.5. We could have stated a slightly stronger version of the theorem,
in the form of a Khintchine-type theorem: if µ is α-IAD, and if ψ : R+ → R+

is a non-increasing function satisfying∑
k∈N

kα−1ψ(k)α <∞,

then for µ-almost every x in X, there exists c > 0 such that

∀v ∈ X(Q), dist(x, v) ≥ cψ
(
H(v)

)
.

The proof, based on the easy half of the Borel–Cantelli lemma, is essentially the
same as the one presented above.

4.2 Hausdorff dimension and Diophantine exponents
sec:diophantine2

As a complement to the above study of the extremality problem, we explain here
how the simplex lemma can be used to give a simple proof of a recent result
of Fishman-Merrill-Simmons

fishmanmerrillsimmons
[14]. Once again, X denotes a rational quadric

projective hypersurface of dimension n. Given β > 0, we shall be concerned
with the set

Wβ = {x ∈ X | β(x) ≥ β}.

Given a subset K in X, our goal will be to bound the Hausdorff dimension of
the intersection K ∩ Wβ ; we shall be able to do so if K is the support of a
sufficiently regular measure.

For δ > 0, a Borel measure µ on a metric spaceX is said to be Ahlfors-regular
of dimension δ if we have, for some constant A > 0,

∀x ∈ X ∀ r ∈ (0, 1],
1

A
rδ ≤ µ

(
B(x, r)

)
≤ Arδ.

We now present a short proof of a strengthening of
fishmanmerrillsimmons
[14, Theorem 1.2], using

Lemma
simplexquadric
3.1.

hausdorffexponent Theorem 4.6. Let X be a rational quadric projective hypersurface. Let µ be
an Ahlfors-regular measure of dimension δ on X, and let K = Suppµ. If µ is
α-IAD, then we have, for all β ≥ 1,

dimH(K ∩Wβ) ≤ δ − α
(
1− 1

β

)
. (4.2) eq:dimbound

Remark 4.7. Under a stronger assumption that µ is α-absolutely decaying
(
eq:dimbound
4.2) is established in

fishmanmerrillsimmons
[14, Theorem 1.2]. However in our decay condition we

only have to consider totally isotropic subspaces. In particular, Theorem
hausdorffexponent
4.6

covers the case where K is a smooth submanifold of X of dimension at least
rkQ(X), and therefore generalizes Theorem

bei
2.3.

The proof of Theorem
hausdorffexponent
4.6 is a straightforward adaptation of that of

PV
[21,

Theorem 2]. We shall use the easy Hausdorff–Cantelli lemma stated below.

Lemma 4.8 (Hausdorff–Cantelli). Let (Bi)i≥0 be a family of balls in a metric
space, and assume that

∑
i≥0(diamBi)

s <∞. Then,

dimH(lim supBi) ≤ s.

9



Proof. Left as an exercise, see Bernik-Dodson
bernikdodson
[3, Lemma 3.10].

Proof of Theorem
hausdorffexponent
4.6. If β = 1, there is nothing to prove, so we assume β > 1

and fix γ ∈ (1, β). For p ≥ 0, let

Ap =

{
x ∈ X

∣∣∣∣ ∃ v ∈ X(Q) :
2p ≤ H(v) < 2p+1

dist(x, v) ≤ 2−γp

}
.

Taking a maximal 2−p-separated subset {xi}1≤i≤`p of K ∩ Ap, the collection
of balls Cp =

(
B(xi, 2

−p)
)
1≤i≤`p

covers K ∩ Ap and has multiplicity bounded
above by some constant C depending only on X. Using the Ahlfors regularity
of µ, this implies `p2−pδ ≤ ACµ(X) = AC, i.e. `p ≤ AC2pδ.

Since γ > 1, Lemma
simplexquadric
3.1 shows that for p large enough, for each ball B ∈ Cp,

there exists a totally isotropic subspace LB of X such that Ap ∩ B ⊂ L
(2−γp)
B .

So the decay condition on µ yields, up to multiplicative constants depending
only on X and µ, that

µ(Ap ∩B)� 2−(γ−1)αpµ(B) � 2−p[δ+(γ−1)α].

Next, take a minimal cover DB = (Bi)i∈IB of the set K ∩ Ap ∩ B by balls of
radius 2−γp centered on K ∩Ap ∩B. Just as above, the Ahlfors regularity of µ
shows that

#IB � 2δγpµ(Ap ∩B)� 2pγδ2−p[δ+(γ−1)α].

Thus, we find for every s > 0,∑
B∈Cp

∑
i∈IB

(diamBi)
s � 2pδ2p(γ−1)(δ−α)2−pγs = 2−p[sγ−γδ+α(γ−1)]

If s > δ − α
(
1 − 1

γ

)
, then the family of balls (Bi)i∈IB , B∈Cp, p∈N satisfies the

assumption of the Hausdorff–Cantelli lemma, and therefore, letting

s→ δ − α
(
1− 1

γ

)
we find that dimH(lim supBi) ≤ δ − α

(
1 − 1

γ

)
. Now, since γ < β, we have

K∩Wβ ⊂ (lim supBi), hence letting γ → β, we can conclude that the Hausdorff
dimension of K ∩Wβ is not greater than δ − α

(
1− 1

β

)
.

In the case of Q-rank one, any Ahlfors-regular measure of dimension δ is
δ-IAD, so we get the following corollary, which applies in particular when X =
Sn−1 is the unit sphere in Rn:

Corollary 4.9. Let X be a rational quadric hypersurface of Q-rank one, and
let µ be an Ahlfors-regular measure of dimension δ on X. Writing K = Suppµ,
we have, for every β ≥ 1, dimH(K ∩Wβ) ≤ δ

β .

4.3 Badly approximable points
sec:diophantine3

Recall the definition (
eq:defba
2.5) of the set BAX of intrinsically badly approximable

points in X. As was mentioned in Section
exposition
2, it is known

fkmsgeneral
[13] to satisfy some

winning properties in the sense of Schmidt’s games. Our goal will now be to

10



give a more elementary proof of a refinement of the winning property, again
using the simplex lemma.

We now explain the principles of our version of Schmidt’s game. As before,
X is a rational quadric hypersurface of Pn(R). There are two players, Alice
and Bob, and some parameter β ∈ (0, 13 ). To start, Bob chooses a ball B0 =
B(x0, ρ0) in X. Then, at each stage of the game, after Bob has chosen a ball
Bi = B(xi, ρi), Alice chooses a totally isotropic rational subspace L of X and
deletes its neighborhood of size ε, with 0 < ε ≤ βρi.

A set S is isotropically β-winning if Alice can make sure that⋂
Bi ∩ S 6= ∅.

Finally, S is isotropically winning if it is isotropically β-winning for arbitrarily
small β > 0. Our game is inspired by Broderick, Fishman, Kleinbock, Reich
and Weiss

bfkrw
[4], where the authors define the notion of k-dimensionally absolute

winning using exactly the same game, except that Alice is allowed to delete
neighborhoods of arbitrary k-dimensional subspaces. In particular, we have the
following properties of isotropically winning sets.

Proposition 4.10 (Properties of winning sets). Let X be a projective quadric
hypersurface in Pn(R).

1. If S is isotropically winning on X, then S is dense and dimH S = dimX.
2. If (Si)i∈N is a countable family of isotropically winning sets on X, then⋂

i∈N Si is isotropically winning.

Proof. Let k = rkX − 1. Any isotropically winning set is k-dimensionally
absolute winning in the sense of

bfkrw
[4, page 323], so that the first item follows from

the analogous property for k-dimensional absolute winning
bfkrw
[4, Proposition 2.3].

Alternatively, one may adapt the proof of Schmidt
schmidt_games
[22, Theorem 2]. The proof

of the second item is identical to the analogous statement for k-dimensional
absolute winning, see

bfkrw
[4].

Remark 4.11. We warn the reader that the image of an isotropically winning
set under a C1 diffeomorphism of X may not be isotropically winning. However,
by

bfkrw
[4, Proposition 2.3.(c)], it will certainly be k-dimensionally absolute winning,

and therefore dense and with maximal Hausdorff dimension.

The following theorem is a refinement of
fkmsgeneral
[13, Theorem 4.3]:

winning Theorem 4.12 (Badly approximable points on X are winning). Let X be a ra-
tional quadric hypersurface in Pn(R). Then the set BAX is isotropically win-
ning.

Proof. Fix β ∈ (0, 13 ). Bob first picks a ball B0 = B(x0, ρ0). By Lemma
simplexquadric
3.1,

there exists a constant c > 0 depending only on X such that all rational points
v in 2B0 satisfying H(v) ≤ cρ−10 are included in some totally isotropic ratio-
nal subspace L0. Alice deletes L(βρ0)

0 . Similarly, once Bob has chosen a ball
Bi = B(xi, ρi), the rational points v ∈ 2Bi such that H(v) ≤ cρ−1i all lie on a
hyperplane Li, and Alice deletes L(βρi)

i . If there is no rational point of small
height in Bi, then Alice can delete a ball of radius βρi around the center. This
ensures that ρi → 0.

11



We claim that this strategy forces
⋂
i≥0Bi ⊂ BAX . To see this, let x ∈

⋂
Bi

and v ∈ X(Q). Choose i such that

cρ−1i−1 ≤ H(v) ≤ cρ−1i . (4.3) rhoi

If v 6∈ 2Bi, then, using x ∈ Bi, we find

dist(x, v) ≥ ρi ≥ βρi−1 ≥ βcH(v)−1.

And if v ∈ 2Bi, then (
rhoi
4.3) implies that v ∈ Li, and since x ∈ Bi+1,

dist(x, v) ≥ βρi ≥ β2ρi−1 ≥ β2cH(v)−1.

Taking c0 = cβ2, we find

∀ v ∈ X(Q), dist(x, v) ≥ c0H(v)−1,

so x ∈ BAX .

As is the case with the k-dimensional absolute game, the advantage of the
isotropic game is the inheritance of winning properties to sufficiently regular
subsets. More precisely, given a compact subset K ⊂ X, we may consider the
isotropic game played on K. The rules are the same as before, but the ambient
metric space is now K: at each stage, Bob chooses a ball B(xi, ρi) centered on
K, and Alice deletes the intersection of K with the neighborhood of size βρi of
a rational isotropic subspace. Naturally, we shall say that a set S is isotropically
winning on K if S ∩K is winning for the isotropic game on K.

Following Broderick, Fishman, Kleinbock, Reich and Weiss
bfkrw
[4], let us say

that a subset K ⊂ X is isotropically diffuse if there exists β, ρK > 0 such that
for every ρ ∈ (0, ρK), x ∈ K, and every totally isotropic rational subspace L,
the set

K ∩B(x, ρ)r L(βρ)

is non-empty. This is a quantitative way to say that K is nowhere included
in a small neighborhood of a totally isotropic subspace. The next lemma is a
straightforward analogue of

bfkrw
[4, Proposition 4.9].

diffuse Lemma 4.13. Let X be a rational quadric hypersurface in Pn(X). If L ⊂ K
are two isotropically diffuse subsets of X, and S ⊂ X is isotropically winning
on K, then S is isotropically winning on L.

The proof is very similar to the one presented in
bfkrw
[4], once one has replaced

the notions of k-dimensionally diffuse and k-dimensionally winning by those
of isotropically diffuse and isotropically winning. We refer the reader to

bfkrw
[4,

Section 4] for details.
It follows from the above lemma and Theorem

winning
4.12 that BAX is isotrop-

ically winning on any isotropically diffuse subset of X. This in particular
applies to smooth submanifolds Y of X of dimension not less than rkQ(X),
which are isotropically diffuse. Furthermore, the Lebesgue measure on Y as
above is Ahlfors-regular of dimension equal to dimY . Therefore, in view of

bfkrw
[4,

Lemma 5.3], for every open subset U of X such that U ∩ Y 6= ∅, one has

dimH(Y ∩ BAX ∩ U) = dimY,

which implies Theorem
bai
2.4.
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Remark 4.14. In the case of X = Sn−1, or more generally of a rational quadric
ofQ-rank one, the above shows that BAX is winning on any positive-dimensional
submanifold ofX. This can be compared with a similar question for Diophantine
approximation in Euclidean spaces, for which it is still open, despite recent
progress of Beresnevich

beresnevich_ba
[1] and Yang

yang_ba
[25].

5 Further directions and open problems
sec:open

Khintchine’s theorem. It would be interesting to use the geometric obser-
vations of this note to give an elementary proof of Khintchine’s theorem on
quadric hypersurfaces, due to Fishman, Kleinbock, Merrill and Simmons

fkmsquadric
[12,

Theorem 6.3].

Singular points. Given a rational quadric X in Pn(X), one may define, for
c > 0,

D(c) =

x ∈ X
∣∣∣∣∣∣
∃N0 : ∀N ≥ N0 ∃ v ∈ X(Q) such that

H(v) ≤ N and dist(x, v) ≤ c√
NH(v)

 ,

and call a point x ∈ X singular if x ∈
⋂
c>0D(c). If X has Q-rank 1, it follows

from Dani’s work
dani_divergent
[8] that x is singular if and only if x ∈ X(Q). In fact, one can

show that if X has Q-rank 1, D(c) = X(Q) for c > 0 small enough. This follows
for example from the following strengthening of Lemma

simplexquadric
3.1, whose proof is

identical up to some minor changes. See also
sumofsquares
[19, Theorem 3] for an alternative

proof.

Lemma 5.1 (A stronger simplex lemma for quadric hypersurfaces). Let X be
a rational quadric hypersurface in Pn(R). Then there exists c > 0 such that, for
every x ∈ X and any ρ ∈ (0, 1), the set{

v ∈ X(Q)

∣∣∣∣ H(v) ≤ cρ−1, dist(x, v) ≤
√

ρ

H(v)

}
is contained in a totally isotropic rational subspace L ⊂ X.

When the quadric X has Q-rank at least 2, it is natural to expect that there
exist some nontrivial singular points. It might then be interesting to compute
the Hausdorff dimension of the set of singular points on X, similarly to what
has been done in

cheung,cheung-chevallier
[6, 7] for Diophantine approximation in the Euclidean space.

Extremality. In view of the definitive results in the area of Diophantine ap-
proximation on manifolds and fractals obtained in

kleinbock-margulis
[17], it is natural to attempt

to weaken the condition of isotropic absolute decay of µ as in Theorem
extremalquadric
4.2, and

conjecture that on a general quadric hypersurface, any analytic submanifold
that is not included in an isotropic subspace is extremal. In fact, by analogy
with

kleinbock_inheritance
[15], one can guess that an analytic submanifold on a quadric hypersurface

inherits its Diophantine exponent from the smallest totally isotropic subspace
in which it is contained.

Other projective varieties. One may wonder how general is the approach
presented here, and whether it can be used to study intrinsic Diophantine ap-
proximation on varieties that are not quadric hypersurfaces.
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