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Abstract

We explain how the method introduced by Guth, Katz and Zahl for
the real line R, can be used to prove a sum-product theorem for division
algebras over a local field K of zero characteristic.

Introduction
In the ring of integers Z, one observes a form of independence between

addition and multiplication, which translates in particular as follows: If A is
a finite subset in Z, the cardinality of the set (A + A) ∪ (A · A) of sums and
products of two elements of A is not controlled by that of A. This sum-product
phenomenon seems to have been first studied by Erdős and Szemerédi [9], who
proved in 1983 the following remarkable combinatorial result.

Theorem 1 (Erdős-Szemerédi). There exists τ > 0 such that for any finite
subset A ⊂ Z,

|A+A|+ |A ·A| ≥ |A|1+τ .

Erdős and Szemerédi also conjectured that for all ε > 0, the inequality
|A+A|+ |A ·A| ≥ |A|2−ε would be valid as soon as the cardinality of A is large
enough. Solymosi [19] showed that one could take τ = 1

3 in the above theorem,
and at present, the best result in the direction of the conjecture of Erdős and
Szemerédi, due to Rudnev and Stevens [18], gives τ = 1

3 + 2
1167 . The present

article deals with statements analogous to the sum-product theorem of Erdős
and Szemerédi, but which apply in other rings, and to infinite sets whose size is
measured by a covering number at some small scale.

The sum-product phenomenon goes well beyond the framework of finite sets
of integers. We now know that the inequality of the above theorem is valid for
any finite subset of any field which is not too close to a subfield, and Tao [20] even
obtained a version which applies in any ring without zero divisors. Furthermore,
Katz and Tao [14] also suggested in 2001 to study the sum-product phenomenon
for subsets of R whose size would be measured using a covering number at one
small positive scale δ. Their goal was to address a conjecture of Erdős and
Volkmann [21, 8] according to which there does not exist a Borel subring of
R with Hausdorff dimension strictly between 0 and 1. That conjecture was
solved shortly afterwards by Edgar and Miller [7] using an elegant method which
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allowed them more generally to study the Borel subrings of a local field of zero
characteristic.

Theorem 2 (Edgar-Miller). 1. Any Borel subring of C of strictly positive
dimension is equal to R or C.

2. Let K be a finite extension of Qp. Any Borel subring of K of strictly
positive dimension is closed.

Note that the first point implies that a Borel subring of R of strictly positive
dimension is equal to R, while the second shows that a Borel subring of Qp
of strictly positive dimension positive is equal to Zp or Qp. Independently of
Edgar and Miller, and almost at the same time, Bourgain [2] managed to carry
out, in the case of R, the method envisaged by Katz and Tao [14] and he thus
obtained the following more precise result.

Proposition 1 (Bourgain). If A is a Borel subset of R such that 0 < dimHA <
1, then dimHA+AA > dimHA.

A central element of Bourgain’s proof is a discretized sum-product theorem,
in which the cardinality is replaced by a covering number. Given δ > 0, the
covering number at scale δ of a subset A of a metric space X is defined by

N(A, δ) = min{N | ∃x1, . . . , xN ∈ X : A ⊂
N⋃
i=1

B(xi, δ)}.

The discretized sum-product theorem, conjectured by Katz and Tao [14] and
later proved by Bourgain [2, 3] states as follows.

Theorem 3 (Discretized sum-product in R). Given σ > 0, there exists ε > 0
such that the following statement holds for any sufficiently small δ > 0.

Let A ⊂ [0, 1] be such that
1. N(A, δ) ≤ δ−σ−ε;
2. ∀ρ ≥ δ, ∀x ∈ E, N(A ∩B(x, ρ), δ) ≤ ρσδ−εN(A, δ);

Then
N(A+A, δ) +N(AA, δ) ≥ δ−εN(A, δ).

The first proofs of this result by Bourgain [2, 3] were based on a fine multi-
scale analysis of the subsets A in R which satisfy N(A+A, δ) ≤ delta−εN(A, δ).
Recently, Guth, Katz and Zahl [10] found a new, more direct proof. The aim
of this article is to present a slightly modified version of their proof, valid more
generally in any local division algebra of zero characteristic. We shall obtain
the following general statement.

Theorem 4 (Sum-product in a local division algebra). Let E be a finite-
dimensional division algebra on R or Qp. Given σ ∈ (0,dimE), there exists
ε > 0 such that the following statement holds for any sufficiently small δ > 0.

Let A ⊂ BE(0, 1) be such that
1. N(A, δ) ≤ δ−σ−ε;
2. ∀ρ ≥ δ, ∀x ∈ E, N(A ∩B(x, ρ), δ) ≤ ρσδ−εN(A, δ);
3. ∀F ⊂ E subalgebra, ∃a ∈ A : d(a, F ) ≥ δε.
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Then,
N(A+AA, δ) ≥ δ−εN(A, δ).

For real algebras, Weikun He [11] proved a version of this result that holds
more generally in any simple algebra, using the sum-product results in C that
appear in [4]. With an additional hypothesis of non-concentration in the neigh-
borhood of ideals, one can even show that this type of statement is still valid
in any real semi-simple algebra [12, Theorem 2.2], and also for certain repre-
sentations of real Lie groups [13]. The proof presented here does not apply to
this general framework, but it is more elementary, does not use the variants of
the sum-product in C of Bourgain and Gamburd, and moreover, remains valid
for division algebras over Qp. The attentive reader will have noticed that the
conclusion of the sum-product theorem in a local division algebra is a little
weaker than in the case of R, since we only obtain a bound on the set A+AA,
which allows to control both A + A and AA. If we want to keep our assump-
tions, this is inevitable, as shown by the example of the pure imaginary segment
A = [0, i] in C. However, a lemma of Katz and Tao ensures that if A satisfies
N(A + A, δ) + N(AA, δ) ≤ δ−εN(A, δ), then there exists a part A′ in A such
that N(A′A′ +A′A′, δ) ≤ δ−O(ε)N(A, δ), and this makes it possible to improve
the conclusion of Theorem to find a statement close to that of Bourgain, if one
replaces the third assumption by a condition ensuring that A is not concentrated
near sets of the form aF , where F is a subalgebra of E and a ∈ E. In the case
of R or Qp, there are no proper subalgebras, and this condition is automatically
implied by (ii).

In a follow-up paper [6], we shall use Theorem 4 to show that in a finite-
dimensional division algebra over R or Qp, every Borel subring of positive dimen-
sion is closed, which answers a Miller 1 about the generalization of the conjecture
of Erdős and Volkmann to non-commutative local division algebras. We shall
even obtain a dimensional inequality analogous to Proposition 1 above.

In the following, we shall state and prove Theorem 4 in several particular
cases before dealing with the general case. The reader will undoubtedly find
this approach a little repetitive, but it will allow us to study precisely how the
growth rate ε depends on the ambient algebra E, and perhaps also to bring up
more clearly the main ideas of the proof in the simplest cases.

The plan of the article is as follows: after some preliminary reminders from
additive combinatorics, we study in Section 1 the algebras defined on Qp, by
first treating the case E = Qp, where the proof is the most transparent, then
we explain in Section 2 the necessary modifications to adapt the proofs to cover
the case of real algebras. We conclude the paper with some remarks on possible
extensions of the results presented here.

Notation and preliminary results
Throughout this article, we consider a local field k with zero characteristic.

By Ostrowski’s theorem, k is equal to R, C, or a finite extension of Qp, for some
prime number p. We are interested in the combinatorial properties of sum and
product in a finite-dimensional division algebra E over k. The usual absolute
value on R or Qp extends uniquely to E, and this endows E with a natural

1. We thank Emmanuel Breuillard for mentioning this question to us.
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structure of normed algebra, Euclidean if k is Archimedean, and ultrametric if
k is ultrametric. Recall that if A and B are two subsets of E, we note

A+B = {a+ b ; a ∈ A, b ∈ B}

and
AB = {ab ; a ∈ A, b ∈ B}.

Additionally, if n is a natural number,

nA = {a1 + · · ·+ an ; ai ∈ A}

and
An = {a1 . . . an ; ai ∈ A}.

Finally, we denote
〈A〉s = sAs − sAs.

Many of the elementary results from additive combinatorics usually stated for
finite sets and cardinality adapt naturally to covering numbers. In particular, we
shall use the Plünnecke inequality for covering numbers, which can be deduced
from the usual Plünnecke inequality by an approximation argument. Below, and
throughout, we write X . Y if there exists a constant C such that X ≤ CY ;
the constant C may depend on the ambient algebra E.

Proposition 2 (Plünnecke’s inequality). Let A and B be two subsets of E such
that N(A+B, δ) ≤ KN(A, δ). For all natural numbers m and n,

N(mA− nA, δ) . Km+nN(A, δ).

If A is a subset of a metric space, we denote A(δ) the neighborhood of A of
size δ in X, i.e.

A(δ) = {x | d(x,A) ≤ δ}.
We shall also use Ruzsa’s covering lemma for the quantities N(·, δ), the proof
of which is left as an exercise.

Lemma 1 (Ruzsa’s covering lemma). Let A and B be two subsets of E such
that N(A + B, δ) ≤ KN(A, δ). There exists a subset X ⊂ B(δ) such that
N(X, δ) . K and B ⊂ A−A+X.

Sometimes, we shall use the Landau notation X = O(Y ) to mean X . Y .
In particular, the notation O(1) denotes a constant which may depend on the
ambient algebra E.

1 Division algebras over Qp

The proof of Theorem 4 is a little simpler when E = Qp, and we shall
therefore start with this particular case. Then, we shall treat the case of a
finite extension k of Qp, for which it suffices to introduce a lemma of “escape
out of subspaces”; we shall see that the growth exponent obtained in this case
is relatively independent of k. Finally, we shall indicate the few modifications
necessary to adapt the proof to the case of a non-commutative division algebra
E over Qp; unfortunately, in this non-commutative framework, our proof gives
a growth exponent which depends on the dimension of E on Qp.
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1.1 Sum-product in Zp

The p-adic valuation of a rational number x is the unique integer vp(x) such
that

x = pvp(x) · a
b
, with a and b not divisible by p.

One defines an absolute value on Q by the formula |x|p = p−vp(x), and the
associated distance is given by dp(x, y) = |x − y|p. The field Qp of the p-adic
numbers is equal to the complement of Q for this distance. We also note Zp the
closure of Z in Qp; it is an open and closed neighborhood of 0 in Qp. Recall
that the distance dp on Qp is ultrametric, i.e.

∀x, y, z ∈ Qp, dp(x, z) ≤ max{dp(x, y), dp(y, z)}.

It is this inequality, stronger than the triangular inequality, which makes the
proof of the discretized sum-product theorem a little more transparent in Qp
than in R. Throughout the rest of this section, the prime number p is fixed,
and we simply write d(x, y) = dp(x, y).

The algebra E = Qp does not contain any non-trivial subalgebra, so Theo-
rem 4 is a little simpler in this particular case.

Theorem 5 (Discretized sum-product in Zp). Given σ ∈ (0, 1), let ε = σ(1−σ)
21+2σ >

0. The following statement holds for any small enough δ > 0.
Let A ⊂ Zp be such that

1. N(A, δ) = δ−σ;
2. ∀ρ ≥ δ, ∀x ∈ E, N(A ∩B(x, ρ), δ) ≤ CρσN(A, δ).

Then,
N(AA−AA, δ) ≥ C−O(1)δ−εN(A, δ).

Proof. Let γ > 0 be a parameter. We consider the set

B =

{
a1 − a2
a3 − a4

; a1, a2, a3, a4 ∈ A, |a3 − a4| ≥ δγ
}
∩ Zp

and the scale
δ1 = δ1−2γ .

Note that the set B always contains 0 and 1. We distinguish two cases.
First case: ∀x ∈ B, d(x+ 1, B) ≤ δ1.
If d(y,B) ≤ δ1, there exists x in B such that d(y, x) ≤ δ1, and then

d(y + 1, B) ≤ max{d(y + 1, x+ 1), d(x+ 1, B)} ≤ δ1.

This shows that B(δ1) is stable under x 7→ x + 1. Therefore B(δ1) contains Z,
and also Zp, by density. In particular,

N(B, δ1) ≥ δ−11 = δ−1+2γ .

Let B′ be a maximal 2δ1-separated subset in B, and for each x in B′, fix a
representation

x =
ax
bx

where ax ∈ A−A and bx ∈ (A−A) \B(0, δγ).
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If A′ is a maximal 2δ1−γ-separated part in A \B(0, δγ), the map

A′ ×B′ → A(A−A)× (A−A)A
(a, x) 7→ (aax, bxa)

is injective at the δ scale. Indeed, suppose{
aax = u+O(δ)
bxa = v +O(δ)

where O(δ) denotes an element of norm at most δ. Then,

x =
ax
bx

=
u

v
+O

(
δ

|abx|

)
=
u

v
+O(δ1)

so x ∈ B′ is uniquely determined, and

a =
v

bx
+O

(
δ

|bx|

)
=

v

bx
+O(δ1−γ)

is also determined in A′. Therefore,

N(AA−AA, δ)2 ≥ N(B, δ1)|A′| & δ−1+2γ |A′|.

As |A′| ' N(A, δ1−γ) & δγN(A, δ) and N(A, δ) = δ−σ, we obtain

N(AA−AA, δ) ≥ δ− 1
2+γ |A′| 12 & δ−

1−σ−3γ
2 N(A, δ).

Second case: There exists x in B such that d(x+ 1, B) > δ1.
Let us write x+1 = e1

e2
, with e1 ∈ 2A− 2A and e2 ∈ A−A such that |e1| ≤ |e2|

and |e2| ≥ δγ . We first want to get a lower bound on N(e1A+ e2A, δ). Let

Q = {(a1, a2, a3, a4) ∈ A×4 | e2a1 + e1a4 = e2a2 + e1a3 +O(δ)}.

If (a1, a2, a3, a4) is in Q, then∣∣∣∣a1 − a2a3 − a4
− e1
e2

∣∣∣∣ ≤ δ|e2|−1|a3 − a4|−1 ≤ δ1−γ |a3 − a4|−1.
Since d( e1e2 , B) ≥ δ1−2γ , we must have |a3 − a4| ≤ δγ . If a4 is known up to an
error of size δ, by non-concentration, there are at most CδγσN(A, δ) possibilities
for a3. Then, if a1, a3, a4 are known up to δ, the non-concentration assumption
and the equality

a2 = a1 +
e1
e2
a4 −

e1
e2
a3 +O(|e2|−1δ)

show that there are at most C|e2|−σδσN(A, δ) possibilities for a2, and so

N(Q, δ) . C2|e2|−σδσ(1+γ)N(A, δ)4.

With the Cauchy-Schwarz inequality this gives

N(e1A+ e2A, δ) ≥
N(A, δ)4

N(Q, δ)
& C−2|e2|σδ−σ(1+γ).
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On the other hand, as
e1A+ e2A ⊂ B(0, |e2|),

we can also bound

N(e1A+ e2A, δ) .
1

N(AA, |e2|)
N(AA+ e1A+ e2A, δ)

. C
1
σ

1

N(A, |e2|)
N(AA+ e1A+ e2A, δ)

. C
1
σ+1|e2|σN(4AA− 3AA, δ)

and with the Plünnecke inequality,(
N(AA−AA, δ)

N(A, δ)

)7

& C−O(1)|e2|−σ
N(e1A+ e2A, δ)

N(A, δ)
& C−O(1)δ−σγ .

To conclude, we set γ = 1−σ
3+ 2σ

7

, so that ε = σγ
7 = 1−σ−3γ

2 = σ(1−σ)
2σ+21 , and the

case disjunction above therefore shows that one always has

N(AA−AA, δ) ≥ C−O(1)δ−εN(A, δ).

1.2 Finite extensions of Qp

In this paragraph, we consider a finite extension k of Qp. The absolute value
|·|p on Qp admits a unique extension to k, and for x, y in k, we again write
d(x, y) = |x − y|p. This distance on k satisfies the ultrametric inequality. We
refer to [1] for the elementary properties of finite extensions of Qp.

Theorem 6 (Discretized sum-product in k). Let k be a finite extension of Qp,
and d = [k : Qp]. Given σ ∈ (0, 1), we set ε = dσ(1−σ)

4(40+σ) . The following statement
holds for any sufficiently small δ > 0.

Let A ⊂ Bk(0, 1) be such that
1. N(A, δ) = δ−dσ;
2. ∀ρ ≥ δ, ∀x ∈ k, N(A ∩B(x, ρ), δ) ≤ CρdσN(A, δ);
3. ∀F ⊂ k subalgebra over Qp, ∃a ∈ A : d(a, F ) ≥ c.

Then,
N(A+AA, δ) ≥ cO(1)C−O(1)δ−εN(A, δ).

Remark. The quantity σ corresponds to the renormalized dimension of A:

σ = dim′A :=
dimA

d
.

And the lower bound on ε given by the above theorem shows that the growth
rate for the renormalized dimension is independent of the field k. Indeed, setting
ε′ = ε

d ≥
σ(1−σ)

164 , we have

dim′(A+AA) ≥ dim′A+ ε′.
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Proof of Theorem 6. The proof is similar to that of theorem 5, but we use the
two operations (x, y) 7→ x+ y and (x, y) 7→ xy instead of x 7→ x+1, to obtain a
growth rate that is independent of k. As above, for γ > 0, we consider the set

B =

{
a1 − a2
a3 − a4

; a1, a2, a3, a4 ∈ A, |a3 − a4| ≥ δγ
}
∩Bk(0, 1)

and the scale
δ1 = δ1−3γ .

Note that the set B always contains 0 and 1. We make two cases.
First case: ∀x, y ∈ B, d(x+ y,B) ≤ δ1 and d(xy,B) ≤ δ1.
Let us show that B(δ1) is stable under + and ×. If d(x′, B), d(y′, B) ≤ δ1, we
choose x, y ∈ B, such that d(x′, x), d(y′, y) ≤ δ1, and then

d(x′ + y′, B) ≤ max{d(x′ + y′, x+ y′), d(x+ y′, x+ y), d(x+ y,B)} ≤ δ1.

Similarly, as A ⊂ Bk(0, 1),

d(x′y′, B) ≤ max{d(x′y′, xy′), d(xy′, xy), d(xy,B)} ≤ δ1.

Since B contains 0 and 1, the stability under addition shows that B(δ1) ⊃ Zp,
then the stability under multiplication, with the proposition 4 below below,
shows that there exists a subalgebra F of E such that

BF (0, c
O(1)) ⊂ B(δ1) ⊂ BF (0, O(1)). (1)

First suppose F ( E. If a0 is a fixed element of maximum norm in A, the inclu-
sion B ⊂ F implies that a−10 (A− A) ⊂ F . Since A is far from any subalgebra,
we can find a in A such that d(a, F ) ≥ c, and then F and aF are in direct sum,
so that

N(A−A+AA−AA, δ) & C−O(1)N(a−10 (A−A) + aa−10 (A−A), δ)
& cO(1)C−O(1)N(A−A, δ)2

& cO(1)C−O(1)δ−dσN(A, δ).

With the Plünnecke inequality, this implies

N(A+AA, δ) & cO(1)C−O(1)δ−
dσ
14 N(A, δ). (2)

Now suppose F = E. The left inclusion in the formula (1) above implies

N(B, δ1) ≥ cO(1)δ−d1 = cO(1)δ−d+3dγ .

Let us then consider B′ a maximal 2δ1-separated subset in B, and for each x in
B′, let us fix a representation

x =
ax
bx

where ax ∈ A−A and bx ∈ (A−A) \B(0, δγ).

If A′ is a maximal 2δ1−γ-separated subset in A \B(0, δγ), then the map

A′ ×B′ → A(A−A)× (A−A)A
(a, x) 7→ (axa, bxa)
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is injective at scale δ. Therefore,

N(B, δ1) ≤
N(AA−AA, δ)2

|A′|
.

Since |A′| ' N(A, δ1−γ) & δdγN(A, δ), we find

N(AA−AA, δ) ≥ cO(1)δ−
(1−σ−4γ)d

2 N(A, δ),

which by the Plünnecke inequality implies

N(A+AA, δ) ≥ cO(1)δ−
(1−σ−4γ)d

4 N(A, δ). (3)

Second case: There exists x and y in B such that d(x+y,B) > δ1 or d(xy,B) >
δ1.
Depending on the case, write x + y = e1

e2
with e1 ∈ 2(A − A)(A − A) and

e2 ∈ (A − A)(A − A), or xy = frace1e2 with e1 ∈ (A − A)(A − A) and
e2 ∈ (A−A)(A−A). Note that in any case |e1| ≤ |e2| and |e2| ≥ δ2γ .

We first want to get a lower bound on N(e1A+ e2A, δ). Let

Q = {(a1, a2, a3, a4) ∈ A×4 | e2a1 + e1a4 = e2a2 + e1a3 +O(δ)}.

If (a1, a2, a3, a4) belongs to Q, then∣∣∣∣a1 − a2a3 − a4
− e1
e2

∣∣∣∣ ≤ δ

|e2(a3 − a4)|
≤ δ1−2γ

|a3 − a4|
.

Since d( e1e2 , B) ≥ δ1−3γ , we must have |a3 − a4| ≤ δγ . If a4 is known up to δ,
by non-concentration, there are at most CδγdσN(A, δ) choices for a3. Then, if
a1, a3, a4 are known up to δ, as

a2 = a1 +
e1a4
e2
− e1a3

e2
+O(

δ

|e2|
)

the non-concentration hypothesis shows that there are at most C|e2|−dσδdσN(A, δ)
possibilities for a2, and so

N(Q, δ) ≤ C2|e2|−dσδdσ(1+γ)N(A, δ)4.

Consequently,

N(e1A+ e2A, δ) ≥
N(A, δ)4

N(Q, δ)
≥ C−2|e2|dσδ−dσ(1+γ).

Since e1A+ e2A ⊂ Bk(0, |e2|), this implies

N(A+ e1A+ e2A, δ) & N(A, |e2|)N(e1A+ e2A, δ)

& C−O(1)|e2|−dσ|e2|dσδ−dσ(1+γ)

= CO(1)δ−dγN(A, δ).

Now, according to Proposition 3 below and the remark that follows it,

N(A+ e1A+ e2A, δ)

N(A, δ)
.

(
N(A+AA, δ)

N(A, δ)

)40
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and so,
N(A+AA, δ) & C−O(1)δ−

dγ
38N(A, δ). (4)

With γ = 1−σ
4(1+ σ

38 )
, we find

ε =
(1− σ − 4γ)d

4
=
dσγ

38
=

σ(1− σ)
4(38 + σ)

<
σd

14

and the inequalities (2), (3) and (4) together allow us to conclude:

N(A+AA, δ) & cO(1)C−O(1)δ−εN(A, δ).

It remains to prove the two results that we used. The first is a standard
additive combinatorics result, which shows that the growth of the set A + AA
makes it possible to control that of any set

〈A〉s = sAs − sAs.

The proof is based on Plünnecke’s inequality and Ruzsa’s covering lemma.

Proposition 3. Let E be a finite-dimensional algebra on R or Qp. If A ⊂
BE(0, 1) satisfies N(A+AA, δ) ≤ KN(A, δ), then, for every integer s ≥ 1,

N(〈A〉s, δ) ≤ KOs(1)N(A, δ).

Remark. If A satisfies N(A + AA, δ) ≤ KN(A, δ), and if e1, e′1 and e2 are
three elements of (A − A)(A − A), we leave it to the reader to check that the
proof of this proposition yields

N(A+ e1A+ e′1A− e2A, δ) . K38N(A, δ).

Proof of Proposition 3. Let us first show that for all x ∈ 〈A〉s, there exists a
finite set Xx,s such that

N(Xx,s, δ) ≤ KOs(1) et xA ⊂ A−A+Xx,s.

This can be seen by induction on s. For s = 1, by Ruzsa’s covering lemma,
there exists a set X such that N(X, δ) . K and AA ⊂ A−A+X, so the result
is clear. Then, we notice that if xA ⊂ A − A +Xx,s and yA ⊂ A − A +Xy,s,
then thanks to Ruzsa’s covering lemma again, we can write

(x+ y)A ⊂ xA+ yA

⊂ A−A+A−A+Xx,s +Xy,s

⊂ A−A+Xx+y,s+1

for a set Xx+y,s+1 such that N(Xx+y,s+1, δ) . KOs(1). Likewise,

(x− y)A ⊂ A−A+Xx−y,s+1,

and also,

xyA ⊂ xA− xA+ xXy,s

⊂ A−A+A−A+Xx,s −Xx,s + xXy,s

⊂ A−A+Xxy,s+1.
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Naturally, this property still holds for all x in a δ-neighborhood of 〈A〉s.
Let us now show by induction that there exists Xs in a δ-neighborhood of

〈A〉s such that N(Xs, δ) ≤ KOs(1) and As ⊂ A − A + Xs. This has already
been seen for s = 2. Let us therefore assume the result is known for some s ≥ 2.
Then,

A+As+1 ⊂ A+A(A−A+Xs) ⊂ A+AA−AA+AXs.

By the first part of the proof, AXs ⊂ A−A+X ′, where X ′ = ∪x∈XsXx,s, so

N(A+As+1, δ) ≤ N(A+AA−AA+A−A+X ′, δ)

≤ KOs(1)N(A, δ)

Then
As+1 ⊂ A−A+Xs+1,

by Ruzsa’s covering lemma.
To conclude, it suffices to observe that we have

〈A〉s = As ± · · · ±As

⊂ A−A+ · · ·+A−A+Xs ± · · · ±Xs

which indeed implies N(〈A〉s, δ) ≤ KOs(1)N(A, δ), by the Plünnecke inequality.

The second proposition gives a bound on the number of products necessary
to generate an algebra E from a generating subset A. In the real case, this
statement is proven in He [11, Proposition 16] using the Łojasiewicz inequality.
We give here a slightly different proof, which also applies to the p-adic case.

Proposition 4 (Escape from subspaces). Let E be a normed division algebra
over R or Qp, and let A ⊂ BE(0, 1) be a subset at distance ρ > 0 of any
subalgebra. There exists a1, . . . , ad in Ad such that det(a1, . . . , ad) ≥ ρO(1).

Proof. Replacing A by A \ BE(0, ρ) if necessary, we may assume that every
element a in A satisfies |a| ≥ ρ.

We construct the basis (ak)k≥1 by induction. Let k ≥ 0, and suppose that
the elements ai, i ≤ k have been constructed in Ak so that for all i ≤ k,
d(ai, Vi) ≥ ρO(1), where Vi = Span(aj ; j < i). Let G denote the compact group
of elements of norm 1 in E, and

A′ = { a
|a|

; a ∈ A}.

The group G naturally acts from the left on E, and A′ is at distance ρ from
any subgroup of the form StabGW , where W < E is a subgroup vector space,
because by assumption, A is at distance ρ from any subalgebra. The second
point of Lemma 2 below applied to the set

F = {w = v1 ∧ · · · ∧ vk ∈ ∧kE ; |w| = 1}

therefore shows that there exists a in A such that

d(
a

|a|
Vk+1, Vk+1) = d(aVk+1, Vk+1) ≥ ρO(1).

11



Now, given the condition d(ai, Vi) ≥ ρO(1) for i = 1, . . . , k, we have

d(aVk+1, Vk+1) ≤ ρ−O(1) max
1≤i≤k

d(aai, Vk+1).

Therefore, there exists a in A and i ∈ {1, . . . , k} such that d(aai, Vk+1) ≥ ρO(1).
We then set ak+1 = aai ∈ Ak+1.

The family (ai)1≤i≤d is a family of elements of Ad, and the inequalities
d(ai, Vi) ≥ ρO(1) and |ai| = O(1) for i = 1, . . . , d show that we also have

det(a1, . . . , ad) ≥ ρO(1).

Lemma 2 (Distance to stabilizer). Let G be a compact Lie group on k = R or
Qp, and V be a linear representation of G on k.

1. For all v ∈ V , there exists a constant c > 0 such that for all g ∈ G,
d(gv, v) ≥ c · d(g,StabG v).

2. If F is a compact subset invariant under the action of G, there exists
C > 0 such that for all v ∈ F , there exists v1 ∈ F such that for all
g ∈ G, d(g,StabG v1) ≤ Cd(gv, v).

Proof. Let us denote H = StabG v and h = Lie(H). Let W be a complement of
h in g = Lie(V ) and U be a neighborhood of 0 in W such that Y 7→ eY · v be a
diffeomorphism of U on its image. There exists c0 > 0 such that if d(g,H) < c0,
we can write g = eY h, with h ∈ H and Y ∈ U , hence

d(gv, v) = d(eY v, v) ' ‖Y ‖ ' d(g,H).

Since moreover, the continuous function g 7→ d(gv,v)
d(g,H) is strictly positive on the

compact set d(g,H) ≥ c0, we indeed find that there exists c > 0 such that for
all g ∈ G, d(gv, v) ≥ cd(g,H). This shows the first part of the lemma.

For the second, let v0 be a unit vector in V . Let T0 be the tangent space to
Gv0 at the point v0 and T⊥0 be a (StabG v0)-invariant complement in V . In a
neighborhood Uv0 of Gv0, any vector v can be written uniquely

v = x+ t,

with x = σ(x)v0 ∈ Gv0 and t ∈ σ(x)T⊥0 for a certain σ(x) ∈ G, and the map
v mapsto(x, t) is a diffeomorphism of Uv0 onto Gv0 × BT⊥0 (0, r0). Now, for g
in G,

gv = gx+ gt et gt ∈ gσ(x)T⊥0 = σ(gx)T⊥0 ,

Therefore,

d(gv, v) & d(gx, x)

= d(gσ(x)v0, σ(x)v0)

= d(σ(x)−1gσ(x)v0, v0)

≥ 1

C0
d(g,StabG σ(x)v0)

according to the first point of the lemma. This shows the desired property for
all v in the neighborhood of an arbitrary point v0, taking v1 = σ(x)v0. We
conclude by taking a finite covering of F by open sets of the form Uv0 .

12



1.3 Non-commutative division algebras
In this paragraph, E denotes a division algebra over Qp, not necessarily

commutative. The usual absolute value |·|p on Qp again extends uniquely to
E.

Theorem 7 (Sum-product in division algebras over Qp). Let E be a division
algebra of dimension d over Qp. Given σ ∈ (0, 1), there exists ε = ε(d) > 0 such
that the following statement holds for any sufficiently small δ > 0.

Let A ⊂ BE(0, 1) be such that
1. N(A, δ) = δ−dσ;
2. ∀ρ ≥ δ, ∀x ∈ E, N(A ∩B(x, ρ), δ) ≤ CρdσN(A, δ);
3. ∀F ⊂ E subalgebra, ∃a ∈ A : d(a, F ) ≥ c.

Then,
N(A+AA, δ) ≥ cO(1)C−O(1)δ−εN(A, δ).

Proof. Let us denoteK = N(A+AA,δ)
N(A,δ) . We want to show thatK ≥ cO(1)C−O(1)δ−ε.

Given a parameter γ > 0, we consider the set

B = B1 ∪B2,

where

B1 =
{
(a1 − a2)(a3 − a4)−1 ; a1, a2, a3, a4 ∈ A, |a3 − a4| ≥ δγ

}
and

B2 =
{
(a1 − a2)−1(a3 − a4) ; a1, a2, a3, a4 ∈ A, |a3 − a4| ≥ δγ

}
.

We also let
δ1 = δ1−2γ .

Note that the set B always contains 0 and 1. The lack of commutativity makes
it difficult to check stability of B under + and ×, so we go back to the argument
used for Qp, which only involves the operation x 7→ x+ 1. It is because of this
that the growth exponent obtained will depend on the dimension of E on Qp.
First case: ∀x ∈ B, d(x+ 1, B) ≤ δ1.
The set B(δ1) is then stable by x 7→ x+ 1. Therefore, B(δ1) ⊃ Zp, and so

N(B
(δ1)
1 ∩ Zp, δ1) & δ−11 or N(B

(δ1)
2 ∩ Zp, δ1) & δ−11

Suppose to fix ideas that the first inequality holds. According to Proposition 4
above, we can find elements a1, . . . , ad in Ad which form a base of E with
determinant cO(1). Consequently,

N(a1B
(δ1)
1 + · · ·+ adB

(δ1)
1 , δ1) ≥ cO(1)δ−d1 . (5)

Consider a maximal δ1-separated subset B in A+B1, and for each x in B′, fix
a representation

x = axb
−1
x where

{
ax ∈ A(A−A) + (A−A)
bx ∈ (A−A) \B(0, δγ)

.

13



Let also A′ be a maximal δ1−γ-separated subset in A \B(0, δγ). The map

A′ ×B′ → (AAA−AAA+AA−AA)× (AA−AA)
(a, x) 7→ (axa, bxa)

is injective at scale δ. Therefore,

N(A+B1, δ1) ≤
N(AAA−AAA+AA−AA, δ)N(AA−AA, δ)

|A′|

and with Proposition 3

N(A+B1, δ1) . K32N(A, δ)2

|A′|
. K32δ−dγN(A, δ)

and so
N(A+B1, δ) . K32δ−3dγN(A, δ).

By Ruzsa’s covering lemma, this implies that there exists a part X such that
N(X, δ) . K32δ−3dγ and

B1 ⊂ A−A+

Consequently, for a set X ′ such that N(X ′, δ) ≤ N(X, δ)d ≤ K32dδ−3d
2γ ,

a1B1 + · · ·+ adB1 ⊂ dAd+1 − dAd+1 +X ′

and therefore, with Proposition 3,

N(a1B1 + · · ·+ adB1, δ) . K32dδ−3d
2γN(dAd+1 − dAd+1, δ)

. KOd(1)δ−3d
2γN(A, δ).

This inequality together with (6) gives

cO(1)δ−d+2dγ . N(a1B1+· · ·+adB1, δ1) ≤ N(a1B1+· · ·+adB1, δ) . KOd(1)δ−3d
2γN(A, δ)

whence
KOd(1) ≥ cO(1)δ−d(1−σ)+2γ+3d2γ .

Second case: There exists x in B such that d(x+ 1, B) > δ1.
To fix ideas, suppose x ∈ B1 so that we can write

x+ 1 = e1e
−1
2 with e1 ∈ 2A− 2A, e2 ∈ A−A, and |e2| ≥ δγ .

(If x ∈ B2, we must instead write x + 1 = e−12 e1 and use the set e1A + e2A
below, but the rest of the argument adapts without difficulty.)

We first want to bound N(Ae2 +Ae1, δ) from below. Let

Q = {(a1, a2, a3, a4) ∈ A×4 | a1e2 + a4e1 = a2e2 + a3e1 +O(δ)}.

If (a1, a2, a3, a4) belongs to Q, then∣∣(a3 − a4)−1(a1 − a2)− e1e−12

∣∣ ≤ δ|e2|−1|a3 − a4|−1 ≤ δ1−γ |a3 − a4|−1.
14



Since d(e1e−12 , B) ≥ δ1−2γ , we must have |a3− a4| ≤ δγ . If a4 is known up to δ,
then by non-concentration there are at most CδdγσN(A, δ) possibilities for a3.
Then, if a1, a3, a4 are known up to δ, as

a2 + a3e1e
−1
2 = a1 + a4e1e

−1
2 +O(|e2|−1δ)

the non-concentration assumption shows that there are at most C|e2|−dσδdσN(A, δ)
possibilities for a2, and so

N(Q, δ) ≤ C2|e2|−dσδdσ(1+γ)N(A, δ)4.

Subsequently,

N(Ae1 +Ae2, δ) ≥
N(A, δ)4

N(Q, δ)
≥ C−2|e2|dσδ−dσ(1+γ)

and then, as before,

N(A+Ae1 +Ae2, δ) & C−O(1)δ−dγN(A, δ).

With Proposition 3, this yields

KO(1) ≥ C−O(1)δ−dγ .

Choosing γ = d(1−σ)
3d2+2 , we find in both cases above K ≥ cO(1)C−O(1)δ−ε, for a

certain ε > 0 depending on d.

2 Division algebras over R
We now briefly explain how the above proof adapts to derive a discretized

sum-product theorem in real division algebras. Note that according to Wed-
derburn’s theorem, such an algebra is isomorphic to R, C or H, the quaternion
algebra. The argument is similar to that given for algebra over Qp, but it is
necessary to compensate for the fact that the distance is no longer ultrametric.
To do this, we replace the operation x 7→ x + 1 by the two operations x 7→ x

2
and x 7→ x+1

2 .

The algebra of quaternions
Recall that the quaternion algebra H is a four-dimensional algebra over R,

a basis of which is given by the elements (1, i, j, k) satisfying the relations i2 =
j2 = k2 = −1 and ij = k . One can identify H with the subalgebra of M2(C)
generated by the matrices

i =

(
i 0
0 −i

)
, j =

(
0 1
−1 0

)
et k =

(
0 i
i 0

)
.

The algebra H is non-commutative, but has no zero divisors, so it is a division
algebra. Any proper subalgebra of H is isomorphic to R or C. Naturally, the
only subalgebra isomorphic to R is R ' R1, but there exist in H an infinite
number of embeddings of C, among which C ' R1 ⊕ Ri, C ' R1 ⊕ Rj and
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C ' R1 ⊕ Rk. The usual absolute value on R extends uniquely to an absolute
value on H, given by the formula

|a+ bi+ cj + dj| =
√
a2 + b2 + c2 + d2.

In H, the discretized sum-product theorem states as follows.

Theorem 8 (Discretized sum-product in H). Given σ ∈ (0, 1), let ε = σ(1−σ)
36σ+ 49

2

.
The following statement is valid for any sufficiently small δ > 0.

Let A ⊂ BH(0, 1) be such that
1. N(A, δ) = δ−4σ;
2. ∀ρ ≥ δ, ∀x ∈ H, N(A ∩B(x, ρ), δ) ≤ Cρ4σN(A, δ);
3. ∀F ⊂ H subalgebra, ∃a ∈ A : d(a, F ) ≥ c.

Then,
N(A+AA, δ) ≥ cO(1)C−O(1)δ−εN(A, δ).

Proof. As in the p-adic case, we use an auxiliary parameter γ > 0 and we
consider

B = B1 ∪B2,

where

B1 =
{
(a1 − a2)(a3 − a4)−1 ; a1, a2, a3, a4 ∈ A, |a3 − a4| ≥ δγ

}
and

B2 =
{
(a1 − a2)−1(a3 − a4) ; a1, a2, a3, a4 ∈ A, |a3 − a4| ≥ δγ

}
.

We also put
δ1 = δ1−2γ .

We shall show that
K =

N(A+AA, δ)

N(A, δ)
≥ δ−ε.

First case: ∀x ∈ B, d(x2 , B) ≤ δ1
2 and d(x+1

2 , B) ≤ δ1
2 .

The set B(δ1) is then stable by x 7→ x
2 and x 7→ x+1

2 . Therefore, B(δ1) ⊃ [0, 1],
and so

N(B
(δ1)
1 ∩ [0, 1], δ1) & δ−11 or N(B

(δ1)
2 ∩ [0, 1], δ1) & δ−11

Let us assume to fix ideas that the first inequality is satisfied. According to
Proposition 4 above, we can find elements a1, . . . , a4 in A2 which form a basis
of H with determinant cO(1). Subsequently,

N(a1B
(δ1)
1 + · · ·+ a4B

(δ1)
1 , δ1) ≥ cO(1)δ−41 . (6)

Consider B′ a maximal δ1-separated subset in A+B1, and for each x in B′, fix
a representation

x = axb
−1
x where

{
ax ∈ A(A−A) + (A−A)
bx ∈ (A−A) \B(0, δγ)

.

16



If A′ is a maximal δ1−γ-separated subset in A \B(0, δγ), the map

A′ ×B′ → (AAA−AAA+AA−AA)× (AA−AA)
(a, x) 7→ (axa, bxa)

is injective at scale δ Consequently,

N(A+B1, δ1) ≤
N(AAA−AAA+AA−AA, δ)N(AA−AA, δ)

|A′|
. δ−4γK32N(A, δ).

and so
N(A+B1, δ) . δ−12γK32N(A, δ).

By Ruzsa’s covering lemma, this implies that there exists a set X such that
N(X, δ) . δ−12γK32 and

B1 ⊂ A−A+

But Ruzsa’s covering lemma also gives AA ⊂ Y +A−A, with N(Y, δ) . K and
therefore

a1(A−A) + · · ·+ a4(A−A) ⊂ Y ′ + 4AA− 4AA

for a set Y ′ such that N(Y ′, δ) . K8 Thus,

N(a1(A−A) + · · ·+ a4(A−A), δ) . K8N(4AA− 4AA, δ) . K16N(A, δ).

Therefore,

N(a1B1 + · · ·+ a4B1, δ) . δ−48γK128N(a1(A−A) + · · ·+ a4(A−A), δ)
. K144δ−48γN(A, δ)

This inequality, put in relation with (6), gives

cO(1)δ−4+8γ . N(a1B1 + · · ·+ a4B1, δ)

. K144δ−48γN(A, δ)

= K144δ−48γ−4σ

whence
K & cO(1)δ−

1−σ−14γ
36 .

Second case: There exists x in B such that d(x2 , B) > δ1
2 or d( fracx+ 12, B) >

δ1
2 .
To fix ideas, assume x ∈ B1 and d(x+1

2 , B) > δ1
2 , so that we can write

x+ 1 = e1e
−1
2 with e1 ∈ 2A− 2A, e2 ∈ A−A, and |e2| ≥ δγ .

We first want to get a lower bound for N(Ae2 +Ae1, δ). Let

Q = {(a1, a2, a3, a4) ∈ A×4 | a1e2 + a4e1 = a2e2 + a3e1 +O(δ)}.

If (a1, a2, a3, a4) belongs to Q, then∣∣(a3 − a4)−1(a1 − a2)− e1e−12

∣∣ ≤ δ|e2|−1|a3 − a4|−1 ≤ δ1−γ |a3 − a4|−1.
17



Since d(e1e−12 , B) ≥ δ1−2γ/2, we must have |a3 − a4| ≤ 2δγ . If a4 is known
up to an error δ, by non-concentration, there are at most C24γδ4γσN(A, δ)
possibilities for a3. Then, if a1, a3, a4 are known up to δ, as

a2 + a3e1e
−1
2 = a1 + a4e1e

−1
2 +O(|e2|−1δ)

the non-concentration hypothesis shows that there are at most C|e2|−4σδ4σN(A, δ)
possibilities for a2, and so

N(Q, δ) . C2|e2|−4σδ4σ(1+γ)N(A, δ)4.

Thus,

N(Ae1 +Ae2, δ) ≥
N(A, δ)4

N(Q, δ)
& C−2|e2|4σδ−4σ(1+γ).

On the other hand, as Ae1 +Ae2 ⊂ BH(0, |e2|), one has

N(Ae1 +Ae2, δ) .
1

N(A, |e2|)
N(A+Ae1 +Ae2, δ)

. C|e2|4σN(A+Ae1 +Ae2, δ)

. C|e2|4σN(A+ 3AA− 3AA, δ)

. C|e2|4σK7N(A, δ)

where the last inequality follows from the Plünnecke inequality. So,

N(A, δ) ≥ C−3K7δ−4σ(1+γ)

and therefore
K & C−O(1)δ

4σγ
7 .

Choosing γ = 1−σ
36

1
4σ
7 + 14

36

and setting ε = σ(1−σ)
36σ+ 49

2

, we find in both cases

K & cO(1)C−O(1)δ−ε.

The real line and the complex plane
The methods used in the previous paragraph also apply to prove a discretized

sum-product theorem in R or C, and the argument is even a little simpler, very
close to that used for Qp in the first part. In the case of R, we obtain a result
exactly similar to Theorem 5 obtained for Qp, but with a constant ε = σ(1−σ)

27+2σ ,
while for C, the statement is identical to Theorem 6 but with ε = σ(1−σ)

72+32σ . The
detailed proofs are left to the interested reader.

Conclusion
For certain applications, it can be interesting to slightly modify the assump-

tions of the discretized sum-product theorem, or to study the dependence of the
growth rate ε as a function of the other parameters. We briefly discuss some of
these issues.
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Weakening the non-concentration assumption

Bourgain and Gamburd [5] noticed that the discretized sum-product theorem
in R is still valid when the non-concentration condition is given by a parameter
κ > 0 not necessarily equal to the dimension σ. This version of the discretized
sum-product is essential for the proof of their spectral gap theorem for subgroups
of SUd generated by elements with algebraic entries.

The argument which makes it possible to weaken the non-concentration as-
sumption is a bit technical, but quite formal, and it applies equally well to
algebras with local division. We then obtain the following result, of which we
do not include the detailed demonstration.

Theorem 9 (Sum-product in local division algebras). Let E be a finite-dimensional
division algebra on R or Qp. Given σ ∈ (0,dimE) and κ > 0 , there exists ε > 0
such that the following statement holds for all sufficiently small δ > 0.

Let A ⊂ BE(0, 1) be such that
1. N(A, δ) ≤ δ−σ−ε;
2. ∀ρ ≥ δ, ∀x ∈ E, N(A, ρ) ≥ δερ−κ;
3. ∀F ⊂ E sub-algebra, ∃a ∈ A : d(a, F ) ≥ δε.

Then,
N(A+AA, δ) ≥ δ−εN(A, δ).

Growth exponent

The problem of the dependence of the growth exponent ε as a function of
σ has already been much studied in the case of R. Recently, Orponen and
Shmerkin [16, Theorem 1.22] managed to obtain for Bourgain’s statement the
lower bound ε > σ/6 when σ ∈ (0, 2/3), which is much better than the bound
given by the argument presented above. We note however that their approach
does not provide a new proof of the discretized sum-product, since it is based
on a discretized radial projection theorem [17], itself based on Bourgain’s dis-
cretized sum-product theorem.

It would be interesting to also obtain better estimates of the growth rate in
the setting of a general local division algebra. We saw in Theorem 6 that this
rate is uniform for all local fields with zero characteristic. One may conjecture
that this is still the case for any division algebra, not necessarily commutative,
and perhaps for any simple associative algebra on R or Qp. This could have ap-
plications to the study of random walk in compact groups, such as Lubotzky [15,
Problem 10.9.1]. Unfortunately, our proof does not seem to adapt to give this
result.
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