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Geometry of codes : the music of spheres

R = a finite ring with identity.
A linear code of length n over a ring R is an R−submodule of Rn.
For historical reasons the ring R is called the alphabet and the
elements of C codewords . We assume the existence of a metric
d over Rn satisfying the three following axioms

1 (nonnegativity) ∀x ∈ Rn d(x , x) ≥ 0,

2 (symmetry) ∀x , y ∈ Rn d(x , y) = d(y , x),

3 (triangle
inequality) ∀x , y , z ∈ Rn d(x , z) ≤ d(x , y) + d(y , z).



Classical coding and the Hamming metric

Classical codes as used in Information transmission are the case of
R = a finite field and d = Hamming metric

dH(x , y) := {j ∈ {1, 2, . . . , n} | xj 6= yj}.

Example :
d(00011, 11010) = 3



Alternative rings and metrics

ZM Integers modulo M, Lee metric
Galois rings, chain rings, Frobenius rings,. . .
Notion of Gray map :

R −→ FN
q

Study of d induced by dH on the right



The fundamental problem of coding theory

Sphere packing problem.
Study of the function Aq(n, δ), the maximum size of a code of
length n over an alphabet of size q, such that the minimum
pairwise distance between distinct codewords is at least δ.
Difficult in general...



Correlation of sequences

Let x , y denote two periodic sequences of period T with values in

Ωq := {z ∈ C | xq = 1}.

The periodic correlation at time lag ` say, of sequences x and y is
defined as the hermitian scalar product over a period of x and y
shifted ` times that is

θx ,y (`) :=
T−1∑
j=0

x∗j yj+`,

the indices being understood modulo T . When x = y it is called
autocorrelation and crosscorrelation when x 6= y . When ` = 0
plainly, the correlation θx ,x(0) = T



Correlation of sequences : an extremal problem

Let M denote a family of M such sequences. Let θa denote the
maximum modulus of correlation for all x ∈M and ` 6= 0.
Similarly, let θc denote the maximum modulus of the
crosscorrelation over all M(M − 1) pairs x , y ∈M and all time
lags `. The least upper bound on the crosscorrelation θc and the
nontrivial autocorrelation θa is usually denoted by

θmax := max(θa, θc).

Question Given θmax, maximize M



Correlation of sequences : cyclic codes solution

Sidelnikov proved in 1971 that when M and T are both large and
of the same order of magnitude then for ±1-valued sequences we
have

θmax ≥
√

2T ,

while for all other sequences (i.e. q > 2) we can merely ascertain
that

θmax ≥
√
T .

The construction of Gold sequences (1978) relies on binary cyclic
codes to show the bound is tight for q = 2.
Similarly, the construction of the sequences when q = 4 builds on
certain families of Z4-cyclic codes to show the bound is tight for
q = 4.(S. 1988).



Euclidean lattices

An n-dimensional lattice in Rn is a discrete Z-module : imagine a
big grid like Zn for instance.
Lattices are useful in communications as group codes for the
Gaussian channel (WiFi) and as codebooks for vector quantization
(image processing).
There is a natural notion of dual L∗ of a lattice, that is
fundamental for physicists studying crystal diffraction, and for
number theorists involved with modular forms.

L∗ = {y ∈ Rn | ∀x ∈ L, x .y ∈ Z}.
The theta series counts lattice points of given norm.
The weight enumerator of a code is generating function for
codewords of given weight.

θL(q) =
∑
x∈L

qx .x , WC (x , y) =
∑
c∈C

xn−w(c)yw(c).



Codes vs lattices

Since the 1970’s there is a dictionary between codes and lattices as
shown in the following table :

Fn
2 Rn

Hamming distance Euclidean distance

minimum distance norm

dimension determinant

Weight enumerator Theta function

Mac Williams relations Poisson Jacobi formula

Self-dual codes Unimodular Lattices



Construction A

This analogy is materialized by construction A which associates to
a binary code C a lattice A(C ) through the following formula :

√
2A(C ) = C + 2Zn :=

⋃
c∈C

(c + 2Zn).

This construction builds unimodular lattices (lattices equal to
their duals) from self-dual codes.
The theta series of A(C ) can be computed by substituting for the
variables x , y in the weight enumerator WC (x , y) the
one-dimensional theta series corresponding to Z and Z + 1

2 .



Constructing the Leech lattice by Z4-codes

The Leech lattice is a very symmetric unimodular lattice in
dimension 24 : Conway three sporadic simple groups are involved
in its automorphism group.
There is a construction A modulo 4.

2A(C ) = C + 4Zn :=
⋃
c∈C

(c + 4Zn).

Take C to be a special self-dual Z4-code above the Golay code in
length 24 to get the Leech lattice.(Bonnecaze, S. 1995).



MacWilliams formula

The weight enumerator Wc of a linear code C and the weight
enumerator of its dual C⊥ are related by

WC⊥(x , y) =
1

|C |
WC (x + y , x − y).

This is proved by Fourier analysis on the group (Fn
q,+) and

requires linearity of C .



Hamming vs Simplex

A simple example of dual pair of codes is the Hamming code Hm

a (“big” )[n = 2m, n −m − 1, 4] code with dual is the (“small”)
[2m,m + 1, 2m−1] first order Reed Muller Rm . The matrix

H =

[
1 1 1 1 1 · · · 1
0 1 α α2 α3 · · · αn−1

]
,

where n = 2m − 1, and α is a root of an irreducible polynomial, is
both a generator matrix for Rm and a parity check matrix for
Hm = Ker(H).
The small code Rm has the simple weight distribution

WRm(x , y) = xn + yn + (2n − 2)(xy)n/2.



The Kerdock Preparata enigma

In the 1970’s was found two infinite families of nonlinear codes,
Kerdock (low rate) and Preparata (high rate) which are
MacWilliams dual of each other.
For instance the intersection of the two families is the formally
self-dual Nordstrom-Robinson code of parameters (16, 28, 6).
William Kantor declared that “it was merely a coincidence.”



The Gray map trick

A well-known trick in modulation theory to address the 4-PSK
constellation consists of using the so-called Gray map . This is a
map from Z4 to F2

2 defined by

0→ 00, 1→ 01, 2→ 11, 3→ 10,

and extended to a map from Zn
4 to F2

2 in the natural way.
The key property, is that the map

φ : (Zn
4, Lee distance)→ (F2n

2 ,Hamming distance)

is an isometry of metric spaces.
For graph theorists : the 4-cycle is a Cayley graph for two different
groups : Klein-4 and the cyclic group of order 4.



The Kerdock Preparata enigma : solution

Using a matrix similar to the one used for Hamming and
Reed-Muller code

H =

[
1 1 1 1 1 · · · 1
0 1 α α2 α3 · · · αn−1

]
,

where α lives in a Galois ring , a ring extension of Z4, it is
possible to construct a pair of dual Z4-codes the Gray map image
of which has the same weight enumerator as the Kerdock and
Preparata codes respectively. (Hammons, Kumar, Calderbank,
Sloane and S. 1994).
Further these codes are better than linear codes of the same length
and minimum distance.



The two ways to mix rings and codes

The obvious way is to assume a ring structure on the alphabet.
The other way is to use the code symmetry to give it an algebraic
structure of ring or module.
Example 1 : C is a cyclic code of length n over F if it is
invariant under the shift T that is TC ⊆ C .
T : (x1, . . . , xn) 7→ (xn, x1, . . . , xn−1).
Then C is an ideal in the polynomial ring R = F [x ]/(xn − 1).
(Note that T n = 1.)
Example 2 : C is a quasi-cyclic code of length n and index p
over F if it is invariant under T p that is T pC ⊆ C .
Then C is an R-module, a submodule of Rn/p ⇒ 5 papers with S.
Ling.



Quasi-cyclic codes : background

A linear code over Fq is called a quasi-cyclic (QC) code of index `
if it is closed under shifting codewords by ` units, and ` is the
smallest positive integer with this property.
So, cyclic codes amount to the special case ` = 1.
Let C be a QC code of length m`, index ` over Fq.
If we let R := Fq[x ]/〈xm − 1〉, then the code C can be viewed as
an R-module in R`

Here is a duality-driven factorization into irreducible polynomials
in Fq[x ]

xm − 1 = g1 · · · gsh1h∗1 · · · hth∗t .

where gi ’s are self-reciprocal and h∗j denotes the reciprocal of hj .



Quasi-cyclic codes : CRT I

(
s⊕

i=1

Fq[x ]/〈gi 〉

)
⊕

 t⊕
j=1

(
Fq[x ]/〈hj〉 ⊕ Fq[x ]/〈h∗j 〉

)
=

(
s⊕

i=1

Fq(ξui )

)
⊕

 t⊕
j=1

(
Fq(ξvj )⊕ Fq(ξ−vj )

) .

We let Gi = Fq[x ]/〈gi 〉, H ′j = Fq[x ]/〈hj〉 and H ′′j = Fq[x ]/〈h∗j 〉 for
simplicity. The map that sends a(x) ∈ R to the decomposition can
be thought of as projections mod each irreducible factor or as
follows :

a(x) 7→

(
s⊕

i=1

a(ξui )

)
⊕

 t⊕
j=1

(
a(ξvj )⊕ a(ξ−vj )

) .



Quasi-cyclic codes : CRT II

This decomposition naturally extends to R` and then C ⊂ R`

decomposes as

C =

(
s⊕

i=1

Ci

)
⊕

 t⊕
j=1

(
C ′j ⊕ C ′′j

) ,

where each component code is a length ` linear code over the base
field (Gi ,H

′
j or H ′′j ) it is defined on.

Note that since the degree of hj and hj are the same, H ′j is
abstractly field isomorphic to H ′′j .
Component codes Ci ,C

′
j ,C

′′
j are called the constituents of C .



Quasi-cyclic codes : duality

The ( Euclidean ) dual in Fm`
q of C is of the form

C⊥ =

(
s⊕

i=1

C⊥h
i

)
⊕

 t⊕
j=1

(
C ′′⊥e
j ⊕ C ′⊥e

j

) .

Note the swap between ′ and ′′

Here, ⊥h denotes the Hermitian dual on G `
i = Fq(ξui )`

Definition of the Hermitian inner product of
~c = (c1(ξui ), . . . , c`(ξ

ui )), ~d = (d1(ξui ), . . . , d`(ξ
ui )) ∈ Fq(ξui )`,

where cb(x), db(x) ∈ R for all 1 ≤ b ≤ `, is :

〈~c, ~d〉 :=
∑̀
b=1

cb(ξui )db(ξ−ui ).



Quasi-cyclic codes : concatenation I

For i ∈ {1, . . . , s}, let θi be the generating primitive idempotent
for the q-ary minimal cyclic code of length m, whose check
polynomial is gi (x). This cyclic code 〈θi 〉 is ' to the field Gi .
Similarly, let θ′j and θ′′j denote the primitive idempotents attached
in the same way to the fields H ′j and H ′′j (for 1 ≤ j ≤ t). By
Jensen’s work , it was shown in Gueneri-Ozbudak that the QC
code C above also has a concatenated decomposition

C =

(
s⊕

i=1

〈θi 〉2Ci

)
⊕

 t⊕
j=1

(
〈θ′j〉2C′j

)
⊕
(
〈θ′′j 〉2C′′j

)) ,

where the outer codes Ci ,C
′
j ,C
′′
j are length ` linear codes over

Gi ,H
′
j ,H

′′
j , respectively, and where 2 denotes standard

concatenation.



Quasi-cyclic codes : concatenation II

The key fact is that the outer codes coincide with the constituents
in the CRT decomposition :
Ci = Ci ,C

′
j = C ′j ,C

′′
j = C ′′j for all i , j . The converse statement

holds as well. Namely, if you start with arbitrary length ` outer
codes (constituents) over the fields Gi ,H

′
j ,H

′′
j and form the

concatenation above, the resulting code is a length m`, index ` QC
code over Fq.



Skew polynomial rings

For a finite field Fq and θ an automorphism of Fq we consider the
ring

R = Fq[X ; θ] = {anX n + · · ·+ a1X + a0|ai ∈ Fq, n ∈ N}.

This is the set of formal polynomials where the coefficients are
written on the left of the variable X .
Addition is defined to be the usual addition of polynomials
Multiplication is defined by the commutation rule
{X · a = θ(a)X ∈ Fq}, extended to all elements of R by
associativity and distributivity.
Left and right gcds and lcms exist in R and can be computed using
the left and right Euclidean algorithm.
Over finite fields skew polynomial rings are also known as
linearized polynomials .



Skew cyclic codes : ideal definition

By analogy with cyclic codes define a skew cyclic code over a finite
field F as an ideal in the quotient of the skew polynomial ring
R = F [θ, x ] by one of its ideal I .
For the quotient to retain the structure of a ring it is necessary for
I to be two-sided.
Advantage over classical cyclic codes : Because factorization in R

is not unique, many more codes for given length.
We will focus on two special cases :

1 If f ∈ Z (Fq[X , θ]), then we call the θ-code corresponding to
the left ideal (g)/(f ) a central θ-code.

2 If the order of θ divides n and f = X n − 1, then we call the
θ-code. corresponding to the left ideal (g)/(X n − 1) a
θ-cyclic code.



Skew cyclic codes : module definition

Let F denote a finite field of characteristic p and size q = pa. Let
σ denote an element of its Galois group, of order r , so that r
divides a. If a = rm, then the fixed field of σ has order Q = pm.
By a module skew code of length n we shall mean a left
submodule of the left R-module Rf = R/Rf where f 6= 0 is
arbitrary of degree n. Since R is left euclidean it is easy to see that
such a submodule is of the form Rg/Rf , where g right divides f .
Advantage over ideal skew cyclic codes : More codes, more

chances to find better codes.



Skew cyclic codes are good

Let Cn be a sequence of codes of length n, dimension kn, and
minimum distance dn over F . The asymptotic rate ρ of the family
is defined as

ρ = lim sup
n→∞

kn
n
.

The asymptotic relative distance δ is defined as

δ = lim sup
n→∞

dn
n
.

A family of codes is said to be good if ρδ > 0.
It can be shown, by varying the f that skew module codes are
good (Leroy, S. 2015).



Conclusion and perspectives

If you have liked this talk please buy my book ! ! ! !

M. Shi, A. Alahmadi, P. Solé,
Codes and Rings : Theory and Practice,
Academic Press, to appear in 2017.
More resuls on

local rings, Galois rings, chain rings, Frobenius rings, . . .

Lee metric, homogeneous metric, rank metric, RT-metric, . . .

Quasi-twisted codes, consta-cyclic codes, skew-cyclic codes. . .


