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Introduction : PDE model for population dynamics

Let us denote n(t, x) the density of a species at time t, position
x ∈ Rd . We assume that the species move randomly according to
Brownian motions. We denote by B(t, x) and D(t, x) respectively
the birth and death rate. The system governing the dynamics of the
population n reads

∂tn(t, x) −A(x) ∆n(t, x)︸ ︷︷ ︸
Brownian motion

= B(t, x)n(t, x)− D(t, x)n(t, x)︸ ︷︷ ︸
birth and death

.

The quantity A(x) > 0 is the diffusion coefficient.
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Some fact about Dengue fever

Dengue is a tropical vector-borne disease. Infect 50M, kills 20k
annually. 4 different serotypes. No efficient vaccine.
Mosquitoes Aedes Aegypti (urban) and Aedes Albopictus are
the main vector (but also for Chikugunya, and Zika).
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Wolbachia

Endo-symbiotic bacteria found in most arthropod species.
Causes cytoplasmic incompatibility (CI) and blocks
transmission of some viruses (Dengue, Chikungunya, Zika) by
Aedes mosquitoes.
Several side-effects on its host (enhances/reduces fecundity,
reduces lifespan, ...).

♀\♂ Infected Sound
Infected I I
Sound × S
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The situation

Method under study
Releasing Wolbachia-infected mosquitoes to replace the existing
population.

Will they establish and invade, or disappear ?
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Mathematical model

We introduce the following quantities :
ni : density of Wolbachia-infected mosquitoes ;
nu : density of uninfected mosquitoes ;
du, di = δdu : death rate, δ > 1 ;
Fu,Fi = (1− sf )Fu : fecondity ;
sh : cytoplasmic incompatibility parameter (fraction of
uninfected females’ eggs fertilized by infected males which will
not hatch) ;
σ : resource parameter ;

Model

{
∂tni −∆ni = (1− sf )Funi

(
1− σ(ni + nu)

)
− δduni ,

∂tnu −∆nu = Funu(1− sh
ni

ni+nu
)
(
1− σ(ni + nu)

)
− dunu,

Nicolas Vauchelet Spread of Wolbachia for Dengue control



Introduction : the case of Wolbachia
Mathematical modeling

Spatial spread of Wolbachia
Blocking waves

Mathematical model : equilibria

We first consider the steady states (equilibria) for the associated
ODE model, with no diffusion.

Steady states
As soon as sf + δ − 1 < δsh, there are four distinct nonnegative
equilibria :

Wolbachia invasion (n∗iW , n
∗
uW ) := ( 1

σ −
du
Fu

δ
1−sf , 0) is stable ;

Wolbachia extinction (n∗iE , n
∗
uE ) := (0, 1

σ −
du
Fu

) is stable ;
co-existence steady state (n∗iC , n

∗
uC ) :=(( 1

σ −
du
Fu

δ
1−sf

) δ−(1−sf )
δsh

,
( 1
σ −

du
Fu

δ
1−sf

) δ(sh−1)+(1−sf )
δsh

)
is

unstable ;
extinction (0, 0) is unstable.
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Mathematical model : equilibria
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Figure: Phase portrait representing the stability of the equilibria for the
dynamical system without spatial diffusion
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Large population asymptotics

To further reduce this model, we introduce the parameter ε to
characterize the high fertility and competition that result in a
carrying capacity of order 1

ε ,{
∂tni −∆ni = (1− sf )Funi

(1
ε − σ(ni + nu)

)
− δduni ,

∂tnu −∆nu = Funu(1− sh
ni

ni+nu
)
(1
ε − σ(ni + nu)

)
− dunu.

We are interested in the limit ε→ 0 (large population asymptotics).

Nicolas Vauchelet Spread of Wolbachia for Dengue control



Introduction : the case of Wolbachia
Mathematical modeling

Spatial spread of Wolbachia
Blocking waves

Large population asymptotics

In order to perform the asymptotics study, we introduce

n = ni+nu (total population), p =
ni

ni + nu
(fraction of infected).

After straightforward computations, we find{
∂tn −∆n = (n − 1

ε )(σFun(shp
2 − (sf + sh)p + 1)− du((δ − 1)p + 1)),

∂tp −∆p + 2ε
1−εn∇p · ∇n = p(1− p)(σFun(shp − sf ) + (1− δ)du).

Formally, when ε→ 0, we deduce from the first equation that

n→ n0 =
du((δ − 1)p0 + 1)

σFu(shp02 − (sf + sh)p0 + 1)
;
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Reduction of the model

Injecting this expression into the second equation, we obtain after
letting ε→ 0,

∂tp0−∆p0 = δdush
p0(1− p0)(p0 − θ)

σFu(shp02 − (sf + sh)p0 + 1)
, θ =

sf + δ − 1
δsh

.

Notice that for δ ≥ 1 and sf < sh, we have θ ∈ (0, 1) and the
denominator never vanishes on (0, 1).
This is the model recently proposed by Barton & Turelli 1

1. Spatial Waves of Advance with Bistable Dynamics : Cytoplasmic and Ge-
netic Analogues of Allee Effects, The American Naturalist, 2011

Nicolas Vauchelet Spread of Wolbachia for Dengue control



Introduction : the case of Wolbachia
Mathematical modeling

Spatial spread of Wolbachia
Blocking waves

Reduction of the model

Theorem
Assuming ’well-prepared’ initial data, then when ε→ 0, we have
p := ni

ni+nu
→ p0 strongly in L2

loc(R+; L2(Rd)), weakly in
L2
loc(R+;H1(Rd)) where p0 is the unique solution to

∂tp0 −∆p0 = f (p0),

f (p0) = δdush
p0(1− p0)(p0 − θ)

shp
2
0 − (sf + sh)p0 + 1

, θ =
sf + δ − 1

δsh
.

Steps for the proof :

Uniform estimate of n and p and their gradient in L2 ;

Relative strong compactness thanks to a ’Aubin-Lions’ Lemma ;

Passing to the limit.
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Generality for bistable reaction-diffusion equation

General bistable equation for p

∂tp −∆p = f (p),

where f is bistable, i.e. f (0) = 0, f (θ) = 0 and f (1) = 0, f < 0 on
(0, θ) f > 0 on (θ, 1).

We have two stable steady states : 0 and 1

Question
Can an invasion of the steady state p = 1 (Wolbachia
infected) occur ? What will be the speed of invasion ?
If an invasion can occur, how to guarantee it with releases of
Wolbachia infected mosquitos ?
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Generality for bistable reaction-diffusion equation

To answer to the first question, we study traveling waves.

Traveling waves
Particular solution in translation with a constant velocity c :
p(t, x) = p̃(x − ct), with p̃(−∞) = 1, p̃(+∞) = 0 and p̃′ < 0.

Injecting this ansatz into the equation for p we get

−cp̃′ − p̃′′ = f (p̃).

Multiplying by p̃′ and integrating we get :

c

∫
R

(p̃′(x))2dx = −
∫
R
f (p̃(x))p̃′(x)dx =

∫ 1

0
f (ξ)dξ.
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Generality for bistable reaction-diffusion equation

Consequence

c > 0 if and only if
∫ 1

0
f (ξ)dξ > 0.

In other words, we can have invasion of the state 1 if and only if∫ 1
0 f (ξ)dξ > 0.

Fortunately, with the numerical data taken from literature, we have∫ 1
0 f (ξ)dξ > 0 for the above model for Wolbachia.

Traveling waves
There exists a traveling wave with c > 0 for the reduced model for
Wolbachia.
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Generality for bistable reaction-diffusion equation

Possible shape for f :
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Critical propagule

Critical propagule
How to spatially introduce Wolbachia-infected mosquitoes to
guarantee invasion ? How to initiate a wave ?

Answer
There exists a family of function (vα)α, compactly supported,
radially symmetric and decreasing, such that if there exists a time
τ > 0, for which we have p(τ) ≥ vα, then p(t)→ 1 uniformly on
every compact as t → +∞. We call them α-bubbles.

Consequence. Let Ω be a bounded domain containing the support
of one bubble. Then, the probability of success of invasiveness
tends to 1 as the number of releases goes to +∞.
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Numerical results in one dimension

With the same amount of mosquitoes, we consider two different
initial repartitions :

Extinction
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time dynamics
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Spatial distribution is important.
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Numerical results in one dimension

Other examples to emphasize the importance of the spatial
distribution :
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Multiple releases : movie
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Blocking waves

The environment is not heterogeneous. In order to take into
account the spatial variation in the total density of mosquitos,
denoted N, the following equation has been introduced

∂tp − ∂xxp − 2∂x(logN)∂xp = f (p),

f is bistable ( i.e. f (0) = f (θ) = f (1) = 0, f < 0 on (0, θ), f > 0
on (θ, 1)), and

∫ 1
0 f (x)dx > 0.

For the sake of simplicity, we assume that we have exponential
variation of the density in a domain [−L, L],

∂x log(N) =

{
C
2 , on [−L, L];
0, on R \ [−L, L].
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Blocking waves

Existence of a stationary wave boils down to existence for

− p′′ − Cp′ = f (p), on [−L, L],

− p′′ = f (p), on R \ [−L, L],

p(−∞) = 1, p(+∞) = 0, p > 0.

For C and L given, we call (C , L)-barrier a solution to this system.

Blocking waves

Assume that there exists a (C , L)-barrier, denoted pB . Then any
solution to

∂tp − ∂xxp − 2∂x(logN)∂xp = f (p),

with initial data such that pini ≤ pB , has stopped propagation, i.e.
∀ t ≥ 0, p(t) ≤ pB .
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Blocking waves

We recall that, for bistable equation, there exists a unique traveling
wave solution (p̃, c∗) solution to

− p̃′′ − c∗p̃′ = f (p̃), on R,
p̃(−∞) = 1, p̃(+∞) = 0.

Moreover, since we have assumed
∫ 1
0 f (x)dx > 0, we have c∗ > 0.

This is the particular case L =∞ in our blocking wave problem.
It seems then natural to have C ≥ c∗.
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Blocking waves

More precisely, we have the following result

Theorem
Let C > 0 and L > 0. For C > c∗, there exists L∗(C ) > 0 such
that there exists a (C , L)-barrier if and only if L ≥ L∗(C ).
Moreover, C 7→ L∗(C ) is decreasing and

lim
C→c∗

L∗(C ) = +∞,

L∗(C ) ∼ 1
4C

log
(
1− F (1)

F (θ)

)
, when C → +∞,

where F (x) =
∫ x
0 f (z)dz (thus F (1) > 0 and F (θ) < 0).
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Blocking waves : numerical example

In the following example, we consider the previous model for
Wolbachia invasion and consider that C = 0.07 on the domain
[−20,−10].
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Conclusion and perspectives

Critical propagule. Study in higher dimension.
Invasion. Comparison of numerical results with what is really

observed ? Active control on the release protocol.
Environment. How do spatial-heterogeneity in parameters

interfere ?
Mosquito life cycle. Towards a better understanding of the

mosquito life cycle to model the mosquito dynamics.
Influence of larvae on hatching ?

Thank you for your attention !
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