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Abstract

The aim of this paper is to describe the minimum speed at which a super-Brownian motion
starting at the Dirac mass at 0 moves away from its initial point. More precisely, we consider
the class of functions {’�(t)=

√
2t(log(1=t) + � log log(1=t)); �∈R} and then determine the

values of � such that the support of super-Brownian motion exits the ball of radius ’�(t) before
time t, for every t small enough. c© 1998 Elsevier Science B.V. All rights reserved.

AMS classi�cation: primary, 60J80, 60G17; secondary, 60G55
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1. Introduction

The aim of this paper is to give precise information on the minimum speed at which
a super-Brownian motion goes away from its starting point. For standard d-dimensional
Brownian motion this problem has been solved by Chung (1948). For super-Brownian
motion, partial results were obtained by Tribe (1989), and Dawson and Vinogradov
(1994). We give here an optimal re�nement of their results.
Let X =(Xt; t¿0) denote under P�0 a super-Brownian motion in Rd, starting at �0,

the Dirac mass at 0. For t¿0, we denote by supp Xt the topological support of the
measure Xt , by

Rt =sup{|y|; y∈ suppXt};

the “maximal distance” covered by super-Brownian motion at time t (with the conven-
tion Rt =0 if Xt =0), and by

R∗t =sup{Rt′ ; 06t′6t};

the “maximal distance” covered by super-Brownian motion before t. Our main result
gives a precise lower bound for R∗t .
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Theorem 1. Let �∈R. The following assertions are equivalent.
(i) �¡d=2;
(ii) P�0 almost surely, there exists t0 ∈ (0; e−1) such that for t ∈ (0; t0],

R∗t¿
√
2t(log(1=t) + � log log(1=t)):

Let us compare Theorem 1 to previous results. Tribe (1989) proved that

lim
t→0

Rt√
2t log(1=t)

= 1; P�0−a:s: (1)

It easily follows that the lower bound

R∗t¿
√
ct log(1=t); P�0−a:s: for t small

holds if c¡2.
Moreover, Dawson and Vinogradov (1994) proved that if �¡d=2−1, the inequality

R∗t ¿
√
2t(log(1=t) + � log log(1=t))

holds P�0 -a.s., for t su�ciently small. Theorem 1 shows that the critical value of � in
the previous inequality is d=2 and not d=2− 1.

Remark. Theorem 1 is closely related to Dhersin and Le Gall (1998) where an integral
test characterizing the maximal speed of Rt is derived. Moreover, using that if �¿0 and
u¿0 is small then 1+(12 −�)u6(1+u)1=261+(12 +�)u, Theorem 1 and Dhersin and
Le Gall (1998) (Theorem 1) enable to establish a precise description of the behavior
of R∗t for small t. This result is an optimal re�nement of Dawson and Vinogradov
(1994), (Theorem 1.7).

Corollary 2. If ”¿0, then P�0 almost surely, there exists t0 ∈ (0; e−1) such that for
t ∈ (0; t0],

1 +
(
d
4
− ”
)
log log(1=t)
log(1=t)

6
R∗t√

2t log(1=t)
61 +

(
1 +

d
4
+ ”
)
log log(1=t)
log(1=t)

:

As usual for these problems, the key step in the proof of Theorem 1 is a precise
estimation of the probability of the event {Rt¿a}. This is the purposal of Lemma 3
in Section 3. In fact, what we need is not an estimate under the probability P�0 , but
under the (in�nite) canonical measure of super-Brownian motion. To this aim, we use
the so-called Brownian snake introduced by Le Gall (see e.g. Le Gall, 1993, 1994) as
a useful tool to investigate properties of super-Brownian motion. The construction of
this path-valued Markov process is brie
y recalled in Section 2. We also recall some
connections between the Brownian snake and partial di�erential equations, which are



J.-S. Dhersin / Stochastic Processes and their Applications 78 (1998) 145–154 147

used in our proofs. Finally, the proof of Theorem 1 easily follows from Lemma 3,
excursion theory and the Borel–Cantelli Lemma.

2. The Brownian snake and super-Brownian motion

In this section, we brie
y recall the basic facts concerning the Brownian snake, and
its connection with super-Brownian motion.
The Brownian snake is a Markov process with values in the set of stopped paths.

A stopped path is a pair (w; �), where �¿0 and w :R+→Rd is a continuous map-
ping such that w(t)=w(�) for every t¿�. The real � is called the lifetime of the
path. We always abuse notation, and simply write w for (w; �). We also use the nota-
tion ŵ=w(�) for the tip of the path. We endow the set W of all stopped paths with the
distance

d(w; w′)= sup
t¿0

|w(t)− w′(t)|+ |�− �′|:

Let x∈Rd be a �xed point. We denote by Wx the set of all stopped paths with initial
point w(0)= x, and by x the trivial path of Wx with lifetime �=0.
The Brownian snake with initial point x is the continuous strong Markov process

W =(Ws; s¿0) in Wx whose law is characterized as follows.
(i) If �s denotes the lifetime of Ws, the process (�s; s¿0) is a re
ecting Brownian

motion in R+.
(ii) Conditionally on (�s; s¿0), the process W is a time-inhomogeneous Markov pro-

cess whose transition kernels are characterized by the following properties: If 06s¡s′,
◦ Ws′(t)=Ws(t) for every t6m(s; s′) := inf [s; s′] �r;
◦ (Ws′(m(s; s′)+ t)−Ws′(m(s; s′)); 06t6�s′ −m(s; s′)) is a Brownian motion in Rd,

independent of Ws.
We may and will assume that the process (Ws; s¿0) is the canonical process on

the space C(R+;W) of all continuous functions from R+ into W.
Heuristically, we can see Ws as a Brownian path in Rd whose random lifetime �s

evolves like re
ecting Brownian motion. Furthermore, when �s decreases, the path Ws
is “erased”; when �s increases, the path Ws is extended by “adding” independent pieces
of d-dimensional Brownian motion at its tip.
As 0 is regular and recurrent for re
ecting Brownian motion, x is regular and re-

current for the Brownian snake. We denote by Nx the associated excursion measure,
normalized by

Nx[M¿1]= 1
2 ;

where M = sups¿0 �s. The law of (�s) under Nx is the usual Itô measure of posi-
tive excursions of linear Brownian motion. Using this remark, it is easy to see that
Nx satis�es the following useful scaling property: If �¿0, we de�ne W (�)

s ∈Wx

by

�(�)s = �−2��4s; W (�)
s (t)− x= �−1(W�4s(�2t)− x); s¿0; t¿0:

Then the law under Nx of the process W (�) is �−2Nx.
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We now describe one basic connection between the Brownian snake and partial
di�erential equations. These results are due to Dynkin (1992), and the formulation in
terms of the Brownian snake follows from Le Gall (1994). We write �= inf{s¿0;
�s=0} for the lifetime of the excursion. Let us introduce G= {(�s; Ŵs); 06s6�} the
graph of the snake excursion. Let � be a domain in R×Rd, and for r ∈R, �(r) = {(t−
r; y); (t; y)∈�; t¿r}⊂R+ × Rd. Then the function u de�ned by

u(r; x)=Nx[G∩ (�(r))c 6= ∅]; (r; x)∈�
solves the parabolic semi-linear di�erential equation

@u
@t
+
1
2
�u=2u2 (2)

in �.
Let us now explain the construction of super-Brownian motion via the Brownian

snake. We denote by Lts(�) the local time at level t at time s of the Brownian excursion
(�:). For t¿0, we de�ne the random �nite measure Xt on Rd as follows: If ’ is any
nonnegative continuous function on Rd,

〈Xt ; ’〉=
∫ �

0
’(Ŵs) dLts(�):

Then, the distribution under Nx of measure valued process (Xt ; t¿0) is the so-called
canonical measure of super-Brownian motion started at the Dirac measure �x (see
El Karoui and Roelly (1991) for canonical measures of general superprocesses). This
means (see Le Gall (1993)) that if N(d!) is a Poisson point measure on C(R+;Wx)
with intensity Nx, then the measure valued process (Xt; t¿0) de�ned by X0 = �x and
for t¿0,

Xt =
∫
N (d!)Xt(!)

is a super-Brownian motion. This connection between super-Brownian motion and the
excursion measure of the Brownian snake will be used in Section 4 for the proof of
Theorem 1.

3. Hitting probabilities

Our aim in this section is to give bounds on the probability that, at a �xed time t,
super-Brownian motion under its canonical measure hits the complement of a large-ball
centered at 0. More precisely, we introduce for t¿0

rt =sup{Ŵs; �s= t; 06s6�}
and

r∗t =sup{rt′ ; 06t′6t}:
These quantities are analogues of Rt and R∗t under the canonical measure.
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Lemma 3. There exist two positive constants � and � such that, if t¿0 and a¿
√
t

then

�
t

(
a√
t

)d
exp− a2

2t
6N0[rt¿a]

6N0[r∗t ¿a]6
�
t

(
a√
t

)d
exp− a2

2t
:

Remark. The upper bound of Lemma 3 was previously obtained by Dawson et al.
(1989) (Theorem 3.3(b)) in a slightly di�erent form. To make the present work self
contained, we will provide a short proof of this upper bound.

We �rst state without proof a simple lemma about usual Brownian motion. If x∈Rd,
(Bt) under Px is a d-dimensional Brownian motion starting at x.

Lemma 4. There exist two positive constants �′ and �′ such that, if t¿0 and a¿
√
t

then

�′
(
a√
t

)d−2
exp− a2

2t
6 P0[|Bt |¿a]

6 P0

[
sup
06s6t

|Bs|¿a
]
6�′

(
a√
t

)d−2
exp− a2

2t
:

Proof of Lemma 3. First of all, using the scaling property under N0 and a continuity
argument it is su�cient to prove the result for t=1 and a¿2, which we assume
throughout the proof.
We �rst prove the upper bound. We denote by �a⊂R+ ×Rd the domain such that

�ca =(R+ × Rd)\�a= {(t; y)∈R+ × Rd; 06t61; |y|¿a}:

Let us recall that if r ∈R, then �(r)a = {(t − r; y); (t; y)∈�a; t¿r}. Then, we saw in
Section 2 that the function

u(r; x)=Nx[G∩ (�(r)a )c 6= ∅]; (r; x)∈�a

solves Eq. (2) in �a.
We look for an upper bound on N0[r∗1¿a] = u(0; 0). Let us �x b∈[a=2; a) (⊂ [1;∞)),

introduce �b as above, and denote by �b= inf{t¿0; |Bt |¿b}, with the usual conven-
tion inf ∅=+∞. Let us remark that the process (t; Bt)t¿0 hits the boundary of �b if
and only if �b¡1, and then �b denotes the hitting time.
Using Itô’s formula, and the fact that u solves Eq. (2), it is easy to prove that the

process

Mr = u(r ∧ �b; Br∧�b) exp− 2
∫ r∧�b

0
u(s; Bs) ds; r¿0
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is a P0-martingale. Moreover, if we �x (r; x)∈�b,

u(r; x) = Nx[G∩ (�(r)a )c 6= ∅]
6N0[G∩ (R+ × B(0; a− b)c) 6= ∅]
6 (a− b)−2N0[G∩ (R+ × B(0; 1)c) 6= ∅]¡∞; (3)

by a scaling argument. Note also that u(r; x)= 0 if r¿1.
Hence (Mr) is a bounded martingale. By applying the optional stopping theorem,

bound (3), and Lemma 4, we get

u(0; 0) = E0

[
1{�b¡1}u(�b; B�b) exp− 2

∫ �b

0
u(s; Bs) ds

]

6N0[G∩ (R+ × B(0; 1)c) 6= ∅](a− b)−2P0
[
sup
06t61

|Bt |¿b
]

6 �′N0[G∩ (R+ × B(0; 1)c) 6= ∅](a− b)−2bd−2 exp− b2

2
:

The proof of the upper bound is completed by taking b= a− 1=a.
The proof of the lower bound is more involved. First of all, using the Cauchy–

Schwarz inequality, we get

N0[r1¿a] =N0[X1(B(0; a)c) 6=0]¿ (N0[X1(B(0; a)
c)])2

N0[X1(B(0; a)c)2]
: (4)

In order to estimate the �rst and second moments of X1(B(0; a)c) we recall that (see
e.g. Le Gall and Perkins, 1995, Proposition 2.2)

N0[X1(B(0; a)c)]=P0[|B1|¿a]; (5)

N0[X1(B(0; a)c)2]= 4E0

[∫ 1

0
du(PBu [|B1−u|¿a])2

]
: (6)

Using Lemma 4 and Eq. (5), we get

N0[X1(B(0; a)c)]¿ �′ad−2exp− a2

2
: (7)

The proof of the upper bound on the second moment is more technical. In what follows,
we denote by c1; c2; : : : positive constants independent of a. Using Eq. (6), we get

N0[X1(B(0; a)c)2]64(I1 + I2);

where

I1 =E0

[∫ 1

0
du 1{|Bu|¿a}

]
;

I2 =E0

[∫ 1

0
du 1{|Bu|¡a}(PBu [�a¡1− u])2

]
:
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By Lemma 4,

I16 �′
∫ 1

0
du
(
a√
u

)d−2
exp− a2

2u

6 �′a2
∫ ∞

a2
dv vd=2−3 exp− v

2

6 c1ad−4 exp− a2

2
: (8)

On the other hand, using the explicit density of |Bu| and Lemma 4,

I26 c2

∫ 1

0
du
∫ a

0
d� �d−1u−d=2 exp

(
− �2

2u

)
(P0[�a−�¡1− u])2

6 c3

∫ 1

0
du
∫ a

0
d� �d−1u−d=2 exp

(
− �2

2u

)(
a− �√
1− u ∨ 1

)2(d−2)

× exp
(
− (a− �)2

1− u
)

= c3

(∫ 1=2

0
du : : :+

∫ 1

1=2
du : : :

)

= c3(I ′2 + I
′′
2 ): (9)

To give an upper bound on I ′2, let us �x 
=
3
4 . Since the function

x→ x(d−1)=2 exp− (1− 
)x
2

is bounded on R+, we get

I ′26 c4

∫ 1=2

0
du
∫ a

0
d� u−1=2 exp

(
− 
�2

2u

)(
a− �√
1− u ∨ 1

)2(d−2)
exp
(
− (a− �)2

1− u
)

6 c5(1 + a2(d−2))
∫ 1=2

0
du
∫ a

0
d�p(1)u=
(0; �)p

(1)
(1−u)=2(�; a);

where (p(1)t ; t¿0) are the transition densities of linear Brownian motion. Hence, by
the Chapman–Kolmogorov formula, and using the inequalities

1
2
6
u


+
1− u
2
6
11
12

for 06u6
1
2
;

we �nally obtain

I ′26 c5(1 + a2(d−2))
∫ 1=2

0
dup(1)u=
+(1−u)=2(0; a)

6 c6ad−4 exp− a2

2
;

where the last bound follows from crude estimates.
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To get an upper bound on I ′′2 , we make the change of variables b=(a− �)=
√
1− u.

Then,

I ′′2 6 2d=2ad−1
∫ 1

1=2
du

√
1− u

∫ a=
√
1−u

0
db (b∨ 1)2(d−2)

× exp
(
− b2 − (a− b√1− u)2

2u

)
:

Since we have

b2 +
(a− b√1− u)2

2u
=
1 + u
2u

(
b− a

√
1− u
1 + u

)2
+
a2

2
+
a2(1− u)
2(1 + u)

;

we get for u∈ [ 12 ; 1],∫ a=
√
1−u

0
db (b∨ 1)2(d−2) exp

(
− b2 − (a− b√1− u)2

2u

)

6e−a
2=2 e−a

2(1−u)=4
∫ ∞

0
db (b∨ 1)2(d−2) e−1=2(b−a

√
1−u=(1+u))2 :

If d=1,∫ ∞

0
db (b∨ 1)2(d−2) e−1=2(b−a

√
1−u=(1+u))26

∫ ∞

−∞
d� e−�

2=2:

Otherwise,∫ ∞

0
db (b∨ 1)2(d−2) e−1=2(b−a

√
1−u=(1+u))2

6
∫ ∞

0
db (1 + b2(d−2)) e−1=2(b−a

√
1−u=(1+u))2

622(d−2)
∫ ∞

−∞
d�

(
1 + |�|2(d−2) +

(
a

√
1− u
1 + u

)2(d−2))
e−�

2=2

6c7(1 + (a
√
1− u)2(d−2)):

Hence,

I ′′2 6 c8ad−1 e−a
2=2
∫ 1

1=2
du

√
1− u(1 + (a√1− u)2(d−2))e−a2(1−u)=4

6 2c8ad−4e−a
2=2
∫ a2=2

0
dv

√
v (1 + vd−2)e−v=4

6 c9ad−4e−a
2=2:

Therefore, there exists a positive constant c10 such that

I26c10ad−4e−a
2=2:

The upper bounds on I1 and I2 complete the proof of Lemma 3.
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4. Proof of Theorem 1

For �∈R, we introduce the function ’�(t)=
√
2t(log(1=t) + � log log(1=t)) de�ned

for t¿0 small enough.
We �rst �x �=d=2. We assume that t is small enough so that ’d=2(t)¿

√
t. Since Xt

is distributed under N0 according to the canonical measure of super-Brownian motion
started at �0, we get by Lemma 3

P�0 [R∗t ¡’d=2(t)] = exp−N0[r∗t ¿’d=2(t)]

¿ exp− �
t

(
’d=2(t)√

t

)d
exp− ’d=2(t)2

2t
:

Let us introduce an arbitrary decreasing sequence (tn) of positive reals which tends
to 0. A straightforward calculation shows that

t→ �
t

(
’d=2(t)√

t

)d
exp− ’d=2(t)2

2t

is bounded above over (0; e−1). Hence,

P�0
[
lim sup
n→∞

{R∗tn¡’d=2(tn)}
]
¿ lim sup

n→∞
P�0 [R∗tn¡’d=2(tn)]¿0:

Since the event lim supn→∞{R∗tn¡’d=2(tn)} belongs to the asymptotic �-�eld of the
Markov process X , Blumenthal’s 0–1 law gives

P�0
[
lim sup
n→∞

{R∗tn¡’d=2(tn)}
]
=1:

This implies that if �¿d=2, (ii) does not hold.
Conversely, let us assume that �¡d=2, and introduce the sequence tn=exp −

√
n.

We claim that
∞∑
n=0

P�0 [R∗tn+1¡’�(tn)]¡∞: (10)

To prove this claim, we �rst note that for n¿N large enough, ’�(tn)¿
√
tn+1 and

(’�(tn)2=2tn)(tn=tn+1− 1)61. Then using Lemma 3, we get that there exists a positive
constant C such that

P�0 [R∗tn+1¡’�(tn)] = exp−N0[r∗tn+1¿’�(tn)]

6 exp

[
− �
tn+1

(
’�(tn)√
tn+1

)d
exp− ’�(tn)2

2tn+1

]

6 exp

[
− �
tn

(
’�(tn)√
tn

)d(
exp− ’�(tn)2

2tn

)

×
(
exp− ’�(tn)2

2tn

(
tn
tn+1

− 1
))]
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6 exp

[
−e−1 �

tn

[
2
(
log

1
tn
+ � log log

1
tn

)]d=2[
tn

(
log

1
tn

)−� ]]

6 exp(−Cn(d−2�)=4);
which completes the proof of (10).
Hence, using the Borel–Cantelli Lemma, we get that, P�0 -a.s., there exists an integer

n0 such that if n¿n0, R∗tn+1¿’�(tn). Then, by monotonicity of R
∗, we get that if

0¡t6tn0 , and n satis�es tn+16t6tn,

R∗t¿R
∗
tn+1¿’�(tn)¿’�(t);

which proves that (ii) holds.
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