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Abstract

Using an approximating scheme with the Brownian snake, we prove the existence of solution
to a martingale problem for super Brownian motion with interactions.
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1. Introduction

Let B(Rd) be the set of real valued measurable functions de;ned on Rd. Let Mf be
the set of ;nite measures on Rd, endowed with the topology of the weak convergence.
For �∈Mf and ’∈B(Rd), bounded, we denote (�; ’) =

∫
’(x)�(dx).

Consider a super Brownian motion X = (Xt; t¿ 0) started at X0 = �0 ∈Mf . It is
the unique solution of the martingale problem on Mf : for any bounded C2 function,
’, with bounded derivatives,

X0 = �0;

(Xt; ’) = (X0; ’) +
∫ t

0

(
Xs;



2
’
)
ds+M (’)t ;
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where M (’) is a continuous martingale (with respect to the ;ltration generated by X )
with quadratic variation

〈M (’)〉t = 4
∫ t

0
(Xs; ’2) ds:

Let 
 be a C1 function de;ned on R+, s.t. 
(0) = 0 and 
′(t)¿ 0 for all t¿ 0.
If we consider the changed time process Yt = X
(t), for t¿ 0, then it is easy to check
that Y = (Yt; t¿ 0) is a solution to the martingale problem on Mf : for any bounded
C2 function, ’, with bounded derivatives,

Y0 = �0;

(Yt; ’) = (Y0; ’) +
∫ t

0

(
Ys; 
′(s)



2
’
)
ds+M (’)t ;

where M (’) is a continuous martingale with quadratic variation

〈M (’)〉t = 4
∫ t

0
(Ys; 
′(s)’2) ds:

By using the inverse of the time change 
, in order to recover X from Y , it is clear
that the solution of this martingale problem is unique.
The aim of this paper is to use a random time change procedure to transform the

martingale problem (see Ethier and Kurtz, 1986, Chapter 6). We prove in Theorem 1
the existence of solutions to the following martingale problem (MP) on Mf : for any
bounded C2 function, ’, with bounded derivatives,

Y0 = �0;

(Yt; ’) = (Y0; ’) +
∫ t

0
(Ys; �(Ys)A(Ys)’) ds+M (’)t ;

where A(�) is the in;nitesimal generator of a diHusion, with diHusion coeIcient �(�; x)
and drift b(�; x), and M (’) is a continuous martingale with quadratic variation

〈M (’)〉t = 4
∫ t

0
(Ys; �(Ys)’2) ds:

The functions �; b and � are bounded continuous functions de;ned on Mf ×Rd taking
values respectively in R;Rd and Rd×d. And the functions � and � are positive.
The existence of solutions will be proved by using approximating schemes of the

martingale problem. In fact we prove the tightness of the approximating scheme and
that the limit points are a solution to the above martingale problem. Except in very
particular cases, we were unable to prove the uniqueness of the limit, as well as the
uniqueness of the solutions to the martingale problem (see Perkins, 1995, p. 7 on this
last question).
Our approach relies on the Brownian snake representation of the super Brownian

motion.
Roughly speaking, the super Brownian motion, Xt , can be described as the integral

with respect to the local time of the snake lifetime process at level t of terminal points
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for the underlying paths. Now, using a random time change for each path, we integrate
the terminal points of diHusions with respect to the local time of the snake lifetime
process along a random curve instead of a deterministic line. This procedure modi;es
the underlying branching tree of the life time process. It was used in Bertoin et al.
(1997) and Klenke (2003) to construct, from the Brownian snake, super Brownian
motion with non-quadratic or catalytic branching mechanisms but without interactions.
In Perkins (1992, 1995), the interactions were introduced through a stochastic integral

along the paths as well as a diHerent weighting for each path. In particular, the structure
of the underlying branching tree (that is the lifetime process for the Brownian snake
representation) was the same for the superprocess and the interacting superprocess.
On the other side, Dhersin and Serlet (2000) see also Watanabe (1999), introduced

a change in the underlying branching tree of the Brownian snake through a killing rate
which depends on the path of the particle. This approach was a ;rst step to introduce
interaction in the underlying branching tree.
Let us mention also that similar martingale problems as (MP) appear as the limit

of a discrete branching particles system with interactions, an approach developed by
M'etivier (1987) and M'el'eard and Roelly (1993).

2. The approximating scheme

2.1. The Brownian snake

We ;rst recall the Brownian snake representation of the super Brownian motion.
Let C =C(R+;Rd) be the set of continuous functions de;ned on R+ with values in

Rd. We shall denote by Nx;A[dW ] the excursion measure on C of the Brownian snake
W =(Ws; s¿ 0) started at x∈Rd with underlying process a diHusion with in;nitesimal
generator A. We refer to Le Gall (1994) for the de;nition and properties of the Brow-
nian snake. We recall that under Nx;A, the law of the lifetime process �=(�s; s¿ 0) is
the law of a positive excursion of linear Brownian motion. We take the normalization
Nx;A[sups¿0 �s ¿ �] = 1=2�. Under Nx;A, conditionally on the lifetime process, W is a
continuous C-valued Markov process started at the constant path equal to x∈Rd. Con-
ditionally, on the lifetime process and on (Wu; u∈ [0; s]), the law of Ws′ , with s′¿ s
is as follows: the two paths Ws and Ws′ coincide up to time m = inf u∈[s; s′] �u, and
(Ws′(t+m); t¿ 0) is a diHusion with in;nitesimal generator A, constant after �s′ −m,
which depends on (Wu; u∈ [0; s]) only through its starting point Ws′(m) =Ws(m).
Let (�n; n¿ 1) be a sequence of positive numbers decreasing to 0. We de;ne for

s¿ 0; t ¿ 0, the local time Lt
s of the lifetime process, �, at level t up to time s:

Lt
s = lim infn→∞

1
�n

∫ s

0
1{t−�n¡�u¡t} du;

and the measure valued process (Xt(W ); t¿ 0) de;ned by

Xt(W ) =
∫
s¿0

�Ws(�s) dL
t
s; (1)
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where �y is the Dirac mass at point y. Notice the process (Xt(W ); t¿ 0) is always
de;ned.
The family of local time (Lt

s; s¿ 0; t ¿ 0) is continuous Nx;A[dW ]-a.e. and constant
for s larger than �, the duration of the excursion � under Nx;A. In particular, the process
(Xt(W ); t¿ 0) is ;nite and continuous under Nx;A[dW ].
Let x∈Rd and �0 ∈Mf . And consider the Poisson point measure on C;

∑
i∈I �W i ,

with intensity measure
∫
�0(dx)Nx;A[dW ]. It is well known that the process X =

(Xt; t¿ 0) de;ned by X0 = �0, and

Xt =
∑
i∈I

Xt(Wi)

is the usual superdiHusion started at �0 with underlying process a diHusion with in-
;nitesimal generator A and branching mechanism  (z) = 2z2.
We intend to replace the local time of the lifetime process at level t, by the local

time along a random curve 
 = (
i
s; s¿ 0; i∈ I), where 
i

s ∈ [0;∞]. This curve 

needs to have particular properties (see also Rogers and Walsh (1991) for the de;nition
of the local time along a random curve). This was already done for 
i

s=
(Wi
s ) de;ned

as the ;rst exit time of a domain D. The random measure associated to this curve is
the so-called exit measure of D (see Le Gall, 1994). From this example we expect the
following “tree property” to be in force:

If �is ¿
i
s, where �is is the lifetime of Wi

s , then for all s′ such that inf u∈[s; s′] �iu ¿
i
s,

we have 
i
s′ = 
i

s.
It is a natural condition when one deals with the excursion ;ltration (see also the

de;nition of identi;able curve in Rogers and Walsh, 1991). Furthermore, in order to get
the so-called special Markov property, we need that conditionally on what is “below”
the curve 
, the excursions of the snake above the curve 
 are distributed according
to
∫
X
(dx)Nx;A[dW ], where X
 is the exit measure of the superdiHusion above level


. This will be stated precisely in property (B).
Eventually we will de;ne for each t a random curve 
(t) and the corresponding exit

measure X

t in such a way that X


t solves the martingale problem (MP).
The random time change will formally be given by the following equations:

• Stochastic diHerential equation and time change for the path Wi
s of the Brownian

snake Wi:

dtV i
s (t) = �(Yt; V i

s (t)) dtW
i
s (


i
s(t)) + b(Yt; V i

s (t)) dt

i
s(t): (2)

• DiHerential equation for the time change at time t:

dt
i
s(t) = �(Yt; V i

s (t)) dt for 
i
s(t)6 �is: (3)

• De;nition of the random measure Yt :

Yt =
∑
i∈I

∫ ∞

0
�V i

s (t) dsL

i

s(t);i
s ; (4)

where L
· ; i· is the “local time” of the lifetime of process of Wi on the random
curve 
.
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Notice that in general, the function s �→ 
i
s(t) is not adapted to the ;ltration (F

i
s =

�(Wi
u; u6 s); s¿ 0) generated by the snake, because the measure Yt takes into account

the paths Wi
s′ for s′¿ s.

We will present a discrete version of those equations and prove that X �, the discrete
versions of Y , are tight and that any limit is solution to the martingale problem (MP).
We are now ready to present our approximating scheme.

2.2. The approximating scheme

Let �; b and � be bounded continuous functions de;ned on Mf × Rd taking values
respectively in R;Rd and Rd×d. We also assume the functions � and � are positive.
Let �′ ∈Mf and x′ ∈Rd. We will denote by A(�′; x′) the in;nitesimal generator of
the d-dimensional Brownian motion with constant drift b(�′; x′) and constant diHusion
coeIcient �(�′; x′).
Let �0 ∈Mf . We consider the Poisson point measure on Rd×C,

∑
i∈I �(xi ;W i), with

intensity measure �0(dx)N0;
=2[dW ]. For i∈ I , let �i be the duration of the lifetime
process of the snake Wi. Recall Wi

s is the path at time s of the snake Wi.
Let �¿ 0. We de;ne by induction at time k� with k ∈N, the random time change


� = ((
i;�
s (k�); s¿ 0; i∈ I); k ∈N), the starting point V = ((V i

s (k�); s¿ 0; i∈ I);
k ∈N), the random measure X � = (X �

k�; k ∈N) and the ;ltration G� = (G�
k�; k ∈N)

such that the following hypotheses (A) and (B) are in force.
(A) 
i;�(k�) enjoys the “tree property”. And for all i∈ I , the sets {s∈ [0; �i]; 
i;�

s (k�)
¡�is} are open.
The sets {s∈ [0; �i];
i;�

s (k�)¡�is} can be described as the union of the open non-
overlapping intervals (ai; jk ; bi; jk ) for jk ∈ J i

k , where the set J
i
k is possibly empty. We as-

sume the family of indices J i
l are non-overlapping for i∈ I; 06 l6 k. Notice that from

property (A), 
i;�(k�) is constant over each interval (ai; jk ; bi; jk ). For i∈ I; jk ∈ Jk ; s¿ 0,
we consider the increments of the paths of the Brownian snake after time

i;�(k�):

OWi;jk
s (u) =Wi

(ai; jk+s)∧bi; jk (u+ 
i;�
(ai; jk+s)∧bi; jk (k�))

−Wi
(ai; jk+s)∧bi; jk (


i;�
(ai; jk+s)∧bi; jk (k�)): (5)

And for i∈ I; jk ∈ J i
k , we de;ne the snake excursions OWi;jk = ( OWi;jk

s ; s¿ 0).
Let *i

k(s) = inf{r¿ 0;
∫ r
0 du 1{
i; �

u (k�)¿�iu} ¿s}, the inverse of the time spent under

i;�(k�) by the life time of the snake Wi. We de;ne the snake Wi;*i

k = (Wi
*i
k (s)

; s¿ 0)

and the �-;eld G�
k� generated by (W

i;*i
k ; i∈ I). Roughly speaking, G�

k� represents all
the information available on the Brownian snake up to level 
i;�(k�).
(B) The random measure X �

k� is G�
k�-measurable. The function V i

· (k�) is constant
over each excursion interval (ai; jk ; bi; jk ), and let V i;jk be its value. Conditionally on
G�

k�, the measure
∑

i∈I; jk∈J i
k
�(V i; jk ; OWi; jk ) is a Poisson point measure with intensity

X �
k�(dx)N0;
=2[dW ].
We prove that (A) and (B) are in force by induction.
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Initialization: For k = 0, we set for i∈ I; s∈ [0; �i]:

• the time change: 
i;�
s (0) = 0,

• the measure: X �
0 = �0,

• the �-;eld: G�
0 = �(X �

0 ),
• the excursion intervals: (ai; j0 ; bi; j0 ) = (0; �i), where j0 ∈ J i

0 = {i},
• the starting points: V i;j0

s (0) = xi,
• the transformed snake above level 
i;�

s (0): for i∈ I; j0 ∈ J i
0, we set Ui;j0 = (Ui;j0

s ;
s¿ 0), where for s¿ 0; u¿ 0,

Ui;j0
s (u) = V i;j0

s + �(X �
0 ; V

i
s (0))W

i
s (u) + b(X �

0 ; V
i
s (0))u:

Notice that conditionally on G�
0;
∑

i∈I; j0∈J i
0
�(V i; j0 ;U i; j0 ) is a Poisson point measure

with intensity �0(dx)Nx;A(�0 ; x)[dW ], with �0 = X �
0 . Notice also that properties (A) and

(B) are in force for k = 0.
Let k¿ 0. Assume 
i;�(k�), X �

k�, V
i(k�) are built in such a way that properties (A)

and (B) are satis;ed. Let us now built 
i;�((k + 1)�), X �
(k+1)�, V

i((k + 1)�) and check
that properties (A) and (B) are in force if k is replaced by k + 1.

Step 1: Let us describe 
i;�((k + 1)�). We set for s∈ [ai; jk ; bi; jk ]; i∈ I; jk ∈ J i
k ,


i;�
s ((k + 1)�) = 
i;�

s (k�) + �(X �
k�; V

i
s (k�)) �;

and 
i;�
s ((k + 1)�) = +∞ if s �∈ [ai; jk ; bi; jk ] for any i∈ I; jk ∈ J i

k . This equation is the
discrete version of (3).
Notice that on each interval [ai; jk ; bi; jk ], 
i;�((k + 1)�) is constant, and that outside

those intervals 
i;�
s ((k+1)�)=+∞¿�is. Therefore, property (A) is true for k replaced

by k + 1 by the continuity of �i.
Step 2: We then describe the transformed snake Ui;jk and built the random measure

X �
(k+1)�. We set for i∈ I; jk ∈ Jk ; s¿ 0; u¿ 0,

Ui;jk
s (u) = V i;jk + �(X �

k�; V
i; jk ) OWi;jk

s (u) + b(X �
k�; V

i; jk )u: (6)

And for i∈ I; j∈ J i
k , we de;ne the snake excursions Ui;jk = (Ui;jk

s ; s¿ 0). From
property (B), we deduce that, conditional on G�

k�, the measure
∑

i∈I; jk∈J i
k
�(V i; jk ;U i; jk ) is

a Poisson point measure with intensity �(dx)Nx;A(�;x)[dW ], where � = X �
k�. Using (1),

we can de;ne the family of random measure

X̃ i; jk
u = Xu(Ui;jk ): (7)

Since we have at most a countable family of excursions (Ui;jk ; i∈ I; j∈ J i
k), the family

of measure valued process (X̃ i; jk = (X̃ i; jk
u ; u¿ 0)i∈ I; j∈ J i

k) is well de;ned. Since,
conditionally on G�

k�;
∑

i∈I; jk∈J i
k
�(V i; jk ;U i; jk ) is distributed according to a Poisson point

measure with intensity �(dx)Nx;A(�;x)[dW ], we deduce that, conditionally on G�
k�,∑

i∈I; jk∈J i
k

�(V i; jk ; X̃ i; jk )

is distributed according to a Poisson point measure with intensity �(dx)Nx;A(�;x)[dX ],
where Nx;A(�;x)[dX ] is the measure of (Xu(W ); u¿ 0) under Nx;A(�;x)[dW ].
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Recall that on each interval [ai; jk ; bi; jk ], 
i;�
· ((k + 1)�) and 
i;�

· (k�) are constant and
G�

k�-measurable. In particular, the random measures

X i;jk
(k+1)� = X̃ i; jk

u
i; jk
k

= Xu
i; jk
k
(Ui;jk ); (8)

where

ui; jk
k = 
i;�

· ((k + 1)�)− 
i;�
· (k�) = ��(X �

k�; V
i; jk ); (9)

are well de;ned.
Let Ei; jk be the �-;eld generated by the snake OWi;jk below level ui; jk

k . More pre-
cisely, Ei; jk is the �-;eld generated by ( OWi;jk

*i(s); s¿ 0), where we de;ne *i(s) =

inf{r¿ 0;
∫ (ai; jk+r)∧bi; jk

ai; jk du 1{
i; �
u ((k+1)�)¿�iu} ¿s} (the inverse of the time spent under


i;�((k + 1)�) by the snake OWi;jk ).
From the Markov property of the Brownian snake (see the ;rst part of Proposition 13

in the appendix), we get that X i;jk
(k+1)� is measurable with respect to the �-;eld generated

by G�
k� and Ei; jk . Notice the �-;eld G�

(k+1)�, de;ned as G
�
k� with k replaced by (k +1),

is the �-;eld generated by G�
k� and the family (E

i; jk ; i∈ I; jk ∈ J i
k). In particular, the

random measure

X �
(k+1)� =

∑
i∈I; jk∈Jk

X i; jk
(k+1)� (10)

is measurable with respect to G�
(k+1)�. This gives that the ;rst sentence of property

(B) is true for k replaced by k + 1. Notice the above de;nition is the discrete version
of (4).

Step 3: To prove the second part, we have to de;ne the functions V i((k +1)�). Let
us consider the excursions of the Brownian snake above level 
·; �

· ((k+1)�). We focus
on the snake OWi;jk . The set {s∈ (ai; jk ; bi; jk ); 
i;�

s ((k+1)�)¡�is} is open. It is the union
of the open non-overlapping intervals (ai; jk+1 ; bi; jk+1) for jk+1 ∈ J i; jk

k+1, where the set of
indices J i; jk

k+1 is possibly empty. Recall 

i;�
s ((k+1)�) and 
i;�

s (k�) are constant functions
over (ai; jk+1 ; bi; jk+1). Using ui; jk

k de;ned in (9), we de;ne for s∈ [ai; jk+1 ; bi; jk+1 ]; u¿ 0,

OWi;jk+1
s (u) = OWi;jk

s′ (u+ ui; jk
k )− OWi;jk

s′ (u
i; jk
k )

=Wi
s′′(u+ 
i;�

s′′((k + 1)�))−Wi
s′′(


i;�
s′′((k + 1)�));

with s′ = (ai; jk+1 + s− ai; jk ) ∧ (bi; jk+1 − ai; jk ) and s′′ = (ai; jk+1 + s) ∧ bi; jk+1 .
De;ne for jk+1 ∈ J i; jk

k+1 the snakes OWi;jk+1=( OWi;jk+1
s ; s¿ 0). This last formula coincides

with de;nition (5), with k replaced by k +1. And we set for s∈ [ai; jk ; bi; jk ], using (6)

V i
s ((k + 1)�) =Ui;jk

s−ai; jk (u
i; jk
k )

= V i
s (k�) + �(X �

k�; V
i
s (k�))[W

i
s (


i;�
s ((k + 1)�))−Wi

s (

i;�
s (k�))]

+ b(X �
k�; V

i
s (k�))[


i;�
s ((k + 1)�)− 
i;�

s (k�)]:

The above de;nition is the discrete version of (2).
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Notice the function V i
· ((k+1)�) is constant over each excursion interval [a

i; jk+1 ; bi; jk+1 ],
and let V i;jk+1 be its value. This proves the second sentence of property (B), with k
replaced by k + 1.

Step 4: Again from the Markov property of the Brownian snake (see the second
part of Proposition 13 in the appendix), the random measure

∑
jk+1∈J

i; jk
k+1

�(V i; jk+1 ; OWi; jk+1 )

is, conditionally on the �-;eld G�
k� and Ei; jk , distributed according to a Poisson point

measure with intensity X i;jk
(k+1)�(dx)N0;
=2[dW ].

Recall the �-;eld G�
(k+1)� is the �-;eld generated by G�

k� and the family (E
i; jk ; i∈ I;

jk ∈ J i
k). Let J

i
k+1 =

⋃
jk∈J i

k
J i; jk
k+1. We then deduce that the random measure∑

i∈I

∑
jk+1∈J i

k+1

�(V i; jk+1 ; OWi; jk+1 )

is, conditionally on the �-;eld G�
(k+1)�, distributed according to a Poisson point measure

with intensity X �
(k+1)�(dx)N0;
=2[dW ] (recall that X �

(k+1)� =
∑

i∈I; jk∈Jk X i; jk
(k+1)�). Hence

property (B) is ful;lled for k replaced by k + 1.

2.3. Results

Let X � = (X �
t ; t¿ 0) be the right continuous step function which is the extension

of (X �
k�; k ∈N). Let D = D(R+;Mf ) be the Polish space of cRadlRag paths from R+ to

Mf , with the Skorokhod topology. Let �; b and � be bounded continuous functions
de;ned on Mf × Rd taking values respectively in R;Rd and Rd×d. We also assume
the functions � and � are positive. We write A(�) for the in;nitesimal generator of the
d-dimensional diHusion with drift b(�; ·) and diHusion coeIcient �(�; ·) (�∈Mf ).

Theorem 1. The family of law of measure valued processes X �, for �∈ (0; 1] is C-tight
in D as � decreases to 0. Any limiting measure valued process Y = (Yt; t¿ 0) sat-
is?es the martingale problem (MP): for any bounded C2 function, ’, with bounded
derivatives,

Y0 = �0;

(Yt; ’) = (Y0; ’) +
∫ t

0
(Ys; �(Ys)A(Ys)’) ds+M (’)t ; (11)

where M (’) is a continuous martingale with quadratic variation

〈M (’)〉t =
∫ t

0
(Ys; �(Ys)’2) ds:

Furthermore, any limiting measure valued process Y has a continuous version.

We will follow an idea due to Perkins (2002) to prove this theorem.
Unfortunately, we were unable to prove the uniqueness of the martingale problem,

even for the historical process (see in Perkins, 1995 why it is more convenient to look
at the historical processes for uniqueness of the martingale problem). Uniqueness is
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trivially proved in the very particular cases of the next two remarks, where in fact the
interaction disappears.

Remark. The particular cases � = �(x); b = b(x) and � = �(x) with the additional
condition �(x)¿ �0¿ 0 correspond to the usual superprocess with underlying process
a diHusion with diHusion coeIcient �(x) and drift b(x), and branching mechanism
2�(x)z2 (see Dynkin, 1991). In this case the martingale problem (MP) has a unique
solution.

Remark. One can also consider the other particular case �=�(x), b=b(x) and �=�(�)
with the additional condition �(�)¿ �0¿ 0. Then we consider the superprocess X with
underlying process a diHusion coeIcient �(x) and drift b(x) and branching mechanism
2z2. We de;ne the continuous additive functional of X by: Qt =

∫ t
0 du=�(Xu) and its

continuous inverse Rt=Q−1
t . It is easy to check that the process Y=(Yt=XRt ; t¿ 0) is a

solution to the martingale problem (MP). To prove that the solution of (MP) is unique,
consider Ỹ another solution to (MP). Set Rt =

∫ t
0 �(Ỹ u) du and consider its continuous

inverse Q̃t = R̃−1
t . It is then easy to check that the process X̃ = (X̃ t = Ỹ Q̃t

; t¿ 0) is
the solution to the martingale problem (MP) with �=1. Since this martingale problem
has a unique solution, we get that X and X̃ are equally distributed. And so Y and Ỹ
have the same law. In this case the martingale problem has also a unique solution in
law.

3. Intermediate results

Before giving the proof of Theorem 1, we set ;ve lemmas. Let c denote a constant
which may vary from line to line. For t ∈ [0;+∞) we set [t] the unique integer such
that [t]6 t ¡ [t] + 1. For f∈B(Rd) we will consider the following norms: ‖f‖∞ =
supx∈Rd |f(x)|,

‖f‖Lip = sup
x;y∈Rd; x �=y

|f(x)− f(y)|
|x − y| ;

as well as for ’∈C2,

‖’‖∗ = ‖’‖Lip +
d∑

l=1

(∣∣∣∣
∣∣∣∣ @’@xl

∣∣∣∣
∣∣∣∣
∞
+
∣∣∣∣
∣∣∣∣ @’@xl

∣∣∣∣
∣∣∣∣
Lip

+
d∑

k=1

(∣∣∣∣
∣∣∣∣ @2’
@xl@xk

∣∣∣∣
∣∣∣∣
∞
+
∣∣∣∣
∣∣∣∣ @2’
@xl@xk

∣∣∣∣
∣∣∣∣
Lip

))
:

Let ’ be a C2 real function de;ned on Rd, bounded with bounded Lipschitz derivatives.
Let T ¿ 0 be ;xed.
We want to use the structure of the snake excursion Ui;jk (see (6)) to express

(X i;jk
k� ; ’) as a sum of martingales and a process of ;nite variation. Recall the functions
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i;�
· (k�) and 
i;�

· ((k + 1)�) are constant on the time indices where the excursion Ui;jk

is de;ned. We set for i∈ I; jk ∈ J i
k ,

SMi;jk (’) = (X i;jk
(k+1)�; ’)−

∫ 
i; �
· ((k+1)�)


i; �
· (k�)

(X̃ i; jk
u ; A(X �

k�; V
i; jk )’) du;

where X̃ i; jk has been de;ned in (7). And now we de;ne what will be a G�-martingale:
M (’)0 = 0 and for k¿ 0,

M (’)(k+1)� =M (’)k� − (X �
k�; ’) +

∑
i∈I; jk∈J i

k

SMi;jk (’):

In particular, we have

(X �
(k+1)�; ’)−M (’)(k+1)�

=(X �
k�; ’)−M (’)k�

+
∑

i∈I; jk∈J i
k

∫ 
i; �
· ((k+1)�)


i; �
· (k�)

(X̃ i; jk
u ; A(X �

k�; V
i; jk )’) du: (12)

We rewrite this as

(X �
(k+1)�; ’) = (X

�
k�; ’) +M (’)(k+1)� −M (’)k�

+ �(X �
k�; �(X

�
k�)A(X

�
k�)’) + 3�

k+1; (13)

where

3�
k+1 =

∑
i∈I; jk∈J i

k

∫ 
i; �
· ((k+1)�)


i; �
· (k�)

(X̃ i; jk
u ; A(X �

k�; V
i; jk )’) du

− �(X �
k�; �(X

�
k�)A(X

�
k�)’): (14)

From (9), and property (B), we get that ui; jk
k is G�

k�-measurable. Since
∑

i∈I; jk∈J i
k
�U i; jk

is conditionally on G�
k� distributed according to a Poisson point measure with intensity∫

X �
k�(dx)Nx;A(X �

k�;x)[dW ], we get from the de;nition of X �
(k+1)�, formula (8) and (10),

that

E[(X �
(k+1)�; ’)|G�

k�] =
∫

�(dx)Nx;A(�;x)[(X��(�;x); ’)]; (15)

with � = X �
k�.

Lemma 2. The process ((X �
k�; 1); k ∈N) is an L2 G�

k�-martingale. Moreover, we have

E
[
sup
k6T=�

(X �
k�; 1)

2

]
6 4T‖�‖∞(�0; 1) + 4(�0; 1)2: (16)
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Proof. We use the notation � = X �
k�. From (15), we get

E[(X �
(k+1)�; 1)|G�

k�] =
∫

�(dx) Nx;A(�;x)[(X��(�;x); 1)] = (�; 1):

Hence the process ((X �
k�; 1); k ∈N) is a non-negative G�

k�-martingale. Using the second
moment formula for a Poisson point measure and (A.3) in the appendix, we get

E[(X �
(k+1)�; 1)

2|G�
k�] = (�; 1)

2 +
∫

�(dx) Nx;A(�;x)[(X��(�;x); 1)2]

= (�; 1)2 + 4
∫

�(dx) ��(�; x):

We set Mk=(X �
k�; 1), and 〈M 〉k for its square function with 〈M 〉0 =0. We deduce from

the previous equality that

〈M 〉k+1 − 〈M 〉k = E[(X �
(k+1)�; 1)

2 − (X �
k�; 1)

2|G�
k�]

= 4
∫

�(dx) ��(�; x)

6 4�‖�‖∞(X �
k�; 1):

Hence, we have

E[〈M 〉k ]6 4�‖�‖∞
k−1∑
l=0

E[(X �
l�; 1)]6 4k�‖�‖∞(�0; 1):

Using Doob’s inequality, we get

E
[
sup
k6T=�

(X �
k�; 1)

2

]
6 4E[(X �

[T=�]�; 1)
2] = 4E[〈M 〉[T=�]] + 4(�0; 1)2

6 4T‖�‖∞(�0; 1) + 4(�0; 1)2:

Lemma 3. The process (M (’)k�; k ∈N) is an L2 G�
k�-martingale. We also have:

1. For k6T=�,

E[(M (’)(k+1)� −M (’)k�)2|G�
k�]6 c �‖’‖2∞(X �

k�; 1); (17)

and

E[(M (’)(k+1)� −M (’)k�)4|G�
k�]6 c�2‖’‖4∞(1 + (X �

k�; 1)
2); (18)

where the constant c is independent of ’; k and �.
2. For t = k�; s= l�, where l; k ∈N, and 06 s6 t6T ,

〈M (’)〉t − 〈M (’)〉s6 c(t − s)‖’‖2∞ sup
k′6T=�

(X �
k′�; 1); (19)

where the constant c is independent of ’; t; s and �.
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3. We have

E[〈M (’)〉2[T=�]�]6 c‖’‖4∞; (20)

where the constant c is independent of ’ and �.

Proof. We still use the notation � = X �
k�.

From (13), it is easy to prove by induction that M (’)k� is integrable. Let us
now prove that (M (’)k�; k ∈N) is a martingale. From (12), using (7) the de;nition
of X̃ i; jk , the fact that

∑
i∈I; jk∈J i

k
�(V i; jk ;U i; jk ) is conditionally on G�

k� distributed accord-
ing to a Poisson point measure with intensity �(dx)Nx;A(�;x)[dW ] and eventually (15)
we get

E[M (’)(k+1)� −M (’)k�|G�
k�]

= E[(X �
(k+1)�; ’)|G�

k�]− (�; ’)

− E

 ∑

i∈I; jk∈J i
k

∫ 
i; �
· ((k+1)�)


i; �
· (k�)

(X̃ i; jk
u ; A(X �

k�; V
i; jk )’) du|G�

k�




=
∫

�(dx) Nx;A(�;x)[(X��(�;x); ’)]− (�; ’)

−
∫

�(dx) Nx;A(�;x)

[∫ ��(x;�)

0
du(Xu; A(�; x)’)

]

=
∫

�(dx)

(
Ex

[
’(Z��(x;�))− ’(x)−

∫ ��(x;�)

0
du A(�; x)’(Zu)

])

=0:

For the third equality, we introduced the process (Zs; s¿ 0) which is under Ex a
diHusion with in;nitesimal generator A(�; x) started at point x, and we used the ;rst
moment formula (A.1) for the Brownian snake.
Hence (M (’)k�; k ∈N) is a martingale.
1. Let us now compute E[(M (’)(k+1)� −M (’)k�)p|G�

k�] for p= 2; 4. We have

E[(M (’)(k+1)� −M (’)k�)p|G�
k�]

= E




(�; ’)− ∑

i∈I; jk∈J i
k

SMi;jk (’)




p∣∣∣∣∣∣G�
k�




=
p∑

m=0

(−1)m
(

p
m

)
(�; ’)p−mE




 ∑

i∈I; jk∈J i
k

SMi;jk (’)




m∣∣∣∣∣∣G�
k�


 ; (21)
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with

SMi;jk (’) = (X i;jk
(k+1)�; ’)−

∫ 
i; �
· ((k+1)�)


i; �
· (k�)

(X̃ i; jk
u ; A(X �

k�; V
i; jk )’) du:

First of all, let us compute the Laplace transform

A= E
[
exp−

{
6
∑

i∈I; jk∈J i
k

(
(X i;jk

(k+1)�; ’)

+
∫ 
i; �

· ((k+1)�)


i; �
· (k�)

du(X̃ i; jk
u ;  (V i;jk ; ·))

)}∣∣∣∣∣G�
k�

]
; (22)

where ’ and  are non-negative bounded measurable functions de;ned, respectively,
on Rd and Rd×Rd, and 6¿ 0. Using the Laplace transform for Poisson point measure,
we have

A= exp−
∫

�(dx) Nx;A(�;x)

[
1− exp− 6

(
(X��(�;x); ’)

+
∫ ��(�;x)

0
du(Xu;  (x; ·))

)]
:

Let us introduce (Pt; t¿ 0) the transition kernel of the diHusion with in;nitesimal
generator A(�; x0) for x0 ∈Rd ;xed. If we de;ne

v6;x0 (t; x) =Nx;A(�;x0)

[
1− exp− 6

(
(Xt; ’) +

∫ t

0
du(Xu;  (x0; ·))

)]
;

then v6;x0 solves the equation

v6;x0 (t; x) + 2
∫ t

0
Pt−s(v6;x0 (s)

2)(x) ds

= 6Nx;A(�;x0)

[
(Xt; ’) +

∫ t

0
du(Xu;  (x0; ·))

]
:

For 6 small enough, the function v6;x0 can be developed as a power series in 6. In
particular,

v6;x0 (t; x) = 691; x0 (t; x) + 6292; x0 (t; x) + 6393; x0 (t; x) + 6494; x0 (t; x) + 65g6;x0 (t; x);

where g is uniformly bounded in (t; x; x0; 6)∈ [0; T ]×Rd×Rd×[0; 1]. Using the previous
integral equation, we have

91; x0 (t; x) =Nx;A(�;x0)

[
(Xt; ’) +

∫ t

0
du(Xu;  (x0; ·))

]
;

92; x0 (t; x) =−2
∫ t

0
Pt−s(91; x0 (s)

2)(x) ds;
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93; x0 (t; x) =−4
∫ t

0
Pt−s(91; x0 (s)92; x0 (s))(x) ds;

94; x0 (t; x) =−2
∫ t

0
Pt−s(92; x0 (s)

2 + 291; x0 (s)93; x0 (s))(x) ds:

So we have, with the notation 9i = 9i; ·(��(�; ·); ·),

A= exp−
∫

�(dx) Nx;A(�;x)

[
1− exp

[
− 6
(
(X��(�;x); ’)

+
∫ ��(�;x)

0
du(Xu;  (x; ·))

)]]

=1− 6(�; 91) + 62
[−(�; 92) + 1

2 (�; 91)
2]

+ 63
[−(�; 93) + (�; 92)(�; 91)− 1

6 (�; 91)
3]

+ 64
[− (�; 94) + (�; 93)(�; 91)

+ 1
2 (�; 92)

2 − 1
2 (�; 92)(�; 91)

2 + 1
24 (�; 91)

4]+ o(64):

We deduce from (22) that

E




 ∑

i∈I; jk∈J i
k

X i; jk
(k+1)�; ’


+

∫ 
i; �
· ((k+1)�)


i; �
· (k�)

(X̃ i; jk
u ;  (V i;jk ; ·)) du

∣∣∣∣∣∣G�
k�


= (�; 91);

E




 ∑

i∈I; jk∈J i
k

(X i;jk
(k+1)�; ’) +

∫ 
i; �
· ((k+1)�)


i; �
· (k�)

(X̃ i; jk
u ;  (V i;jk ; ·)) du



2
∣∣∣∣∣∣∣G

�
k�




=(�; 91)2 − 2(�; 92); (23)

E




 ∑

i∈I; jk∈J i
k

(X i;jk
(k+1)�; ’) +

∫ 
i; �
· ((k+1)�)


i; �
· (k�)

(X̃ i; jk
u ;  (V i;jk ; ·)) du



3
∣∣∣∣∣∣∣G

�
k�




=(�; 91)3 − 6(�; 91)(�; 92) + 6(�; 93);

E




 ∑

i∈I; jk∈J i
k

(X i;jk
(k+1)�; ’) +

∫ 
i; �
· ((k+1)�)


i; �
· (k�)

(X̃ i; jk
u ;  (V i;jk ; ·)) du



4
∣∣∣∣∣∣∣G

�
k�




=(�; 91)4 − 12(�; 91)2(�; 92) + 12(�; 92)2 + 24(�; 91)(�; 93)− 24(�; 94):
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Using a polarization argument, we have the same result for any bounded measurable
function ’ and  . In particular, we can take  (x0; ·) =−A(�; x0)’. Moreover, in that
case,

91; x0 (t; x) =Nx;A(�;x0)

[
(Xt; ’) +

∫ t

0
du(Xu;  (x0; ·))

]

= Ex
[
’(Zt)−

∫ t

0
A(�; x0)’(Zs) ds

]

=’(x);

where (Zt; t¿ 0) is a diHusion with in;nitesimal generator A(�; x0) started at x.
We also have upper bounds for the others 9i:

|92; x0 (t; x)|=
∣∣∣∣−2

∫ t

0
Pt−s(91; x0 (s)

2)(x) ds
∣∣∣∣6 2t‖’‖2∞

|93; x0 (t; x)|=
∣∣∣∣−4

∫ t

0
Pt−s(91; x0 (s)92; x0 (s))(x) ds

∣∣∣∣6 4t2‖’‖3∞

|94; x0 (t; x)|=
∣∣∣∣−2

∫ t

0
Pt−s(92; x0 (s)

2 + 291; x0 (s)93; x0 (s))(x) ds
∣∣∣∣6 8t3‖’‖4∞:

Since � is bounded from above, we get using the previous computations and
formula (21)

E[(M (’)(k+1)� −M (’)k�)2|G�
k�] = −2(�; 92)
6 c�(�; 1)‖’‖2∞
= c�‖’‖2∞(X �

k�; 1); (24)

and

E[(M (’)(k+1)� −M (’)k�)4|G�
k�] = 12(�; 92)2 − 24(�; 94)

6 c�2‖’‖4∞((X �
k�; 1)

2 + (X �
k�; 1))

6 c�2‖’‖4∞(1 + (X �
k�; 1)

2):

2. It is a direct consequence of (17).
3. Recall c denotes a constant which value may vary from line to line. From (19),

we deduce that for k6T=�,

E[〈M (’)〉2k�]6 c�2k2‖’‖4∞E
[
sup
l6T=�

(X �
l�; 1)

2

]

6 c�2k2‖’‖4∞(T (�0; 1) + (�0; 1)2);
where we used (16). We deduce (20).
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Recall the de;nition of 3�
k :

3�
k+1 =

∑
i∈I; jk∈J i

k

∫ 
i; �
· ((k+1)�)


i; �
· (k�)

(X̃ i; jk
u ; A(X �

k�; V
i; jk )’) du− �(X �

k�; �(X
�
k�)A(X

�
k�)’):

Lemma 4. We have the convergence of sup06l6[T=�] |
∑l

k=1 3�
k | to 0 in L1 as �

decreases to 0.

Proof. We still use the notation � = X �
k�. We ;rst prove that E[(3�

k+1)
2|G�

k�] can be
bounded from above by c�3(1 + (�; 1)2). Applying (23) with the function 0 for ’ and
the function A(�; x)’(·) for  (x; ·), we get

E




 ∑

i∈I; jk∈J i
k

∫ 
i; �
· ((k+1)�)


i; �
· (k�)

(X̃ i; jk
u ; A(X �

k�; V
i; jk )’) du



2
∣∣∣∣∣∣∣G

�
k�


= (�; 91)2 − 2(�; 92);

where, thanks to (A.1),

91(x) =Nx;A(�;x)

[∫ ��(�;x)

0
du(Xu; A(�; x)’)

]
=
∫ ��(�;x)

0
du Pu(A(�; x)’)(x);

and (Pu; u¿ 0) denotes the transition semi-group with in;nitesimal generator A(�; x).
By de;nition, we have 92(x) = 92; x(��(�; x); x), where, thanks to (A.1),

92; x0 (t; x) =−2
∫ t

0
Pt−s(91; x0 (s)

2)(x) ds

=−2
∫ t

0
Pt−s

((∫ s

0
Pu(A(�; x0)’)

)2)
(x) ds:

So we have

E[(3�
k+1)

2|G�
k�]

= (�; 91)2 − 2(�; 92) + �2
(∫

�(dx) �(�; x)A(�; x)’(x)
)2

− 2�(�; 91)
∫

�(dx)�(�; x)A(�; x)’(x):

We deduce that

E[(3�
k+1)

2|G�
k�] =−2(�; 92)

+

(∫
�(dx)

∫ ��(�;x)

0
du[Pu(A(�; x)’)− A(�; x)’](x)

)2
:
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Since the coeIcients of A(�; x) are uniformly bounded, we deduce that |92; x0 (t; x)|6
c‖’‖2∗t3, that is ‖92‖∞6 c‖’‖2∗�3, where c depends on �; b and �. Since the coeI-
cients of A(�; x) are uniformly bounded, we deduce that for 06 u6 ‖�‖∞,

‖Pu(A(�; x)’)− A(�; x)’‖∞6 c‖’‖∗
√
u:

We get that for �∈ (0; 1],
E[(3�

k+1)
2|G�

k�]6 c�3(�; 1)‖’‖2∗ + c�3(�; 1)2‖’2∗:
In particular, we have for �∈ (0; 1],

E[|3�
k+1|G�

k�]6 E[(3�
k+1)

2|G�
k�]

1=26 c�3=2‖’‖∗((X �
k�; 1) + 1);

where the constant c depends only on the bounds of �; b and �. Therefore, we deduce
that for T ¿ 0,

E
[[T=�]∑

k=1

|3k |
]
6 c

√
�T‖’‖∗

(
1 + E

[
sup

06k6[T=�]
(X �

k�; 1)

])
:

From Lemma 2, we deduce that

E
[[T=�]∑

k=1

|3k |
]
6 c

√
�T (1 + T )‖’‖∗; (25)

where c depends only on the bounds of �; b and �. Therefore, we have the convergence
of sup06l6[T=�]|

∑l
k=1 3k | to 0 in L1 as � decreases to 0.

Lemma 5. We have

〈M (’)〉(k+1)� = 〈M (’)〉k� + 4�(X �
k�; �(X

�
k�)’

2) + *k ;

where
∑[T=�]

k=0 *k converge in L2 to 0 as � decreases to 0.

Proof. We still write � for X �
k�. Recall from (24) that

〈M (’)〉(k+1)� − 〈M (’)〉k� = 4
∫

�(dx)
∫ ��(�;x)

0
ds Ex[’(Zs)2];

where (Zs; s¿ 0) is under Ex a diHusion with in;nitesimal generator A(�; x) started at
point x. In particular, for s∈ [0; ‖�‖∞],

Ex[|’(Zs)2 − ’(Z0)2|]6 2‖’‖∞‖’‖LipEx[|Zs − Z0|]
6 c‖’‖∞‖’‖∗

√
s;

where the constant c depends only on �; b; � and T . Therefore, we have for �∈ (0; 1],

|*k |6 4
∫

�(dx)
∫ ��(�;x)

0
ds Ex[|’(Zs)2 − ’(Z0)2|]

6 c�3=2‖’‖∞‖’‖∗(�; 1);
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We deduce that for T¿ 0; �∈ (0; 1],
[T=�]∑
k=0

|*k |6 c
√
�T‖’‖∞‖’‖∗ sup

06k6[T=�]
(X �

k�; 1): (26)

We deduce from Lemma 2, that
∑[T=�]

k=0 *k converges to 0 in L2 as � decreases to 0.

Lemma 6. For every <; T ¿ 0, there is a compact set K<;T in Rd such that

sup
0¡�61

P
(

sup
06k6T=�

(X �
k�; 1Kc

<; T
)¿<

)
¡<:

Proof. Let BR denote the centered ball of Rd with radius R. Let g be a non-negative
function of class C2 with bounded Lipschitz derivatives, de;ned on Rd such that g=0
on B1, and g = 1 outside B2. Set gR(x) = g(x=R), with R¿ 1. We want to check that
E[sup06k6[T=�] (X

�
k�; gR)] converges to 0 as R increases to ∞ uniformly in �∈ (0; 1].

From

(X �
k�; gR) =M (gR)k� +

k∑
l=1

3l + �
k∑

l=1

(X �
l�; �(X

�
l�)A(X

�
l�)gR) + (�0; gR);

we deduce that

sup
06k6[T=�]

(X �
k�; gR)6 sup

06k6[T=�]
M (gR)k� +

[T=�]∑
k=1

|3k |

+ c
T
R

sup
06k6[T=�]

(X �
k�; 1) + (�0; gR); (27)

where c depends only on �; b and �. We used that

‖gR‖∗6 1
R
‖g‖∗6 c=R:

Using this inequality again, we deduce from (25), with ’ replaced by gR, and (16)
respectively that the second and third terms of the right-hand member converge to 0 in
L1 as R increases to +∞ uniformly in �∈ (0; 1]. Notice also that the last term, (�0; gR),
converges to 0 as R increases to +∞.
From Doob’s inequality and the de;nition of * (in Lemma 5), we get

E
[

sup
06k6[T=�]

M (gR)2k�

]
6 4E[M (gR)2[T=�]�]

= 4E[〈M (gR)〉[T=�]�]

6 4E
[[T=�]∑

l=1

*l

]
+ 4�

[T=�]∑
k=0

E[(X �
k�; �(X

�
k�)g

2
R)]: (28)
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We deduce from (26) with ’ replaced by gR, and (16), that E[
∑[T=�]

l=1 *l] converges
to 0 as R increases to +∞ uniformly in �∈ (0; 1]. Since � is bounded from above,
we deduce from (13) and then (25) that, for k6 [T=�],

E[(X �
k�; �(X

�
k�)g

2
R)]6 cE[(X �

k�; g
2
R)]

6 cE
[

k∑
l=1

|3�
l|
]
+ c�

k−1∑
l=0

E[(X �
l�; �(X

�
l�)A(X

�
l�)g

2
R)] + c(�0; g2R)

6 c
√
�‖g2R‖∗ + c�

1
R

k−1∑
l=0

E[(X �
l�; 1)] + c(�0; g2R)

6 c
√
�
1
R
+ c�

1
R

kE
[

sup
06l6[T=�]

(X �
l�; 1)

]
+ c(�0; g2R);

where the constant c depends only on �; b; � and T . Since limR→∞ (�0; g2R)=0, we de-
duce that E[(X �

k�; �(X
�
k�)g

2
R)] converges to 0 as R increases to +∞ uniformly in �∈ (0; 1].

We deduce from those results and the upper bound in (28), that E[sup06k6[T=�]

M (gR)2k�] decreases to 0 as R increases to +∞ uniformly in �∈ (0; 1]. This implies,
thanks to (27), that E[sup06k6T=� (X

�
k�; 1Bc

2R
)] decreases to 0 as R increases to ∞ uni-

formly in �∈ (0; 1]. In particular, for every <; T ¿ 0, there exist R¿ 1 such that

sup
0¡�61

P
(

sup
06k6T=�

(X �
k�; 1Bc

2R
)¿<

)
¡<:

4. Proof of Theorem 1

The proof will be done in ;ve lemmas and follows (Perkins, 2002, Section II.4).
Theorem 1 is a direct consequence of Lemmas 10 and 12. Let ’∈C2 be such that
‖’‖∗ ¡∞. To remember that M (’) depends on �, we will write now M�(’) instead
of M (’). Let M�(’)= (M�(’)t ; t¿ 0) be the right continuous step function which is
the extension of (M�(’)k�; k ∈N).

Lemma 7. The process (〈M�(’)〉; �∈ (0; 1]) is C-tight as � decreases to 0.

Proof. Thanks to Proposition VI.3.26 of Jacod and Shiryaev (1987), it is enough to
check that for all T ¿ 0; 9¿ 0 and 3¿ 0, there exist K ¿ 0 and h¿ 0; �0¿ 0 such
that for any �∈ (0; �0],

P
(
sup
t6T

〈M�(’)〉t¿K
)
6 9; (29)

P
(

sup
s6t6T;|t−s|6h

〈M�(’)〉t − 〈M�(’)〉s¿ 3

)
6 9: (30)
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Using (19) in Lemma 3 with s= 0 and t = T , we have

P
(
sup
t6T

〈M�(’)〉t¿K
)
6

1
K
E[〈M�(’)〉T ]

6
1
K

c‖’‖2∞TE
[
sup
k6T=�

(X �
k�; 1)

]

6
1
K

c‖’‖2∞TE
[
sup
k6T=�

(X �
k�; 1)

2

]1=2
:

Then (29) can be deduced from Lemma 2.
Notice that if |t − s|6 h, then |[t=�]� − [s=�]�|6 h + �. Using again (19) in

Lemma 3, we have

P
(

sup
s6t6T;|t−s|6h

〈M�(’)〉t − 〈M�(’)〉s¿ 3

)

6P
(
c(h+ �)‖’‖2∞ sup

k6T=�
(X �

k�; 1)¿ 3

)

6
c2(h+ �)2‖’‖4∞

32
E
[
sup
k6T=�

(X �
k�; 1)

2

]
:

And (30) can be deduced from Lemma 2.

Lemma 8. The process (M�(’); �∈ (0; 1]) is C-tight as � decreases to 0.

Proof. We have already proved the C-tightness of (〈M�(’)〉; �∈ (0; 1]). From Theorem
VI.4.13 of Jacod and Shiryaev (1987), we get that (M�(’); �∈ (0; 1]) is tight. To get
the C-tightness, it is enough to check (see Proposition VI.3.26 of Jacod and Shiryaev,
1987) that for all T ¿ 0 and all 3¿ 0,

lim
�→0

P
(
sup
k6T=�

|M�(’)(k+1)� −M�(’)k�|¿ 3

)
= 0:

We have:

P
(
sup
k6T=�

|M�(’)(k+1)� −M�(’)k�|¿ 3

)

6
1
34
E
[
sup
k6T=�

(M�(’)(k+1)� −M�(’)k�)4
]
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6
1
34
E


∑

k6T=�

(M�(’)(k+1)� −M�(’)k�)4




6
1
34

c‖’‖4∞�2
T
�
E
[
1 + sup

k6T=�
(X �

k�; 1)
2

]
;

where we used (18) of Lemma 3 for the last inequality. We conclude using
Lemma 2.

Lemma 9. The process (X �(’); �∈ (0; 1]) is C-tight as � decreases to 0.

Proof. From (13) we get, for k�6 t ¡ (k + 1)�,

(X �
t ; ’) = (X

�
k�; ’)

= (�0; ’) +M�(’)k� + �
∑
l¡k

(X �
l�; �(X

�
l�)A(X

�
l�)’) +

∑
l6k

3�
k

= (�0; ’) +M�(’)k� + @�
t + Z�

t ;

where

@�
t =
∫ [t=�]�

0
(X �

u ; �(X
�
u )A(X

�
u )’) du and Z�

t =
∑
l6k

3�
k :

Let us check that (@�; �∈ (0; 1]) is C-tight as � decreases to 0. Since @�
0 = 0, we

have

P
(
sup

06s6T
|@�

s|¿K
)
6

1
K2 E


 sup
06s6T

(∫ [s=�]�

0
(X �

u ; �(X
�
u )A(X

�
u )’) du

)2

6
c
K2 ‖’‖2∗E


(∫ [T=�]�

0
(X �

u ; 1) du

)2

6
c
K2 ‖’‖2∗;

thanks to Lemma 2. We also have for 06 s6 t6T; h¿ 0,

P
(

sup
06s6t6T;|t−s|6h

|@�
t − @�

s|¿ 3

)

=P
(

sup
06s6t6T;|t−s|6h

∣∣∣∣∣
∫ [t=�]�

[s=�]�
(X �

u ; �(X
�
u )A(X

�
u )’) du

∣∣∣∣∣¿ 3

)
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6
c
32

‖’‖2∗(h+ �)2E
[
sup
k6T=�

(X �
k�; 1)

2

]

6
c
32

‖’‖2∗(h+ �)2;

thanks to Lemma 2. Thanks to Proposition VI.3.26 of Jacod and Shiryaev (1987),
those two inequalities imply that (@�; �∈ (0; 1]) is C-tight. From Lemma 4, we get
that supt6T Z�

t converges to 0 in L1 as � decreases to 0. In particular, it is C-tight.
As a sum of C-tight processes, the family (X �(’); �∈ (0; 1]) is C-tight as � decreases
to 0.

Lemma 10. The process family of process (X �; �∈ (0; 1]) is C-tight as � decreases
to 0.

This result is a consequence of the next theorem which is stated in (Perkins, 2002,
Theorem II.4.1), Lemmas 9 and 6.
Let Cb(Rd)={f :Rd→R; f bounded and continuous}. Let D0 be a separating class

in Cb in Mf (that is if � and A belongs to Mf , if �(f) = A(f) for all ’∈D0, then
� = A) containing 1 and which is closed under addition.

Theorem 11. A sequence of c*adl*ag Mf -valued process (X �; �∈ (0; 1]) is C-tight as �
decreases to 0, in D(R+;Mf ) if and only if the following conditions hold:

(1) ∀’∈D0, the process (X �(’); �∈ (0; 1]) is C-tight in D(R+;R) as � decreases
to 0.

(2) For every <; T ¿ 0, there is a compact set K<;T in Rd such that

sup
�∈(0;1]

P
(
sup

06t6T
(X �

t ; 1Kc
<; T
)¿<

)
¡<:

Lemma 12. Any limiting measure valued process Y =(Yt; t¿ 0) of (X �; �∈ (0; 1]) as
� decreases to 0, satis?es the martingale problem (MP) and has a continuous version.

Proof. Let (�n; n∈N) be a sequence decreasing to 0 such that (X �n ; n∈N) converges
in law to Y . Using Skorokhod’s representation theorem, we may suppose that we have
an a.s. convergence. Recall from (13) that

(X �n
t ; ’) = (�0; ’)+M�n(’)t+

∫ [t=�n]�n

0
(X �n

u ; �(X �n
u )A(X

�n
u )’) du+

∑
l6t=�n

3�n
l ; (31)

for any ’ such that ‖’‖∗ ¡∞.
Using (25) as well as (26), and Lemma 2, we deduce that supt6T

∑
l6t=�n 3�n

l (resp.
supt6T

∑
l6t=�n *�n

l ) converges to 0 in L1 (resp. L2) as n→∞. There exists a sub-
sequence of (�n; n¿ 0) such that those two convergences hold a.s. We still write
(�n; n¿ 0) for this subsequence. Since X �n is C-tight, we get that Y is continuous and
that a.s. for all t¿ 0; X �n

t converges to Yt . In particular, since ‖’‖∗ is ;nite, this implies
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that a.s. for all t¿ 0, (X �n
t ; ’) converges to (Yt; ’) and

∫ [t=�n]�n
0 (X �n

u ; �(X �n
u )A(X

�n
u )’) du

converges to
∫ t
0 (Yu; �(Yu)A(Yu)’) du. From (31) we deduce that (M�n(’)t ; t¿ 0)

converges a.s. to a continuous process say (M (’)t ; t¿ 0). And we have

(Yt; ’) = (�0; ’) +M (’)t +
∫ t

0
(Yu; �(Yu)A(Yu)’) du: (32)

From Lemma 5, we have

〈M�n(’)〉t = 4
∫ [t=�n]�n

0
(X �n

u ; �(X �n
u )’

2) du+
∑

k¡[t=�n]�n

*�n
k :

In particular, (〈M�n(’)〉t ; t¿ 0) converge a.s. to

Q =
(
4
∫ t

0
(Yu; �(Yu)’2) du; t¿ 0

)
:

From (20) and Doob’s inequality, we deduce that for any T¿ 0, the family of mar-
tingales (M�n(’)t ; t ∈ [0; T ]) (resp. (M�n(’)2t − 〈M�n(’)〉t ; t ∈ [0; T ])) is uniformly
bounded in L4 (resp. L2). This implies in particular that M (’) is an L2 martingale
and M (’)2 − Q is an L1 martingale (with respect to the ;ltration generated by M (’)
and Q). Since M (’) and Q are continuous, we also get that 〈M (’)〉 = Q. To end
the proof, we need to check that M (’) is a martingale with respect to the ;ltration
generated by Y . Let m¿ 1; f be a bounded continuous function de;ned on Mm

f .
Let 06 t16 · · ·6 tm6 t6 s. Because of the uniform integrability of M�n(’), we
have that E[f(X �n

t1 ; : : : ; X
�n
tm )(M

�n(’)s−M�n(’)t)] converges to E[f(Yt1 ; : : : ; Ytm)(M (’)s−
M (’)t)] as n → ∞. Since E[f(X �n

t1 ; : : : ; X
�n
tm )(M

�n(’)s −M�n(’)t)] = 0, we deduce that
E[f(Yt1 ; : : : ; Ytm)(M (’)s−M (’)t)]=0. As this equality holds for any m; 06 t16 · · ·6
tm6 t6 s and any bounded continuous function f, and since M (’) is adapted to the
;ltration generated by Y (thanks to formula (32)), we deduce that M (’) is a martingale
with respect to the ;ltration generated by Y and that Q is its quadratic variation.
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Appendix A

A.1. Moment formula for the Brownian snake

We recall some moment formula for superprocesses under the excursion measure N
(see e.g., Delmas, 1999, Section 6.1). Recall notations from Section 2.1. Let ’ and  
be bounded measurable functions de;ned on Rd.
Let Z be a diHusion with in;nitesimal generator A started at point x under Ex. Let

(Pv; v¿ 0) denote the transition kernel of the diHusion Z . We have for u¿ 0,

Nx;A[(Xu; ’)] = Ex[’(Zu)] = Pu(’)(x): (A.1)
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We have for u¿ v¿ 0,

Nx;A[(Xu; ’)(Xv;  )] =Nx;A[(Xv; ’)(Xv;Pu−v )]; (A.2)

and

Nx;A[(Xu; ’)(Xv;  )] = 4
∫ v

0
dr E[Pu−r’(Zr)Pv−r (Zr)]: (A.3)

A.2. Markov property for the Brownian snake

Recall notations from Section 2.1. We refer to (Le Gall, 1995, Section 2), for the
proof of the following statements.
We consider the process (Xt(W ); t ¿ 0) under Nx;A[dW ]. Recall (Ws; s¿ 0) is a

continuous C-valued process with lifetime process (�s; s∈ [0; �]), where � is the length
of the life-time excursion above 0 under Nx;A[dW ]. Let t0¿ 0 be ;xed. We consider
the inverse of the time spent by the snake under level t0:

*(s) = inf
{
r ∈ [0; �];

∫ r

0
1{t0¿�u} du¿s

}
:

And we de;ne the continuous process W ′
s =W*s which make sense Nx;A-a.e. Let Et0

be the �-;eld generated by the process (W ′
s ; s¿ 0).

By the continuity of the life-time process, the set {s∈ (0; �); t ¡ �s} can be written
as a countable union of disjoint open intervals (aj; bj); j∈ J . Notice J might be empty
if the lifetime process does not reach level t0. From the snake property, the paths Ws(t)
coincide for t ∈ [0; t0] and for s∈ (aj; bj). We set V j =Ws(t0). For s¿ 0, we de;ne

�js = �(aj+s)∧bj − t0

Wj
s (t) =W(aj+s)∧bj (t − t0) for t ∈ [0; �js];

and Wj = (Wj
s (t); s¿ 0; t¿ 0). The family (Wj; j∈ J ) are the excursions of the

Brownian snake above level t0. We have the following result.

Proposition 13.

• The random measure Xt0 is Et0 -measurable.
• The random measure

∑
j∈J �(V j;W j) is conditionally on Et0 a Poisson measure with

intensity Xt0 (dx)Nx;A[dW ].
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