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1 IntrodutionIn the vast literature devoted to urn models (see Johnson and Kotz [12℄ as a generalreferene), a good number of reent papers have been devoted to random replaementpoliies. Eah time a ball is drawn, the types of balls whih are added or removed arerandom variables, whose distribution depends on the type of the ball that has beenpiked: see for instane [1, 2, 3, 10, 11℄. Strong onvergene results [9, 10℄, as well asfuntional entral limit theorems [2, 8, 11℄ are now available for a vast range of models.However, in all these referenes, some irreduibility hypothesis is made to ensure thatthere is only one possible limit for the frequeny vetor. Our aim here is to answer thenatural question: what happens when there are more than one?We study the simplest possible model: balls are added one by one, the type of theadded ball only depends on the type of the one that has been drawn. We believe thatour results an be extended to more general shemes, suh as those of Janson [11℄ orBenaïm et al. [3℄. The types are numbered from 1 to d. If a ball of type i has beendrawn, then a ball of type j is added with probability pi,j. The matrix P = (pi,j) isa (reduible) stohasti matrix on {1, . . . , d}. As expeted, the distribution of typesonverges almost surely to a stationary distribution for the matrix P (Theorem 2.1).The proof is based on the lassial stohasti algorithm tehnique [3, 10, 13℄, and usesthe results of Delyon [5℄.The limit is a random element of the set of stationary measures, hene a randomonvex ombination of the measures orresponding to irreduible reurrent lasses.The question arises to haraterize its probability law. Theorem 3.1 �rst redues theproblem to omputing the d ases where initially a single ball is present, then har-aterizes those d distributions as the solution to a �xed point problem. The lassialEggenberger-Pólya model [7℄ an be seen as a partiular ase of ours: if P is the iden-tity matrix, it is well known that the vetor of frequenies onverges to a Dirihletrandom vetor. In our ase, it ould seem natural to expet a Dirihlet law for thelimit stationary distribution: this would be oherent with the numerous onnetionsbetween Dirihlet distributions and urn models (see for instane [12, 15℄). We provethat it is atually the ase if no return to a transient state is allowed (Proposition 3.2).We also show in Proposition 3.3 that the asymptoti distribution is not Dirihlet ifreturns to transient states are allowed.The onvergene result is stated and proved in Setion 2, the probability distributionof the limit is studied in Setion 3.2 Almost sure onvergeneIn this setion, the model is desribed, then the strong onvergene result is stated andproved.Reall that a transition matrix P = (pi,j) on the set of types {1, . . . , d} is given.Initially, the number of balls in the urn is n0 and the distribution of types is X0(deterministi or not). At eah instant n > 0 a ball is added to the urn, hene thenumber of balls in the urn at time n is n0 + n. The type of the ball whih is added2



depends on that of a ball drawn with uniform probability. If a ball of type i hasbeen drawn, the probability to add a ball of type j is pi,j. We denote by Xn thedistribution of types in the urn at time n: Xn is a d-dimensional vetor, whose i-thoordinate is the frequeny of type i after the n-th addition. It is a random element ofthe (d− 1)-dimensional simplex, denoted by ∆d.
∆d = { (x1, . . . , xd) ∈ [0, 1]d , x1 + · · ·+ xd = 1 } .We will prove that the frequeny distributions Xn onverge almost surely to astationary distribution of P . We denote by S their set, i.e. the set of (line) vetors xin ∆d suh that xP = x.Theorem 2.1 The sequene of random vetors (Xn) onverges almost surely to a S-valued random vetor.Proof: The proof is based on the lassial tehnique that onsists of expressing (Xn)as a stohasti algorithm (see [6, 13℄ as general referenes). That tehnique has beenused several times for proving strong onvergene results in urn shemes, for instaneby Benaïm et al. [3℄ and Higueras et al. [10℄.For j = 1, . . . , d, let ej be the d-dimensional vetor whose j-th oordinate is 1, andthe others 0. For x ∈ ∆d, let ǫ(x) denote the probability distribution on {e1, . . . , ed}suh that

ǫ(x)(ej) =
d
∑

i=1

xi pi,j .One an write:
Xn+1 =

n + n0

n+ n0 + 1
Xn +

1

n+ n0 + 1
εn(Xn) , (2.1)where the onditional distribution of εn(Xn) knowing X0 = x0, . . . , Xn = xn is ǫ(xn).Denote by ηn the following random vetor.

ηn = εn(Xn) −XnP .The sequene (ηn) is adapted to the �ltration Fn generated by (Xn), and
E[ ηn+1

∣

∣ Fn ] = 0 .Let us rewrite (2.1) as:
Xn+1 = Xn +

1

n0 + n+ 1
(Xn(P − I) + ηn) . (2.2)Hene Xn an be seen as a Robbins-Monro algorithm. We shall use the results ofDelyon [5℄. Equation (2.2) is the same as equation (2) in [5℄:

Xn+1 = Xn + γnh(Xn) + γnηn,with
h(X) = X(P − I) , γn =

1

n + n0 + 1
and ηn = εn(Xn) −XnP .The main assumption in [5℄ is the notion of A-stable algorithm :3



De�nition 2.2 ([5℄, De�nition 1)We say that the algorithm is A-stable (in our partiular ase) if
• It remains in a ompat set.
• The serie ∑ γnηn onverges a.s.The main steps of the proof are then the following.Step 1 (Xn) is an A-stable algorithm.Step 2 The distane from Xn to the set S of stationary measures for P tends to 0 a.s.Step 3 The sequene (Xn) onverges a.s., hene its limit is an element of S.As Xn remains in a ompat subset of R

d (the simplex of probability vetors), step1 is proved as soon as we an show that ∑n≥0 γnηn < ∞. Sine the random variables
γnηn are the inrements of a martingale, whih is bounded in L2, this result is true.Hene it is an A-stable algorithm.A lassial method to study this type of stohasti algorithm is to ompare itstrajetories to the �ow of an ordinary di�erential equation, whih in our ase is y′ =
h(y) = y(P − I). It is linear, and the non-null eigenvalues of its matrix P − I all havea negative real part (sine P is a stohasti matrix). Therefore, if x ∈ R

d and yx is thesolution suh that yx(0) = x, then limt→+∞ yx(t) exists.Step 2 is rather standard and an be proved by using for instane Theorem 2.2p. 2153 of [17℄: the limiting set of (Xn) is an internally hain reurrent set for the�ow of the ODE y′ = h(y), hene it is inluded in S. Sine (Xn) takes its values in aompat set, and all possible limits of its subsequenes are in S, the distane from Xnto S must tend to 0.Step 3 is an appliation of Theorem 2 in [5℄:Theorem 2.3 ([5℄, Theorem 2)We assume that the algorithm is A-stable.If S satis�es assumption (B):
S is a losed set whih has a neighbourhood N where h is uniformlyLipshitz and there exist two uniformly Lipshitz funtions π, W , de�nedon N , taking values in R

d and R respetively, and suh that(a) |π(y(t))−π(y(s))| ≤ |W (y(t))−W (y(s))| for any solution (y(u), s ≤
u ≤ t) of y′ = h(y) on N .(b) π(x) = x if x ∈ S.if d(Xn,S) tends to 0, and if

∞
∑

n=0

γn

∣

∣

∣

∣

∣

∞
∑

i=n

γiηi

∣

∣

∣

∣

∣

< +∞ ,then (Xn) onverges a.s. to some point of S.4



Let us prove �rst that S satis�es ondition (B) of [5℄. Here we shall take N = R
d and

π(x) = limt→+∞ yx(t). >From the same observation on eigenvalues of P − I as in step2, it follows that π is Lipshitz. If (yx(u), s ≤ u ≤ t) is any solution of y′ = h(y), thenby de�nition of π, π(yx(s)) = π(yx(t)) and (a) holds with W = 0. Of ourse, if x ∈ Sthen h(x) = 0 and yx is onstant and equal to x. Thus x ∈ S implies π(x) = x, hene(b).There remains to prove that:
∞
∑

n=0

γn

∣

∣

∣

∣

∣

∞
∑

i=n

γiηi

∣

∣

∣

∣

∣

< +∞ .Let us write:
E

[

∞
∑

n=0

γn

∣

∣

∣

∣

∣

∞
∑

i=n

γiηi

∣

∣

∣

∣

∣

]

=

∞
∑

n=0

γnE

[∣

∣

∣

∣

∣

∞
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i=n

γiηi

∣

∣

∣

∣

∣

]

≤

∞
∑

n=0

γnE





(

∞
∑

i=n

γiηi

)2




1/2

=
∞
∑

n=0

γn

[

∞
∑

i=n

γ2
i

]1/2

< +∞.Hene step 3, whih ends the proof of Theorem 2.1. �

3 Asymptoti distributionTheorem 2.1 proves that the distribution of types in the urn onverges to a randomelement of the set S of stationary distributions for the transition matrix P . In thissetion we haraterize the probability law of that random element.Assume the reurrent lasses for the transition matrix P are numbered from 1 to k.For c = 1, . . . , k, denote by πc the unique element of S whose oordinates are positiveon lass number c and null elsewhere. Any element of S is a onvex ombination of the
πc's. We shall denote by σ the one to one orrespondene between S and ∆k de�nedby:

∀α = (α1, . . . , αk) ∈ ∆k , σ−1(α) =

k
∑

c=1

αc πc .Our goal is to desribe the distribution of σ(limXn), whih depends on the initial stateof the urn. We will generially denote by A∗ the ∆k-valued random variable σ(limXn)for X0 = ∗:
• AX0 if the initial state of the urn is the random distribution X0,5



• Ax0 if the initial state of the urn is the deterministi distribution x0,
• A(i) if the urn initially ontains a single ball of type i.Observe that the distribution of X0 is disrete. Obviously,

AX0
(d)
=
∑

x0

Ax0 IX0=x0
,where X0 and all the Ax0's are mutually independent.Theorem 3.1 below redues the distribution of Ax0 to those of the A(i)'s, thenexpresses the A(i)'s as a solution of a �xed point problem.Let x0 = (x0(1), . . . , x0(d)) be the initial state, let n0 be the initial number of balls.For b = 1, . . . n0 let i(b) be the type of ball b so that, for 1 ≤ p ≤ d,

x0(p) = Card{b, i(b) = p}.Theorem 3.11. Let Y = (Y (1), . . . , Y (n0)) be a random vetor, uniformly distributed on ∆n0
. For

1 ≤ b ≤ n0, let Ab be a opy of A(i(b)). Assume that Ab, b = 1, . . . , n0 are mutuallyindependent, and independent from the vetor Y . Then:
Ax0

(d)
=

n0
∑

b=1

Y (b)Ab . (3.3)(Ab represents the distribution of the desendents of ball b (and hene is distributedas A(i(b))) and Y (b) represents the asymptoti proportion of balls that desend fromball b)2. For i = 1, . . . , d, let A(i)′ , A(i)′′ be independent opies of A(i); let Y (i) be uniformlydistributed on [0, 1]; let Ui have distribution (pi,j)j=1,...,d. Assume all these randomvariables are mutually independent. Then
A(i) (d)

=
d
∑

j=1

IUi=j

(

Y (j)A(i)′ + (1 − Y (j))A(j)′′
)

. (3.4)Proof: Assume the n0 initial balls are labelled from 1 to n0. Assume that at eah stepthe ball that has been added reeives the same label as the one that has been drawn.Replaing types by labels, one gets a standard Eggenberger-Pólya urn [7℄. Denote by
Yn = (Y

(b)
n ), b = 1, . . . , n0 the distribution of labels at time n: it onverges a.s. to arandom vetor Y whose distribution is uniform on the simplex ∆n0

. For b = 1, . . . , n0,denote by Z
(b)
n the d-dimensional vetor of the frequenies of types among the ballswith label k at time n. By Theorem 2.1, Z(b)

n onverges a.s. to a random variable Z(b),distributed as if initially the urn only had one ball with label i(b): the distribution of6



Z(b) is that of A(i(b)). Moreover these random variables are mutually independent. Theoverall distribution of types at time n deomposes as:
Xn =

n0
∑

b=1

Y (b)
n Z(b)

n .As n tends to in�nity, Xn tends to
X =

n0
∑

b=1

Y (b)Z(b) ,hene equation (3.3).Assume now that initially, a single ball of type i is present. At time 1, another ballis added, whih is of type j with probability pi,j. Let us apply point 1 with n0 = 2: iftwo balls of types i and j are present, then the �nal distribution is that of:
Y (i)A(i)′ + (1 − Y (i))A(j)′′.The limit starting with one single ball of type i or the two balls of time 1 must be thesame, hene equation (3.4). �Equations (3.3) and (3.4) haraterize the distribution of Ax0 , for any x0. This followsfrom standard results of Leta [14℄ and Chamayou and Leta [4℄. In pratie, �ndingthe atual distribution of Ax0 may be rather intriate. We shall give two examples witha single transient state, one with no possible return (Proposition 3.2), the other withpossible returns (Proposition 3.3).Observe that from the point of view of Ax0, the ontents of reurrent lasses is notrelevant: eah reurrent lass an be aggregated into one single absorbing state. Thusone an assume with no loss of generality that the transition matrix P has k absorbingstates and d− k transient states.Proposition 3.2 Assume the matrix P is the following
P =











0 p2 · · · pd

0 1 0 0

0 0
. . . 0

0 · · · 0 1











,with p2 + . . .+ pd = 1. Assume moreover that initially a single ball of type 1 is present.The probability distribution of A(1) is the Dirihlet distribution on ∆d−1, with pa-rameter (p2, . . . , pd).Proof: We prove this result by the lassial method of moments, using a martingaleargument.For u = (u2, . . . , ud) ∈ ∆d−1, we set for every z ∈ N
d

hu(z) =
(s(z) − 1)!

Γ(z2 + p2) · · ·Γ(zd + pd)
uz2

2 · · ·uzd

d7



where s(z) =

d
∑

i=1

zi.Then, if ei denotes the ith vetor of the anonial basis of R
d, we have, for 2 ≤ i ≤ d

hu(z + ei) =
s(z)

zi + pi
uihu(z)and hene

d
∑

i=2

p(z, z + ei)hu(z + ei) =
d
∑

i=2

uihu(z) = hu(z).This shows that hu is an harmoni funtion and so the proess (hu(Zn)) is a martingale.Let α = (α2, . . . , αd) ∈ R
d−1 suh that αi + pi − 1 ≥ 0. We set

gα(z) =

∫

∆d−1

hu(z)u
α2

2 · · ·uαd

d λd−1(du)where λd−1 denotes the Lebesgue measure on ∆d−1. Remark that (gα(Zn)) is still amartingale.Let us here suppose that for every 2 ≤ i ≤ d, Z i
n tends to in�nity. Then, using that

Γ(x+ h)

Γ(x)
∼

x→+∞
xh,we have (reall s(Zn) = n + 1)

gα(Zn) =
Γ(n+ 1)

Γ(n + s(α) + d)

Γ(Z2
n + α2 + 1)

Γ(Z2
n + p2)

· · ·
Γ(Zd

n + αd + 1)

Γ(Zd
n + pd)

∼ n−(s(α)+d−1)(Z2
n)α2+1−p2 · · · (Zd

n)αd+1−pd

=

(

Z2
n

n

)α2+1−p2

· · ·

(

Zd
n

n

)αd+1−pd

−→
(

A
(1)
2

)α2+1−p2

· · ·
(

A
(1)
d

)αd+1−pd

.Let us add that the same kind of omputation shows that gα(Zn) tends to 0 if one ofthe Z i
n is bounded so the formula is still true in that ase.This omputation also proves that gα is a ontinuous funtion that admits limitsat in�nity and hene is bounded. Therefore gα(Zn) is a bounded martingale and theonvergene also holds in L1.Consequently, for every integers k2, . . . , kd, taking αi = pi + ki − 1, we have

E

[

(

A
(1)
2

)k2

· · ·
(

A
(1)
d

)kd

]

= gα((1, 0, . . . , 0)) =
1

Γ(s(k) + 1)

Γ(k2 + p2)

Γ(p2)
· · ·

Γ(kd + pd)

Γ(pd)
·This is also the moments of the Dirihlet distribution with parameters (p2, . . . , pd) on

∆d−1 and all these moments haraterize the law as its support is ompat. �We will now show that the pleasant result of Proposition 3.2 worsens as returns totransient states beome possible. 8



Proposition 3.3 Let d = 3, and
P =





p1 p2 p3

0 1 0
0 0 1



 ,with p1, p2, p3 stritly positive. Starting initially with a single ball of type 1, the distribu-tion A(1) only harges the two absorbing states 2 and 3. Let us write A(1) = (A, 1−A)where A is the asymptoti frequeny of type 2. Let ϕ be the generating funtion ofmoments of A.
ϕ(z) =

+∞
∑

n=0

E[An] zn .Then
1

ϕ(z)
= (1 − z)p2

2F1(p2,−p1, 1 − p1)(z) , (3.5)where 2F1(p2,−p1, 1−p1) is the hypergeometri funtion with parameters (p2,−p1) and
1 − p1.Having omputed the moments of A, it easy to hek that its distribution is not Beta,exept in the partiular ase p2 = p3. Hene the distribution of A(1) is not Dirihlet.Proof: >From point 2 of Theorem 3.1, A is equal in distribution to:

Y A′ + (1 − Y )(A′′
IU=1 + IU=2) , (3.6)where A′ and A′′ are distributed as A, Y is uniformly distributed on [0, 1], U hasdistribution (p1, p2, p3) and (A′, A′′, Y, U) are mutually independent.Denote by cn = E[An] the n-th moment of A. From (3.6), the following indutionfor cn is dedued.

cn =
1

n + 1
cn +

n−1
∑

k=0

(

n

k

)

E[ρk(1 − ρ)n−k](ckcn−kp1 + ckp2)

⇐⇒ ncn = p1

n−1
∑

k=0

ckcn−k + p2

n−1
∑

k=0

ck

⇐⇒ (n + p1 + p2)cn = p1

n
∑

k=0

ckcn−k + p2

n
∑

k=0

ck.Multiplying by zn and summing leads to
zϕ′(z) + (p1 + p2)ϕ(z) = p1ϕ(z)2 + p2

ϕ(z)

1 − z
. (3.7)Letting ψ = 1/ϕ leads to

z(z − 1)ψ′(z) − (p1(z − 1) + p2z)ψ(z) = p1(1 − z) , (3.8)9
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