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Abstract. We extend some of the results of Pfaffelhuber and Walkobinger on the process
of the most recent common ancestors in evolving coalescent (MRCA) by taking into account
the size of the oldest family which contains the immortal individual. For example we give
an explicit formula for the Laplace transform of the extinction time for the Wright-Fisher
diffusion. We give also an interpretation of the quasy-stationary distribution of the Wrigh-
Fisher process using the process of the relative size of one of the oldest family, which can be
seen as a resurrected Wright-Fisher process.

1. Introduction

Many models have been introduced to describe population dynamics in population genetics.
Fisher [14], Wright [33] and Moran [24] have introduced two models for exchangeable haploid
populations of constant size. A generalization has been given by Cannings [2]. Looking
backward in time at the genealogical tree leads to coalescent processes, see Griffiths [16]
for one of the first papers with coalescent ideas. For a large class of exchangeable haploid
population models of constant size, when the size N tends to infinity and time is measured
in units of “N generations”, the associated coalescent process is Kingman’s coalescent [21]
(see also [26, 27, 23, 28] for general coalescent processes associated with Cannings’ model).
One of the associated object of interest is the most recent common ancestor (MRCA) of the
population currently alive, which is also the depth of their genealogical tree (see [12, 9]). In
the case of Kingman’s coalescent, each couple of particle merges at rate one, which gives
an MRCA of expectation 2, or an expectation equivalent to 2N generations in the discrete
case (see [12] for more results on this approximation and [fu2006ecw for exact coalescent for
the Wright-Fisher Model). MRCAs have been studied for many other models (see e.g. [4]
for a more relevant model for human population, where the position MRCA of a population
of N individuals is almost log2 N generations ago). In the special case of Fleming-Viot
processes, which genealogies at a fixed time are given by Kingman’s coalescent, [15] have
introduced a tree-valued process as solution of a martingale problem that represents the
evolving genealogies.

In Moran model (finite population size) and in Wright-Fisher model with infinite popula-
tion size, only two lineages can merge at a time and the genealogy at a given time is given
by Kingman’s coalescent. At time t the population is divided in two “oldest” families each
one born from one of the two children of the MRCA. Let Xt and 1 − Xt denote the relative
proportion of those two oldest families. One of this two oldest families will disappear (in the
future). Let Yt be the relative size of the oldest family which will fixate: either Yt = Xt or
Yt = 1− Xt. In a sense Yt is the size of the oldest family to which belongs the immortal line
of descent (or the immortal individual). Notice that Xt can be estimated (for example using
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DNA analysis of neutral mutation) at time t whereas Yt is not observable at time t. When
Xt hits 0 or 1, that is when Yt hits 1, one of the two oldest family disappear and there is a
change of MRCA. At this time two new oldest families appear. This corresponds to a jump
of the processes X = (Xt, t ∈ R) and Y = (Yt, t ∈ R).

For the Wright-Fisher model with infinite population size, in between two jumps the process
X is a Wright-Fisher (WF) diffusion on [0, 1]: dXt =

√

Xt(1 − Xt)dBt, where B is a standard
Brownian motion. The two absorbing states 0 and 1 are reached in finite time. In between
two jumps the process Y is a WF diffusion on [0, 1] conditioned not to reach 0: dYt =
√

Yt(1 − Yt)dBt +(1−Yt)dt. The WF diffusion and its conditioned version have been largely
used to model allelic frequencies in a neutral two-types population, see [12, 17, 9]. Using
the look-down representation for the genealogy introduced by Donnelly and Kurtz [7, 8], we
prove rigorously, see Corollary 2.2, that at a jump time the law of X, µ0, is the uniform
distribution on [0, 1], and that the law of Y, µ1, is the size-biased distribution of µ0, that is
the beta (2, 1) distribution. The process X can be seen as a resurrected WF diffusion with
resurrection distribution µ0. It is then easy to check that µ0 is also the invariant measure
of X. Indeed, according to Lemma 2.1 of [5] (see also the pioneer work of [13] in a discrete
setting), µ is a quasy-stationary measure of a process killed when it reaches a set ∆ if and
only if µ is the stationary measure of the corresponding resurrected process which jumps with
resurrection measure µ when it reaches the set ∆. See Section 3.1 for a precise statement.
Then the conclusion follows as µ0 (resp. µ1) is the Yaglom limit of the (resp. conditioned)
WF diffusion, see [12, 17] and also [3]. In Section 3, we check that the measure µ0 (resp.
µ1) is the only quasy-stationary measure for the (resp. conditioned) WF diffusion. A similar
result is also true for the Moran model. In this case also, the quasy-stationary measure can
be seen as the distribution of the size of one of the two oldest family. There is no such
interpretation for the WF model for finite population, see Remark 3.2.

To establish Corollary 2.2, we use the look-down process, which gives a representation of
the genealogy for the WF model of a population with infinite size. Following Pfaffelhuber
and Walkobinger [25], we are interested in the distribution of the following quantities:

• A: the birth time of MRCA for the current population
• τ ≥ 0: the time to wait before a change of MRCA happens (the hitting time of {0, 1}

for X).
• L′ ∈ N

∗: the number of living individuals which will have descendants at time τ .
• Z ∈ {0, . . . , L′}: the number of living individuals which will become MRCA in the

future.

Recent papers give an exhaustive study of birth dates and death times of MRCA, see
[25] and also [29] (see also [11] for genealogies of continuous state branching processes). In
particular the birth dates of MRCA, as well as the death times of MRCA, are distributed
according to a Poisson process, see [25].

The distribution of (τ, L′, Z) is given in [25]. In particular, τ is an exponential random
variable with mean 1. We give, see Corollary 1.1 below, the joint distribution of (A, τ, L′, Z)
at time t conditionally on Yt or Xt, where t is either fixed or an MRCA death time. The
study of this conditional distribution is also motivated by the fact that the relative size of
the current two oldest families, Xt, can be inferred from available DNA data at time t. By
stationarity, for fixed t, this distribution does not depend on t. It is also the same, but for
A, at the death time of an MRCA (the argument is the same as in the proof of Theorem 2
in [25]). This property is the analogue of the so-called PASTA (Poisson Arrivals See Time
Average) property in queuing theory, see [1] for a review on this subject.
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Let (Ek, k ∈ N
∗) be independent exponential random variables with mean 1.We denote by

TK =
∑

k≥1
2

k(k+1)Ek the lifetime of a Kingman coalescent process, and TT =
∑

k≥2
2

k(k+1)Ek.

Corollary 1.1. At a fixed time t or at the death time of an MRCA, we have:

(1) A is independent of (Y,X, τ, L′, Z), and is distributed as TK at a fixed time and as

TT at the death time of an MRCA.

(2) Conditionally on Y , X and (τ, L′, Z) are independent.

(3) Conditionally on (Y,L′), τ and Z are independent.

(4) Conditionally on Y , we have X = εY + (1 − ε)(1 − Y ) where ε is an independent

random variable such that P(ε = 1) = P(ε = 0) = 1/2.
(5) Conditionally on Y , L′ is geometric with parameter 1 − Y .

(6) Conditionally on (Y,L′), τ =
∑∞

k=L′

2
k(k+1)Ek, where (Ek, k ∈ N

∗) are independent

exponential random variables with mean 1 and independent of (Y,L′).
(7) For u ∈ [0, 1], and a ≥ 1,

E[uZ |Y,L′ = a] =











1 if a = 1

u

3

a + 1

a − 1

a−1
∏

k=2

(

1 +
2u

(k − 1)(k + 2)

)

if a ≥ 2

We also give the first two moments of Z and τ in Section 2. The proof of 1) is a direct
consequence of Kingman’s coalescent (for fixed t) or of [31] (for the death time of MRCA)
and the fact that the coalescent times (and thus the birth time of the MRCA A) does not
depend on the coalescent tree shape. This last property can be deduced from [32], Section
3. In particular, A does not depend on (X,Y,L′, Z) neither on τ which conditionally on the
past depends only on the coalescent tree shape (see Section 2.4).

We deduce 2-7 from Section 2, where L′ = L − 1. Our results also give a detailed proof
of the heuristic arguments of Remarks 3.2 and 7.3 in [25]. From the conditional distribution
of τ , we recover formula from Kimura and Otha [19, 20] of its conditional expectation (11)
and conditional variance (12). Notice the Laplace transform of τ conditionally on Xt = x:
f(x) = E[e−λτ |Xt = x] solves the ODE: Lf = λf , f(0) = f(1) = 1, where L is the generator
of the WF diffusion: Lh(x) = x(1 − x)h′′(x) in (0, 1). Remark that 6) implies that τ is an
exponential random variable with mean 1.

We shall end by a proposition on the connection between Z and τ .

Proposition 1.2. We have for all λ ≥ 0:

E[e−λTK ]E[(1 + λ)Z |Y,L′] = E[e−λτ |Y,L′].

In particular, we also have

(1) E[e−λTK ]E[(1 + λ)Z |X] = E[e−λτ |X].

Notice that we also immediately get the following relation for the first moments:

E[Z|Y,L′] = 2 − E[τ |Y,L′],(2)

E[Z2|Y,L′] = E[τ2|Y,L′] − 5E[τ |Y,L′] + 18 −
4π2

3
.(3)

We have used that E[T 2
K ] =

4π2

3
− 8 for the last equality.

Remark 1.3. At the MRCA death time, we have a new MRCA which is born at A in the past
and will die at τ in the future. On one hand, by looking at the death time of this new MRCA,
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Kingman’s coalescent theory implies that A+ τ is distributed as TK . As the coalescent times
are independent of the structure of the coalescent tree, we get that A and τ are independent.
On the other hand, there are Z living future MRCA and one new MRCA. We deduce that the
new MRCA is the Z +1-th point in the past of the birth dates of MRCA process. This latter
is a Poisson point process with intensity 1, which is a direct consequence of the look-down
representation of the genealogy. Intuitively, we could think that the new MRCA date of birth,
A, is distributed as the sum of Z + 1 independent exponentials of parameter 1. This result
is false, as one can easily check by computing Laplace transform; this is because the Poisson
point process of the MRCA births is not independent of Z. However, this result is partially
true at least for the conditional expectation thanks to (2). The link between the distribution
of TK and the joint distribution of τ and Z (which are independent conditionally on (Y,L))
is given by equation (1).

.
The results are presented in Sections 2 and 3, and the proofs are postponed to Section 4.

2. Presentation of the main results on the conditional distribution

2.1. The look-down process and notations. The look-down process [7] and the modified
look-down process [8] have been introduced by Donnelly an Kurtz to give the genealogical
process associated to a diffusion model of population evolution (see also [10] for a detailed
construction for the Fleming-Viot process). This powerful representation is now currently
used

We briefly recall the definition of the modified look-down process, without taking into
account any spatial motion for the individuals. Consider an infinite size population evolving
forward in time. Let E = R × N

∗. Each (s, i) in E denotes the (unique) individual living
at time s and level i. This level is affected according to the persistence of each individual:
the higher the level is, the faster the particle will die. Let (Ni,j , 0 ≤ i < j) be independent
Poisson processes with rate 1. At a jumping time t of Nij , the individual (t−, i) reproduces
and its unique child appears at level j. At the same time every particle having level least j
is pushed one level up (see Figure 1). These reproduction events involving levels i and j are
called look-down events (as j looks down at i).

Figure 1. A look-down event between levels 1 and 3. Each individual living
at level at least 3 before birth is pushed one level up after the birth.

For any fixed time t0, we can introduce the following family of equivalence relations R(t0) =

(R
(t0)
s , s ≥ 0): iR

(t0)
s j if the two individuals i and j living at time t0 have a common ancestor
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at time t0 − s. It is then easy to show that the coalescent process on N
∗ defined by R(t0) is

the Kingman’s coalescent. See Figure 2 for a graphical representation.

Figure 2. The look down process and its associated coalescent tree, started
at time t for the 5 first levels. At each look-down event, a new curve is born.
We indicate at which level this curve is at time t. In bold the curve of the
individual who is at level 5 at time t.

We can describe the path of an individual born at level j ≥ 2 at time s0 as a curve in E

G =
⋃

k∈N

[sk, sk+1) × {j + k},

where for k ∈ N
∗, sk is the first birth time after sk−1 of an individual with level less than

j + k + 1. In particular G describes the different levels occupied by the individual born at
time s0. In fact we shall identify an individual with its curve. We shall write bG = s0 for the
birth time of individual G. We say that dG = limk→∞ sk is the death time of this individual.
We say an individual or a curve is alive at time t if bG ≤ t < dG, and k is the level of G at
time t if (t, k) ∈ G. The set of all the curves, G, is a partition of E∗ = R×{2, . . .}. We write
Gt for the set of all curves alive at time t. Notice that the individual at level 1 is immortal
and that by definition, its curve R × {1} is not in G. An individual at level j is pushed at

rate
(

j
2

)

at level j +1 (since there are
(

j
2

)

possible independent look-down events which arrive

at rate 1 and which push an individual living at level j). Since
∑

j≥2 1/
(

j
2

)

< ∞, we get that
any individual but the one at level 1 dies in finite time.
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In the study of MRCA, some curves will play a particular role. We say that a curve G
is a fixation curve if (bG, 2) ∈ G: the corresponding individual is born at level 2; the initial
look-down event was from 2 to 1.

For a fixed time t, let Gt be the living MRCA of the whole population living at time t.
Notice the birth of the MRCA is At = inf{bG;G ∈ Gt} = bGt . It corresponds to the birth
time of the highest fixation curve living at time t. Let Zt + 1 denote the number of fixation
curves living at time t: Zt ≥ 0 is the number of future MRCA living at time t. We denote
by L0(t) > L1(t) > · · · > LZt(t) the decreasing levels of the fixation curves alive at time t.
The joint distribution of (Zt, L0(t), L1(t), . . . , LZt(t)) is given in Theorem 2 of [25], and the
distribution of Zt, the number of future MRCA alive at fixed time t, is given in Theorem 3
of [25]. We consider the partition of the population into the two oldest family given by the

equivalence relation R
(t)
t−At

. This corresponds to the partition of individuals alive at time t
whose ancestor is either Gt or the immortal individual. We shall denote by Yt the relative
proportion of the sub-population whose ancestor at time At is the immortal individual, that
is the oldest family which contains the immortal individual. Let Xt be the relative proportion
of an oldest family picked at random: with probability 1/2 it is the one which contains the
immortal individual and with probability 1/2 the other one.

By stationarity, we have that the distribution of Ht = (Xt, Yt, Zt, L0(t), L1(t), . . . , LZt(t))
does not depend on t. In between two MRCA deaths, the process (Xt, t ∈ R) is a Wright-
Fisher diffusion with generator 1

2 x(1 − x)∂2
x and the process (Yt, t ∈ R) is a Wright-Fisher

diffusion conditioned to die at 1 with generator 1
2 x(1 − x)∂2

x + (1 − x)∂1
x, see [9, 17]. Notice

the distribution of Zt conditionally on Xt is of interest, as the relative proportion of the two
oldest families at time t, Xt, can be well estimated by DNA analysis if the (neutral) mutation
rate is strong enough.

We are interested in the law of Ht at (random) times where the MRCA changes, as well as
the distribution of the labels of the individuals of the same oldest family. The distributions
of Ht is the same if we consider a fixed time t or this random time (the argument is the
same as in the proof of [25, Theorem 2]). This is the so-called PASTA (Poisson Arrivals
See Time Average) property, see [1] for a review on this subject, where the Poisson process
considered corresponds to the times where the MRCA changes. For this reason, we shall omit
the subscript and write H, and carry the proofs at the death time of an MRCA. Our results
will give a detailed proof of the heuristic arguments of Remarks 3.2 and 7.3 in [25].

2.2. Size of the new two oldest families. We are interested in the description of the
population, and more precisely in the relative size of the two oldest families at the time of
death of an MRCA. More precisely, let G∗ be a fixation curve and G be the next fixation
curve: the individual G is the next MRCA after the MRCA G∗. Let s0 = bG∗

be the birth
time of G∗ and (sk, k ∈ N

∗) be the jumping times of G∗. Notice that s1 = bG corresponds to
the birth of the MRCA G. Let N ≥ 2. Notice that at time sN−1, only the individuals with
level 1 to N will survive up to the death time dG of G. They correspond to the ancestors
at time sN−1 of the population living at time dG. We consider the partition into 2 subsets

given by R
(sN−1)
sN−1−s0

which corresponds to the partition of individuals alive at time sN−1 with
labels 1 to N whose ancestor is either G or the immortal individual. Consider the ancestor
at time s0 of the individual at level k ∈ {1, . . . , N} and time sN−1, and let σN (k) = 1 if it is

the immortal individual and σN (k) = 0 if it is G. Let VN =
∑N

k=1 σN (k) be the number of
individuals at time sN−1 whose ancestor at time s0 is the immortal individual, see Figure 3
for an example. Notice that limN→∞ VN/N will be the proportion of the oldest family which
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contains the immortal individual at the death time of the MRCA G∗. By construction the
process (σN , N ∈ N

∗) is Markov.

Figure 3. In this example, at time s5, we have σ6 = (1, 1, 1, 0, 1, 0) and V6 = 4.

In order to give the law of (VN , σN ) we first recall some facts on Pólya’s urns, see [18].

Let S
(i,j)
N be the number of green balls in an urn after N drawing, when initially there was i

green balls and j of some other color in the urn, and where at each drawing, the chosen ball

is returned together with one ball of the same color. The process (S
(i,j)
N , N ∈ N) is a Markov

chain, and for ℓ ∈ {0, . . . , N}

P

(

S
(i,j)
N = i + ℓ

)

=

(

N

ℓ

)

(i + ℓ − 1)!(j + N − ℓ − 1)!(i + j − 1)!

(i − 1)!(j − 1)!(i + j + N − 1)!
·

In particular, for i = 2, j = 1 and k ∈ {1, N + 1}, we have

(4) P(S
(2,1)
N = k + 1) =

2k

(N + 2)(N + 1)
·

Theorem 2.1. Let N ≥ 2.

(1) The process (1 + VN+2, N ∈ N) is a Pólya’s urn starting at (2, 1). In particular, VN

has a size-biased uniform distribution on {1, . . . , N − 1}, i.e.

P(VN = k) =
2k

N(N − 1)
·

(2) Conditionally on (V1, . . . , VN ), σN is uniformly distributed on the possible configura-

tions: {σ ∈ {0, 1}N ;σ(1) = 1 and
∑N

k=1 σ(k) = VN}.
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In general, if N0 ≥ 3, the process (VN0+N , N ∈ N) conditionally on σN0
can not be described

using Pólya’s urns.
Results on Pólya’s urns, see [18, Section 6.3.3], give that (VN/N,N ∈ N

∗) converges a.s. to
a random variable Y with a beta distribution with parameters (2, 1). This gives the following
result.

Corollary 2.2. When the MRCA changes, the relative proportion Y of the new oldest family

which contains the immortal individual is distributed as a beta (2, 1).

If one chooses a new oldest family at random (with probability 1/2 the one which contains
the immortal individual and with probability 1/2 the other one), then its relative proportion
X is uniform on (0, 1). This is coherent with the Remark 3.2 given in [25]. Notice that Y has
the size biased distribution of X, which corresponds to the fact that the immortal individual
is taken at random from the two oldest families with probability proportional to their size.

2.3. Level of the next fixation curve. We keep notations from the previous section. Let
L(N) be the level of the fixation curve G when the fixation curve G∗ reaches level N +1, that
is at time sN−1. Notice that L(N) belongs to {2, . . . , VN + 1}. The law of (L(N), VN ) will be
useful to give the joint distribution of (Z, Y ), see Section 2.5. It also implies (6) which was
already given by [25, Lemma 7.1]. Note that the process is an inhomogeneous Markov chain
[25, Lemma 6.1].

Proposition 2.3. Let N ≥ 2.

(1) For k ∈ {1, . . . , N − 1} and i ∈ {2, . . . , k + 1},

(5) P(L(N) = i, VN = k) = 2
(N − i)!

N !

k!

(k − i + 1)!

N − k

N − 1
,

and for all i ∈ {2, . . . , N},

(6) P(L(N) = i) =
N + 1

N − 1

2

(i + 1)i
·

(2) The sequence ((L(N), VN/N), N ∈ N
∗) converges a.s. to a random variable (L, Y ),

where Y has a beta (2, 1) distribution and conditionally on Y , L−1 is geometric with

parameter 1 − Y .

The level L corresponds to the level of the MRCA, just after a change of MRCA. Recall
L1(t) is the level at time t of the second fixation curve. We use the convention that L1(t) = 1
if there is only one fixation curve i.e. Z(t) = 0. At the random time dG∗

of the death of the
fixation curve G∗, we have L1(dG∗

) = L. And a straightforward computation gives that for
i ∈ N

∗

P(L = i + 1) =
2

(i + 1)(i + 2)
·

At a fixed time t, by stationarity, the distribution of L1(t) does not depend on t, and equation
(3.4) from [25] gives that L1(t) is distributed as L − 1 (and that L is distributed as L1(t)
conditionally on {L1(t) ≥ 2}). This is already pointed out in [25]. In view of Remark 4.1
in [25], notice the result is also similar for M/M/k queue where the invariant measure for
the queue process and the queue process at arrivals time are the same (up to translation of
1 because of our convention). This is known as the PASTA property.
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2.4. Next fixation time. We consider the time dG∗
of death of the MRCA. At this time,

Y is the proportion of the oldest family which contains the immortal individuals. We denote
by τ the time we have to wait for the next fixation time. τ is the time needed by the highest
fixation curve alive at time dG∗

to reach ∞. Hence, by the look-down construction, we get
that

(7) τ =
∞
∑

k=L

2

k(k − 1)
Ek

where Ek are independent exponential random variables with parameter 1.

Proposition 2.4. Let a ≥ 1. The distribution of the waiting time for the next fixation time

is given by: For λ ∈ R+,

(8) E[e−λτ |Y,L = a + 1] =

∞
∏

k=a

(

k(k + 1)

k(k + 1) + 2λ

)

.

Its first two moments are given by:

(9) E[τ |Y,L = a + 1] =
2

a
and E[τ2|Y,L = a + 1] = 8





∑

k≥a

1

k2
−

1

a



 ·

We also have: For y ∈ (0, 1),

(10) E[e−λτ |Y = y] = (1 − y)

∞
∑

l=2

yl−2
∞
∏

k=l−1

(

k(k + 1)

k(k + 1) + 2λ

)

.

Notice that using (10) we immediately get that

E[e−λτ ] =
1

1 + λ
,

and recover that τ is exponential with mean 1.
Using the second part of the proposition, we recover the well known results from Kimura

and Ohta [19, 20] (see also [12]):

E[τ |Y = y] = −2
(1 − y) log(1 − y)

y
, and(11)

E[τ2|Y = y] = 8

(

(1 − y) log(1 − y)

y
−

∫ 1

y

log(1 − z)

z
dz

)

,(12)

and

E[τ |X = x] = −2 (x log(x) + (1 − x) log(1 − x)) , and(13)

E[τ2|X = x] = 8

(

x log(x) + (1 − x) log(1 − x) − x

∫ 1

x

log(1 − z)

z
dz(14)

−(1 − x)

∫ 1

1−x

log(1 − z)

z
dz

)

.

We deduce from (9) that E[τ |L = a + 1] =
2

a
, which was already in Theorem 1 in [25].
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2.5. Number of future MRCA already living. We keep notations from Sections 2.1 and
2.3. We set Z = ZdG∗

the number of future MRCA living at time dG∗
of death of the MRCA

G∗. Let (L,L1, ...., LZ ) = (L0(dG∗
), . . . , LZ(dG∗

)) be the levels of the fixation curves at the
death time of G∗. Recall notations from Section 2.2. The following Lemma and Proposition
2.3 characterize the joint distribution of (Y,Z,L,L1, ...., LZ).

Lemma 2.5. Conditionally on (L, Y ) the distribution of (Z,L1, ...., LZ) does not depend on

Y . Conditionally on {L = N + 1}, (Z,L1, ...., LZ) is distributed as follows:

(1) Z = 0 if N = 1;

(2) Conditionally on {Z ≥ 1}, L1 is distributed as L(N).

(3) For N ′ ∈ {2, . . . , N}, conditionally on {Z ≥ 1, L1 = N ′}, (Z − 1, L2, ...., LZ ) is

distributed as (Z,L1, ...., LZ) conditionally on L = N ′ + 1.

We are now able to give the distribution of Z conditionally on Y or X.

Proposition 2.6. Let a ≥ 1. We have P(Z = 0|L = 2) = 1 and for k ≥ 1,

(15) P(Z = k|Y,L = a + 1) =
2k−1

3

a + 1

a − 1

∑

1<ak<···<a2<a

k
∏

i=2

1

(ai − 1)(ai + 2)
;

for all u ∈ [0, 1],

(16) E[uZ |Y,L = a + 1] =











1 if a = 1

u

3

a + 1

a − 1

a−1
∏

k=2

(

1 +
2u

(k − 1)(k + 2)

)

if a ≥ 2

with the convention that
∏

∅ = 1. We also have

(17) E[Z|Y,L = a + 1] = 2 −
2

a
and E[Z2|Y,L = a + 1] = 18 −

π2

3
−

18

a
+ 8

∑

k≥a

1

k2
·

Corollary 2.7. Let y ∈ [0, 1]. We have P(Z = 0|Y = y) = 1 − y, and: for all k ∈ N
∗,

(18) P(Z = k|Y = y) =
2k−1

3
(1 − y)

∑

1<ak<···<a1<∞

(a1 + 1)(a1 + 2)ya1−1
k

∏

i=1

1

(ai − 1)(ai + 2)
;

for all u ∈ [0, 1]

(19) E[uZ |Y = y] = (1 − y) + u
1 − y

3

∞
∑

a=2

a + 1

a − 1
ya−1

a−1
∏

ℓ=2

(

1 +
2u

(ℓ − 1)(ℓ + 2)

)

,

with the convention that
∏

∅ = 1. We also have

(20) E[Z|Y = y] = 2

(

1 +
1 − y

y
log(1 − y)

)

.

We then deduce the following result.

Corollary 2.8. Let x ∈ [0, 1]. We have P(Z = 0|X = x) = 2x(1 − x), and: for all k ∈ N
∗,

(21) P(Z = k|X = x)

=
2k−1

3
x(1 − x)

∑

1<ak<···<a1<∞

(a1 + 1)(a1 + 2)(xa1−2 + (1 − x)a1−2)
k

∏

i=1

1

(ai − 1)(ai + 2)
;
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for all u ∈ [0, 1],
(22)

E[uZ |X = x] = 2x(1−x)+u
x(1 − x)

3

∞
∑

a=2

a + 1

a − 1
(xa−1 +(1−x)a−1)

a−1
∏

ℓ=2

(

1 +
2u

(ℓ − 1)(ℓ + 2)

)

,

with the convention that
∏

∅ = 1. We also have

(23) E[Z|X = x] = 2 (1 + x log(x) + (1 − x) log(1 − x)) .

The second moment of Z conditionally on Y (resp. X) can be deduced from (19) (resp.
(22)) or from (3) and (12) (resp. (14)).

Some elementary computations give:

P(Z = 0|X = x) = 2x(1 − x),

P(Z = 1|X = x) =
1

3

[

x2 + (1 − x)2 − 2x(1 − x) ln(x(1 − x))
]

,

P(Z = 2|X = x) =
2

3

[

11

6
(x2 + (1 − x)2) − (1 − x) ln(1 − x) − x ln(x)

]

+
2

3
x(1 − x)

[

2 −
π2

3
+ 2 ln(x) ln(1 − x) −

1

3
ln(x(1 − x))

]

.

We recover by integration of the previous equations the following results from [25], that

P(Z = 0) =
1

3
, P(Z = 1) =

11

27
and P(Z = 2) =

107

243
−

2

81
π2.

3. Stationary distribution of the relative size for the two oldest families

3.1. Resurrected process and quasy-stationary measure. Let E be a subset of R. We
recall that if U = (Ut, t ≥ 0) is an E-valued diffusion with absorbing states ∆, we say that a
distribution ν is a quasy-stationary distribution of U if

Pν(Ut ∈ A|Ut 6∈ ∆) = ν(A) ∀A ∈ B(R),

where we write Pν to say that the distribution of U0 is ν. See also [30] for quasi-stationary
distributions for diffusions with killing.

Let µ and ν be two distributions on E\∆. We define the resurrected process Uµ, with
resurrection measure µ, is under Pν associated to U as follows:

(1) U0 is distributed according to ν and Uµ
t = Ut for t ∈ [0, T0[, where T0 = inf{s ≥

0;Us ∈ ∆}.
(2) Conditionally on (T0, {T0 < ∞}, (Uµ

t , t ∈ [0, T0))), (Uµ
t+T0

, t ≥ 0) is distributed as Uµ

under Pµ.

According to Lemma 2.1 of [5], the distribution µ is a quasy-stationary measure of U if and
only if µ is a stationary measure of Uµ. See also the pioneer work of [13] in a discrete setting.

The uniqueness of quasy-stationary distributions is an open question in general. We will
give a genealogical representation of the quasy-stationary distribution for the Wright-Fisher
diffusion and the Wright-Fisher diffusion conditioned not to hit 0, as well as for the Moran
model for the discrete case.

We also recall that the so-called Yaglom limit µ is defined by

lim
t→∞

Px(Ut ∈ A|Ut 6∈ ∆) = µ(A) ∀A ∈ B(R),

provided the limit exists and is independent of x ∈ E\∆.
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3.2. The resurrected Wright-Fisher diffusion. From Corollary 2.2 and comments below
it, we get that the relative proportion of one of the two oldest families at a change of MRCA
is distributed according to the uniform distribution over [0, 1]. Then the relative proportion
evolves according to a Wright-Fisher (WF) diffusion with generator 1

2 x(1−x)∂2
x. In particular

it hits the absorbing state of the WF diffusion, {0, 1}, in finite time. At this time one of the
two oldest family dies out and there is (again) a change of MRCA.

The Yaglom distribution of the WF diffusion exists and is the uniform distribution, see
[12, p. 161], or [17] for an explicit computation. From Section 3.1, we get that in stationary
regime, for fixed t (and of course at time when the MRCA changes) the relative size of one
of the two oldest families taken at random, Xt, is uniform over (0, 1).

Similar arguments as those developed in the proof of Proposition 3.1 yield that the uniform
distribution is the only quasy-stationary distribution of the WF diffusion. Lemma 2.1 in [5]
implies there is no other resurrection measure which is also the stationary measure of the
resurrected process.

3.3. The oldest family with the immortal individual. Let Y = (Yt, t ∈ R) be the pro-
cess of relative size for the oldest family containing the immortal individual. From Corollary
2.2, we get that Y at a change of MRCA is distributed according to the beta (2, 1) distri-
bution. Then Y evolves according to a WF diffusion conditioned not to hit 0; its generator
is given by 1

2 x(1 − x)∂2
x + (1 − x)∂1

x, see [9, 17]. Therefore Y is a resurrected Wright-Fisher
diffusion conditioned not to hit 0, with beta (2, 1) resurrection measure.

The Yaglom distribution of the Wright-Fisher diffusion conditioned not to hit 0 exists
and is the beta (2, 1) distribution, see [17] for an explicit computation. In fact the Yaglom
distribution is the only quasy-stationary distribution according to the next proposition.

Proposition 3.1. The only quasy-stationary distribution of the Wright-Fisher diffusion con-

ditioned not to hit 0 is the beta (2, 1) distribution.

Lemma 2.1 in [5] implies that the beta (2, 1) distribution is therefore the stationary dis-
tribution of Y . Furthermore, the resurrected Wright-Fisher diffusion conditioned not to hit
0, with resurrection measure µ has stationary measure µ if and only if µ is the beta (2, 1)
distribution.

3.4. Resurrected process in the Moran model. The Moran model has been introduced
in [24]. This mathematical model represents the neutral evolution of a haploid population
of fixed size, say N . Each individual gives, at rate 1, birth to a child, which replaces an
individual taken at random among the N individuals. Notice the population size is constant.
Let ξt denote the size of the descendants at time t of a given initial group. The process
ξ = (ξt, t ≥ 0) goes from state k to state k + ε, where ε ∈ {−1, 1}, at rate k(N − k)/N .
Notice that 0 and N are absorbing states. They correspond respectively to the extinction of
the descendants of the initial group or its fixation. The Yaglom distribution of the process
ξ is uniform over {1, . . . , N − 1} (see [12, p. 106]). Since the state is finite, the Yaglom
distribution is the only quasy-stationary distribution.

Let µ be a distribution on {1, . . . , N − 1}. We consider the resurrected process (ξµ
t , t ≥ 0)

with resurrection measure µ. The resurrected process has the same evolution as ξ until it
reaches 0 or N , and it immediately jumps according to µ when it hits 0 or N . The process
ξµ is a continuous time Markov process on {1, . . . , N − 1} with transition rates matrix Λµ
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given by:

Λµ(1, k) =
(

µ(k) + 1{k=2}

) N − 1

N
for k ∈ {2, . . . , N − 1},

Λµ(k, k + ε) =
k(N − k)

N
for ε ∈ {−1, 1} and k ∈ {2, . . . , N − 2},

Λµ(N − 1, k) =
(

µ(k) + 1{k=N−2}

) N − 1

N
for k ∈ {1, . . . , N − 2}.

We deduce from [13], that µ is a stationary distribution for ξµ (i.e. µΛµ = 0) if and only if µ
is a quasi-stationary distribution for ξ, hence if and only if µ is uniform over {1, . . . , N − 1}.

Using the genealogy of the Moran model, we can give a natural representation of the
resurrected process ξµ when the resurrection measure is the Yaglom distribution. Since the
genealogy of the Moran model can be described by the restriction of the look-down process
to E(N) = R × {1, . . . , N}, we get from Theorem 2.1 that the size of the oldest family which
contains the immortal individual is distributed as the size-biased uniform distribution on
{1, . . . , N − 1} when there is a change of MRCA. The PASTA property also implies that this
is the stationary distribution. If, when there is a change of MRCA, we consider at random
one of the two oldest families (with probability 1/2 the one with the immortal individual and
with probability 1/2 the other one), then the size process is distributed as (ξµ

t , t ∈ R) under
its stationary measure, with µ the uniform distribution.

Remark 3.2. We can also consider the Wright-Fisher model (see e.g. [9]) in discrete time
with a population of fixed finite size N , ζ = (ζk, k ∈ N). This is a Markov chain with state
space {0, . . . , N} and transition probabilities

P (i, j) =

(

N

j

)(

i

N

)j (

1 −
i

N

)N−j

.

There exists a unique quasi-stationary measure, µN (which is not the uniform distribution),
see [6]. We deduce that the resurrected process ζµ has stationary measure µ if and only if
µ = µN . Notice, that in this example there is no interpretation of µN as the size of one of
the oldest family at a change of MRCA.

4. Proofs

4.1. Proof of Theorem 2.1. We denote by

AN = {(k1, . . . , kN ); k1 = 1, for i ∈ {1, . . . , N − 1}, ki+1 ∈ {ki, ki + 1}} ,

so that P(V1 = k1, . . . , VN = kN ) > 0 if and only if (k1, . . . , kN ) ∈ AN . Remark that, using
(4), it is enough to show that (VN , N ≥ 2) is a Markov process, and that its transition
probabilities are given by
(24)

P(VN+1 = kN+1|VN = kN , VN−1 = kN−1, . . . , V1 = k1) =

{

1 − kN+1
N+1 if kN+1 = kN

kN+1
N+1 if kN+1 = kN + 1

for N ≥ 2 and (k1, . . . , kN+1) ∈ AN+1 to prove the first part of Theorem 2.1.
For p and q in N

∗ such that q < p, we introduce the set:

∆p,q = {a = (a1, . . . , ap) ∈ {0, 1}p, a1 = 1,#{i, ai = 1} = q}.
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Notice that card(∆p,q) =
(

p−1
q−1

)

. Hence the second part of Theorem 2.1 can be rewritten as

follows: for all (k1, . . . , kN ) ∈ AN , and all a ∈ ∆N,kN
,

P(σN = a|VN = kN , VN−1 = kN−1, . . . , V1 = k1) =
1

(

N−1
kN−1

) ·

We proceed by induction on N for the proof of Theorem 2.1. The result is obvious for
N = 2. We suppose it is true for a fixed N . We denote by IN and JN , IN < JN , the two
levels involved for the jump at time sN . Notice that (IN , JN ) and σN are independent. This
pair is chosen uniformly so that

P(IN = i, JN = j) =
1

(

N+1
2

) =
2

(N + 1)N
,

P(IN = i) =
2(N − i + 1)

(N + 1)N
,

P(JN = j) =
2(j − 1)

(N + 1)N
·

For a =
(

a(1), . . . , a(N +1)
)

∈ {0, 1}N+1 and j ∈ {1, . . . , N +1}, we set aj
X =

(

a(1), . . . , a(j−

1), a(j + 1), . . . , a(N + 1)
)

∈ {0, 1}N .

Let us fix (k1, . . . , kN+1) ∈ AN+1, and a =
(

a(1), . . . , a(N + 1)
)

∈ ∆N+1,kN+1
. Notice that

{σN+1 = a} ⊂ {VN+1 = kN+1}. We first compute

P(σN+1 = a|VN = kN , VN−1 = kN−1, . . . , V1 = k1).

1st case: kN+1 = kN + 1.

P(σN+1 = a|VN = kN , VN−1 = kN−1, . . . , V1 = k1)

=
∑

1≤i<j≤N+1

P(IN = i, JN = j, σN+1 = a|VN = kN , VN−1 = kN−1, . . . , V1 = k1)

=
∑

1≤i<j≤N+1,a(i)=a(j)=1

P(IN = i, JN = j, σN = aj
×|VN = kN , VN−1 = kN−1, . . . , V1 = k1)

=
∑

1≤i<j≤N+1,a(i)=a(j)=1

P(IN = i, JN = j)P(σN = aj
×|VN = kN , VN−1 = kN−1, . . . , V1 = k1)

=
∑

1≤i<j≤N+1,a(i)=a(j)=1

2

(N + 1)N

1
(

N−1
kN−1

)

=
2

(N + 1)N

1
(

N−1
kN−1

)

kN+1(kN+1 − 1)

2

=
kN+1!(N − kN+1 + 1)!

(N + 1)!
.

(25)

We have used the independence of (IN , JN ) and σN for the third equality, the uniform dis-
tribution of σN conditionally on VN for the fourth, and that kN+1 = kN + 1 for the sixth.
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Hence,

P(VN+1 = kN+1|VN = kN , VN−1 = kN−1, . . . , V1 = k1)

=
∑

a∈∆N+1,kN+1

P(σN+1 = a|VN = kN , VN−1 = kN−1, . . . , V1 = k1)

=

(

N

kN+1 − 1

)

kN+1!(N − kN+1 + 1)!

(N + 1)!

=
kN + 1

N + 1
·(26)

Moreover,

P(σN+1 = a|VN+1 = kN+1, VN = kN , VN−1 = kN−1, . . . , V1 = k1)

=
P(σN+1 = a, VN+1 = kN+1|VN = kN , VN−1 = kN−1, . . . , V1 = k1)

P(VN+1 = kN+1|VN = kN , VN−1 = kN−1, . . . , V1 = k1)

=
1

(

N
kN+1−1

) ,

which proves that, conditionally on {VN+1 = kN+1, VN = kN , VN−1 = kN−1, . . . , V1 = k1},
σN+1 is uniformly distributed on ∆N+1,kN+1

.
2nd case: kN+1 = kN . Similarly, we get that

P(σN+1 = a|VN = kN , VN−1 = kN−1, . . . , V1 = k1)

=
∑

1≤i<j≤N+1

P(IN = i, JN = j, σN+1 = a|VN = kN , VN−1 = kN−1, . . . , V1 = k1)

=
∑

1≤i<j≤N+1,a(i)=a(j)=1

2

(N + 1)N

1
(

N−1
kN−1

)

=
2

(N + 1)N

1
(

N−1
kN−1

)

(N + 1 − kN )(N − kN )

2

=
(N − kN )(kN − 1)!(N − kN + 1)!

(N + 1)!
.

Hence,

P(VN+1 = kN+1|VN = kN , VN−1 = kN−1, . . . , V1 = k1)

=
∑

a∈∆N+1,kN+1

P(σN+1 = a|VN = kN , VN−1 = kN−1, . . . , V1 = k1)

=

(

N

N − kN+1 + 1

)

(N − kN )(kN − 1)!(N − kN + 1)!

(N + 1)!

=1 −
kN + 1

N + 1
·



16 JEAN-FRANÇOIS DELMAS, JEAN-STÉPHANE DHERSIN, AND ARNO SIRI-JEGOUSSE

Together with (26), this implies (24). Moreover,

P(σN+1 = a|VN+1 = kN+1, VN = kN , VN−1 = kN−1, . . . , V1 = k1)

=
P(σN+1 = a, VN+1 = kN+1|VN = kN , VN−1 = kN−1, . . . , V1 = k1)

P(VN+1 = kN+1|VN = kN , VN−1 = kN−1, . . . , V1 = k1)

=
1

(

N
N−kN+1+1

) ,

which proves that, conditionally on {VN+1 = kN+1, VN = kN , VN−1 = kN−1, . . . , V1 = k1},
σN+1 is uniformly distributed on ∆N+1,kN+1

.

4.2. Proof of Proposition 2.3. Theorem 2.1 shows that the distribution of σN conditionally
on VN is uniform. Then, if VN = k, we can see L(N) − 1 as the number of draws (without
replacement) we have to do in a two-colored urn of size N − 1 with k− 1 black balls until we
obtain a white ball. Hence, for k ∈ {1, . . . , N − 1} and i ∈ {2, . . . , k + 1},

P(L(N) = i|VN = k) =
k − 1

N − 1

k − 2

N − 2
· · ·

k − i + 2

N − i + 2

N − k

N − i + 1

=
(N − i)!

(N − 1)!

(k − 1)!

(k − i + 1)!
(N − k).

This gives (5).

To get P(L(N) = i), we sum over k in (5):

P(L(N) = i) =
2(N − i)!

N !(N − 1)

N−1
∑

k=i−1

k!

(k − i + 1)!
(N − k)

=
2(N − i)!

N !(N − 1)

N−i
∑

k=0

(k + i − 1)!

k!
(N − i − k + 1)

=
2(N − i)!

N !(N − 1)

N−i
∑

k=0

(k + i − 1)!

k!

N−i
∑

l=k

1

=
2(N − i)!

N !(N − 1)

N−i
∑

l=0

l
∑

k=0

(k + i − 1)!

k!
·

Let us prove by induction that

(27) ∀j ≥ 0,

j
∑

k=0

(k + i − 1)!

k!
=

(i + j)!

j!i
·

It is clear for j = 0. We suppose it is true for a fixed j.

j+1
∑

k=0

(k + i − 1)!

k!
=

(i + j)!

j!i
+

(i + j)!

(j + 1)!

=
(i + j)!(j + 1) + (i + j)!i

(j + 1)!i

=
(i + j + 1)!

(j + 1)!i
,
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which achieves to prove (27). Hence,

P(L(N) = i) =
2(N − i)!

N !(N − 1)

N−i
∑

l=0

l
∑

k=0

(k + i − 1)!

k!

=
2(N − i)!

N !(N − 1)

N−i
∑

l=0

(i + l)!

l!i

=
2(N − i)!

N !(N − 1)

(N + 1)!

(N − i)!(i + 1)i

=
N + 1

N − 1

2

(i + 1)i
,

where we have used (27) for the first and the second equality.

In order to obtain the asymptotic behavior of (L(N), VN/N), we fix i ≥ 2 and v ∈ [0, 1].

P

(

L(N) = i,
VN

N
≤ v

)

=

⌊Nv⌋
∑

k=i−1

P

(

L(N) = i,
VN

N
= k

)

=

⌊Nv⌋
∑

k=i−1

2
(N − i)!

N !

k!

(k − i + 1)!

N − k

N − 1

=
2

N

⌊Nv⌋
∑

k=i−1

k

N − 1

k − 1

N − 2
· · ·

k − i + 2

N − i + 1

N − k

N − 1

N→+∞
−→ 2

∫ v

0
yi−1(1 − y)dy.

4.3. Proof of Proposition 2.4. The Laplace transform (8) comes from (7). To get the
moments, we set g(λ) = E[e−λτ |Y,L = a + 1] and ck = k(k + 1). We have

g′(λ) = −g(λ)
∑

k≥a

1

ck + 2λ
·

Hence

E[τ |Y,L = a + 1] = −g′(0) =
∑

k≥a

2

k(k + 1)
=

2

a
·

We also have

g′′(λ) = g(λ)
∑

k≥a

1

(ck + 2λ)2
+g(λ)

∑

ℓ,k≥a

1

ck + 2λ

1

cℓ + 2λ
·
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Thus we get

E[τ2|Y,L = a + 1] = g′′(0)

= 4
∑

k≥a

1

k2(k + 1)2
+ 4

∑

ℓ,k≥a

1

k(k + 1)

1

ℓ(ℓ + 1)

= 8
∑

k≥a

1

k(k + 1)

∑

ℓ≥k

1

ℓ(ℓ + 1)

= 8
∑

k≥a

1

k2(k + 1)

= 8
∑

k≥a

1

k2
− 4

∑

k≥a

2

k(k + 1)

= 8
∑

k≥a

1

k2
− 4E[τ |Y,L = a + 1].

We get (10) from (8) and Proposition 2.3.

4.4. Proofs of Lemma 2.5, Proposition 2.6 and Corollaries 2.7 and 2.8. We first
notice that Corollary 2.7 is a direct consequence of Proposition 2.6 and the second part of
Proposition 2.3. Corollary 2.8 is a direct consequence of Corollary 2.7. Indeed, the law of X
conditionally on Y is given by:

Y =

{

X with probability X
1 − X with probability 1 − X

Hence we get that

P(Z = k|X = x) = P(Z = k|Y = x)P(Y = x|X = x) + P(Z = k|Y = 1 − x)P(Y = 1 − x|X = x)

= xP(Z = k|Y = x) + (1 − x)P(Z = k|Y = 1 − x).

Then (18) implies (21). Same arguments give (22) from (19) and (23) from (20).

Proof of Lemma 2.5 Let us fix N ≥ 2. We have introduced L(N) the level of the fixation
curve G when the fixation curve G∗ reaches level N + 1, that is at time sN−1. We denote by

ZN the number of other fixation curves alive at this time, and L
(N)
1 > L

(N)
2 > · · · > L

(N)
ZN

= 2
their levels. By construction of the fixation curves, the result given by Lemma 2.5 is straight-

forward for (VN/N,ZN , L(N), L
(N)
1 , L

(N)
2 , ...., L

(N)
ZN

) instead of (Y,Z,L,L1, ...., LZ). Now, us-
ing same arguments as for the proof of the second part of Proposition 2.3, we get that
(

(VN/N,ZN , L(N), L
(N)
1 , L

(N)
2 , ...., L

(N)
ZN

), N ≥ 2
)

converges a.s. to (Y,Z,L,L1, ...., LZ) which
ends the proof.

Proof of Propositions 2.6 First notice that using Lemma 2.5, it is enough to compute
the quantities P(Z = k|L = a + 1). By definition of L and Z, P(Z = 0|L = 2) = 1 and
P(Z = 0|L = a + 1) = 0 for a ≥ 2. We suppose that a ≥ 2. We get P(Z = k|L = a + 1) by
induction on k:
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For k ≥ 1,

P(Z = k|L = a + 1) =
∑

1<a2<a

P(Z = k, L1 = a2 + 1|L = a + 1)

=
∑

1<a2<a

P(Z = k|L1 = a2 + 1, L = a + 1)P(L1 = a2 + 1|L = a + 1)

=
∑

1<a2<a

P(Z = k − 1|L1 = a2 + 1)P(L(a) = a2)

=
∑

1<ak<···a2<a

P(L(ak) = 2)P(L(ak−1) = ak) · · ·P(L(a) = a2),

where we have used Lemma 2.5 for the third and last equalities. Using (6), equation (15)
follows.

An expansion of
∏a−1

k=2

(

1 + 2u
(k−1)(k+2)

)

and (15) immediately give (16). The result of the

first two moments (17) follow from (9) and Proposition 1.2 proved in the next section.

4.5. Proof of Proposition 1.2. We set ck = k(k + 1), bk = ck − 2 = (k − 1)(k + 2) and
w = u − 1. Using (16), we have for a ≥ 3

E[uZ |Y,L = a + 1] =
u

3

a + 1

a − 1

a−1
∏

k=2

bk + 2u

bk

=
u

3

a + 1

a − 1

a−1
∏

k=2

ck + 2w

bk

=
a−1
∏

k=1

ck + 2w

ck

.

This equality is also true for a = 2. And for a = 1, we have E[uZ |Y,L = a + 1] = 1. The
conclusion is then clear from (8) as

E[e−λTK ] =

∞
∏

k=1

ck

ck + 2λ
.

4.6. Proof of Proposition 3.1. Let µ0 be the beta (2, 1) distribution. Using [5], it is enough
to prove that µ0 is the only probability measure µ on [0, 1) such that µ is invariant for Y µ.
Since x 7→ Ex[τ ] is bounded (see (13)), we get that Eµ[τ ] < ∞. As Eµ[τ ] < ∞, it is straight
forward to deduce from standard results on Markov chain having one atom with finite mean
return time (see e.g. [22] for discrete time Markov chains) that Y µ has a unique invariant

probability π which is defined by 〈π, f〉 = Eµ

[
∫ τ

0
f(Ys) ds

]

/Eµ[τ ]. Hence

(28) Eµ[

∫ τ

0
f(Ys)ds] = Eµ[τ ]〈π, f〉.

Let τn be the n-th resurrection time (i.e. n-th hitting time of 1) of the resurrected process
Y µ: τ1 = τ and for n ∈ N

∗, τn+1 = inf{t > τn;Y µ
t− = 1}. The strong law of large numbers

implies that for any real measurable bounded function f on [0, 1),

Pµ − a.s.
1

τn

∫ τn

0
f(Ys)ds → 〈π, f〉.
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For g a C2 function defined on [0, 1], the process Mt = g(Yt)−

∫ t

0
Lg(Ys) ds is a martingale.

Since |Mt| ≤ ‖g‖∞ + t(‖g′‖∞ + ‖g′′‖∞) and Eµ[τ ] < ∞, we can apply the optional stopping
theorem for (Mt, t ≥ 0) at time τ to get that

g(1) − Eµ

[
∫ τ

0
Lg(Ys) ds

]

= 〈µ, g〉·

If a C2 function gλ is an eigenvector with eigenvalue −λ (with λ > 0) such that gλ(1) = 0,
we deduce from (28) that

(29) 〈µ, gλ〉 = λEµ[τ ]〈µ, gλ〉.

Let (aλ
n, n ≥ 0) be defined by aλ

0 = 1 and, for n ≥ 0,

aα
n+1 =

n(n + 1) − 2λ

(n + 1)(n + 2)
aα

n·

Notice that the function
∑∞

n=0 aλ
nxn solves Lf = −λf on [0, 1). For λ =

N(N + 1)

2
and

N ∈ N
∗, notice that PN (x) =

∑∞
n=0 aλ

nxn is a polynomial function of degree N . By continuity
at 1, PN is an eigenvector of L with eigenvalue −N(N + 1)/2, and such that PN (1) = 0 (as
LPN (1) = 0). Notice that P1(x) = 1 − x, which implies that 〈µ,P1〉 > 0. We deduce from
(29) that Eµ[τ ] = 1 and 〈µ,PN 〉 = 0 for N ≥ 2. As PN (1) = 0 for all N ≥ 1, we get
PN (x) = (1 − x)QN−1(x), where QN−1 is a polynomial function of degree N − 1. For the

probability measure µ̄(dx) =
1 − x

〈µ,P1〉
µ(dx), we get that for all N ≥ 1

(30) 〈µ̄, QN 〉 =
〈µ,PN+1〉

〈µ,P1〉
·

Since µ̄ is a probability measure, it is characterized by (30). To conclude, we then just have
to check that µ̄0 satisfies (30). In fact, we shall check the stronger condition that 〈µ0, gλ〉 = 0
for any C2 function gλ eigenvector of L with eigenvalue −λ such that gλ(1) = 0 and λ 6= 1.
We have

−λ〈µ0, gλ〉 = −λ

∫ 1

0
2xgλ(x)dx

=

∫ 1

0
x2(1 − x)g′′λ(x)dx +

∫ 1

0
2x(1 − x)g

′

λ(x)dx

=
[

x2(1 − x)g
′

λ(x)
]1

0
−

∫ 1

0
(2x(1 − x) − x2)g

′

λ(x)dx +

∫ 1

0
2x(1 − x)g

′

λ(x)dx

=

∫ 1

0
x2g

′

λ(x)dx

=
[

x2gλ(x)
]1

0
−

∫ 1

0
2xgλ(x)dx,

which implies 〈µ0, gλ〉 = 0 unless µ = 1.
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