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By measuring or calculating coalescence times for several models of coalescence or evolution, with
and without selection, we show that the ratios of these coalescence times become universal in the
large size limit and we identify a few universality classes.

Random trees appear in many contexts in biology,
mathematics and physics. In evolutionary biology, they
represent the genealogies of reproducing populations. In
physics, random trees appear in many systems such as
DLA (diffusion limited aggregation) [1], coarsening, river
networks [2, 3], diagrams in perturbation theory, ultra-
metric structure of pure states in mean field spin glasses
[4, 5], directed polymers in a random medium [6, 7],
shocks in one-dimensional turbulence [8, 9, 10], etc.

From a mathematical point of view, one of the sim-
plest examples of random trees is Kingman’s coalescent
[11, 12]: it describes the coalescence tree of particles,
where each pair of particles has a probability δt of co-
alescing into a single particle during every infinitesimal
time interval δt. The random tree structures of King-
man’s coalescent are identical to the genealogies obtained
in simple mean field models of neutral evolution such as
the Wright-Fisher model [13, 14]. In such models, each
individual of a population of fixed sizeN at a given gener-
ation gives birth to a random number of offspring and the
population at the next generation is obtained by choosing
N survivors at random among all these offspring. If one
follows the evolution over a large enough number of gen-
erations for the initial condition to be forgotten, a steady
state is reached where the statistics of the genealogical
tree of a large population are identical to those of King-
man’s coalescent.

Other random trees have been considered in the math-
ematical literature, such as the Λ-coalescents [15, 16, 17],
which generalize Kingman’s coalescent and describe a
wider class of mean-field coalescence models [18]. In the
Λ-coalescent, each subset of k particles among n parti-
cles has a probability λn,kδt of coalescing into a single
particle during an infinitesimal time δt. As a set of n
particles can be considered as a subset of a larger set of
n + 1 particles, the rates λn,k have to satisfy some con-
sistency relations: the coalescence of k particles in the
subset of size n happens in two cases : either these k
particles coalesce in the set of size n+ 1 (rate λn+1,k) or
they coalesce together with the (n + 1)-th particle (rate
λn+1,k+1). Therefore

λn,k = λn+1,k + λn+1,k+1. (1)
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This recursion leads to the following general expression
for the coalescence rates [15, 16]:

λn,k =
∫ 1

0

xk−2(1− x)n−kΛ(x) dx, (2)

where Λ is some positive measure on the interval [0, 1].
With these notations, Kingman’s coalescent corresponds
to Λ(x) = δ(x). Another particular case, which has been
studied, in the context of spin glasses, is the Bolthausen-
Sznitman coalescent [19] for which Λ(x) = 1. Trees in the
Kingman’s coalescent and in the Bolthausen-Sznitman
coalescent have different statistical properties.

In order to compare different models of physical or bi-
ological systems which generate random trees and to try
to identify universality classes, we consider here simple
quantities characteristic of these random tree structures.
For a tree with a large number of end points, we define
Tp as the distance one has to go up into the tree to find
the most recent common ancestor of p given points (see
Fig. 1).

For models of evolving populations, the distance Tp is
the age of the most recent common ancestor of p indi-
viduals chosen at random in the population. In general,
it depends both on the generation at which these p in-
dividuals live, but also on the choice of the p individ-
uals, even in the limit of very large trees. This double
source of fluctuations for the Tp is reminiscent of what
happens in mean field spin glasses[5]: as for the over-
laps in Parisi’s theory, the distribution of the Tp remains
broad even when the size of the population becomes very
large[5, 20].

T4
T3

T2

1 2 3 4

FIG. 1: The times Tp are the ages of the most common an-
cestors of p individuals chosen at random.

For a given model, one can try to determine averages
〈Tp〉 or moments 〈(Tp)k〉 of these times Tp (the averages
are taken over all the branches of the tree, i.e. over all the
population at a given generation, and over all the ran-
dom trees, i.e. over all the generations in the language
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of models of evolution). In recent works [21, 22], it was
noticed that for a large class of mean field models of evo-
lution with selection, the ratios of these average times
〈Tp〉 take, for a large population, simple universal val-
ues indicating that the genealogical trees are distributed
according to the statistics of the Bolthausen-Sznitman
coalescent. Theferefore, at the mean field level and for a
large size of the population, two universality classes seem
to emerge for models of evolution: Kingman’s trees in the
case of neutral evolution for which

〈T3〉
〈T2〉

=
4
3
,
〈T4〉
〈T2〉

=
3
2
,
〈T 2

2 〉
〈T2〉2

= 2,
〈T 2

3 〉
〈T2〉2

=
26
9
, (3)

and Bolthausen-Sznitman’s trees in the case of selection:

〈T3〉
〈T2〉

=
5
4
,
〈T4〉
〈T2〉

=
25
18
,
〈T 2

2 〉
〈T2〉2

= 2,
〈T 2

3 〉
〈T2〉2

=
11
4
. (4)

The goal of the present work is to try to measure these
coalescence ratios for other models of evolution, in par-
ticular to analyse the effect of spatial fluctuations, and
to argue that directed polymers in a random medium are
in the same universality classes as evolution models in
presence of selection.

The paper is organized as follows. In section I we con-
sider, at the mean field level or in finite dimension, coa-
lescence models which are equivalent, as we will see, to
neutral models of evolution. Above two dimensions of
space, the coalescence trees have the same statistics [23]
as in mean field with coalescence times given by Eq. (3),
whereas in one dimension, they lead to a different uni-
versality class for which we compute the ratios of coa-
lescence times. In section II, we consider the trees of
optimal paths in the problem of directed polymers in a
random medium. Our numerical results will show that
at the mean field level, the trees satisfy the Bolthausen-
Sznitman statistics Eq. (4), whereas the ratios of coa-
lescence times vary with dimension as expected by the
known universality classes of the problem.

I. COALESCENCE AND MODELS OF
NEUTRAL EVOLUTION

A. Kingman’s coalescent

Kingman’s coalescent [11, 12] is a mean field model of
coalescing particles: during each infinitesimal time inter-
val δt every pair of particles has a probability of coalesc-
ing into a single particle. Therefore if one starts with
p particles, there is a random waiting time τp until a
coalescence event occurs when these p particles become
p− 1 particles. Then there is another random time τp−1

until a pair among these p − 1 particles coalesce (and
one is left with p− 2 particles), and so on. The times τk
are independent and distributed according to exponential
distributions

ρk(τk) =
k(k − 1)

2
exp

(
−k(k − 1)

2
τk

)
, (5)

and the time Tp for p particles chosen at random to coa-
lesce is given by:

Tp = τp + τp−1 + · · ·+ τ3 + τ2. (6)

This allows one to recover easily the values of Eq. (3). In
fact the whole generating functions of the times Tp can
be calculated:

〈
eλTp

〉
=

p∏
k=2

k(k − 1)
k(k − 1)− 2λ

. (7)

In particular one can notice that the time T2 has an ex-
ponential distribution.

B. Wright-Fisher model

The Wright-Fisher model [13, 14] is one of the simplest
neutral models of an evolving population. It describes a
population of constant size N with non-overlapping gen-
erations and asexual reproduction. At each generation,
all the population is replaced by N new individuals with
the following rule: each individual at a given generation
has its parent randomly chosen among the N individu-
als at the previous generation. If one goes backward in
times, the lineage of an individual performs a random
walk on a fully connected graph of N sites. Following
the lineages of p individuals is the same as following p
coalescing random walks on this fully connected graph.
Since the random walks are independent, the statistics of
coalescence times can be easily calculated [11, 12]: for p
individuals chosen at random at generation g, the time Tp
is the age of their most recent common ancestor, i.e. Tp is
the number of time steps for the p random walkers on the
fully connected graph to coalesce. At each generation in
the past, two distinct lineages have a probability 1/N of
merging, thus T2 scales as the size N of the population.
For fixed p > 2, the probability that a pair of lineages
coalesce is 1/N whereas multiple coalescences occur with
higher powers of 1/N for large N . One can then neglect
these multiple coalescences and

Tp ' N(τp + τp−1 + · · ·+ τ3 + τ2), (8)

where the times τk are distributed according to Eq. (5),
implying that the statistics of the times Tp are exactly
the same as in Kingman’s coalescent Eq. (3).

C. Coalescing random walks in finite dimension

We are now going to look at coalescing random walks
on an hypercube of N = Ld sites in dimension d with
periodic boundary conditions. We consider the continu-
ous time case, where during infinitesimal time interval δt,
each walker on the hypercube has a probability δt of hop-
ping to each of its neighboring sites, and whenever two
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walkers occupy the same site, they instantaneously coa-
lesce into a single walker. If T2(~r) is the coalescence time
between two walkers at a distance ~r apart, its evolution
is

T2(~r) =

{
δt+ T2(~r) with probability 1− 4d δt,
δt+ T2(~r + ~ei) with probability 2δt,

(9)
where ~ei is one of the 2d unit vectors on the hypercubic
lattice.

It is clear that the distance between the two walkers
performs a random walk and that T2 is simply the first
time that this distance vanishes. This is of course a very
well known first passage problem [24, 25] which can be
solved easily (it reduces to the inversion of a Laplacian):
the generating function of T2(~r) satisfies for δt � 1 and
for ~r 6= 0

〈
eλT2(~r)

〉
= eλδt

[
(1− 4d δt)

〈
eλT2(~r)

〉
+ 2δt

2d∑
i=1

〈
eλT2(~r+~ei)

〉]
, (10)

where 〈·〉 denotes an average over all the random walks.
At ~r = 0, it satisfies the boundary condition〈

eλT2(~0)
〉

= 1. (11)

For ~r 6= ~0, one can rewrite Eq. (10) as

λ
〈
eλT2(~r)

〉
+2

2d∑
i=1

[〈
eλT2(~r+~ei)

〉
−
〈
eλT2(~r)

〉]
= 0, (12)

and this can be easily solved in Fourier space to give〈
eλT2(~r)

〉
= A(λ)

L−1∑
n1=0

· · ·
L−1∑
nd=0

exp 2iπ~n.~r
L

λ+ 4
∑d
i=1(cos 2πni

L − 1)
,

(13)
where the constant A(λ) is fixed by the condition of
Eq. (11).

Starting with two particles at random positions on the
lattice and averaging over these two positions leads to

〈
eλT2

〉
=

1 +
∑
~n 6=0

λ

λ+ 4
∑d
i=1(cos 2πni

L − 1)

−1

. (14)

This implies that

〈T2〉 =
∑
~n 6=0

1

4
∑d
i=1(1− cos 2πni

L )
, (15)

〈T 2
2 〉 = 2

∑
~n 6=0

1

4
∑d
i=1(1− cos 2πni

L )

2

+ 2
∑
~n 6=0

[
1

4
∑d
i=1(1− cos 2πni

L )

]2

.

(16)

For large L, it is well known [24, 25] that Eq. (15) gives

〈T2〉 ∝


L2 for d = 1,
L2 lnL for d = 2,
Ld for d > 2.

(17)

On the other hand, one can show that the second term in
the right-hand-side of Eq. (16) grows as Ld in dimension
d > 4 and as L4 in dimension d < 4. Therefore for d ≥ 2,
the ratio 〈T 2

2 〉/〈T2〉2 goes to 2 when L → ∞, as in the
mean field case Eq. (3).

In fact it has been proved [23, 26] that in d ≥ 2 (and
for large L) the whole genealogies of p individuals (aver-
aged over all their positions) are given by the Kingman
coalescent, up to the rescaling (17). In particular the
distribution of the time T2 is exponential.

D. Coalescing random walks in one dimension

In dimension d < 2, the two terms in the right-hand-
side of Eq. (16) are comparable, and the ratio 〈T 2

2 〉/〈T2〉2
no longer converges to 2.

In dimension d = 1 the calculation of all the moments
of the times Tp is rather straightforward. First one can
easily solve Eq. (12) for periodic boundary conditions
with condition Eq. (11) and one gets

〈
eλT2(r)

〉
=

(
4−λ+

√
λ2−8λ

4

)L
2 −r

+
(

4−λ+
√
λ2−8λ

4

)r−L
2

(
4−λ+

√
λ2−8λ

4

)L
2

+
(

4−λ+
√
λ2−8λ

4

)−L
2

.

(18)
For large L, this becomes a scaling function of λL2 and
of r/L

〈
eλT2(r)

〉
'

cos (L−2r)
√
λ

2
√

2

cos L
√
λ

2
√

2

=
sin r

√
λ√
2

+ sin (L−r)
√
λ√

2

sin L
√
λ√
2

(19)
and, averaging over r, one gets

〈
eλT2

〉
' 2
√

2
L
√
λ

tan
L
√
λ

2
√

2
, (20)

which shows that the distribution of T2 is no longer ex-
ponential.

One can write down the equations satisfied by the
generating functions of the times Tp. For large L and
λ = O(L−2) the solution is

〈
eλTp(r1,...,rp)

〉
'

p∑
k=1

sin(rk
√
λ/2)

sin(L
√
λ/2)

, (21)

where the rk are the distances between consecutive par-
ticles along the ring (one has of course r1 + · · ·+rp = L).
In particular, for p = 2, r1 = r and r2 = L−r, one recov-
ers Eq. (19). Averaging Eq. (21) over all the positions of
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the p particles on the ring leads to

〈
eλTp

〉
' p(p− 1)

∫ 1

0

dx
sin(Lx

√
λ/2)

sin(L
√
λ/2)

(1− x)p−2. (22)

From Eq. (22) one can then obtain all the moments of
〈Tp〉. For example, one has

〈Tp〉 '
(p− 1)(p+ 4)

12(p+ 1)(p+ 2)
L2 (23)

and one can show

〈T3〉
〈T2〉

=
7
5
,
〈T4〉
〈T2〉

=
8
5
,
〈T 2

2 〉
〈T2〉2

=
12
5
,
〈T 2

3 〉
〈T2〉2

=
124
35

, (24)

in contrast with Eq. (3) and Eq. (4).
One could repeat the calculations which lead to

Eqs. (15, 16, 17) and Eq. (24) for models of coalescence
on other lattices or with more general jumping rates. As
long as the motion of the coalescing particles remains
diffusive, one would recover the same values Eq. (3) or
Eq. (24) for the statistics of the trees.

E. Neutral evolution in finite dimension

One can try to generalize the Wright-Fisher model to
the finite dimensional case, for example by considering an
hypercube with a finite population of fixed size m on each
lattice site, and the case where each individual chooses
its parent in the previous generation with a probability p
on the same lattice site and with probability 1−p on one
of the neighboring sites. The study of the genealogies in
this case is obviously the same problem as following the
coalescences of the lineages which perform random walks
on this lattice. Therefore in dimension d = 2 and above,
the trees are given by the statistics Eq. (3) of Kingman’s
coalescent whereas in dimension d = 1 they will be in the
universality class Eq. (24) of coalescing random walks in
one dimension.

II. DIRECTED POLYMERS IN A RANDOM
MEDIUM

Directed polymers in a random medium is one of
the simplest examples of a strongly disordered system
[7, 27, 28, 29]. It describes directed paths in a random
energy landscape. In its zero temperature version, the
problem reduces to finding the optimal path, i.e. the path
of minimal energy in this random energy landscape. The
optimal paths starting at the same point but arriving at
different points give rise to a tree structure, that we try to
characterize in this section by measuring the coalescence
times Tp.

A directed polymer in dimension d+1 is a line extend-
ing in one of the directions (traditionnaly called “time”,
and which we represent as the vertical direction in Fig. 2

B C

A

FIG. 2: (Left) a directed polymer in dimension 1 + 1. The
“time” direction is vertical. (Right) A directed polymer arriv-
ing at A comes either from B or from C, whichever is more
energetically favorable: In the example shown, the coales-
cence time of the directed polymers arriving at B and C is
four.

and Fig. 3) with some random excursions in the d other
transverse directions (see Fig. 2).

We consider here directed polymers on a lattice which
is infinite in the “time” direction but finite and periodic
in the d transverse directions. In each time section, there
are N = Ld sites located on a d-dimensional hypercube
of linear size L with periodic boundary conditions. Each
site in a given time section is connected to M = 2d sites
in the previous time section (and it is also connected
to M other sites in the next time section). The way
each site is connected is shown for dimension 1 + 1 in
Fig. 2. In higher dimension, we generalized the lattice
of Fig. 2 in the following way: let ~x = (x1, x2, . . . , xd)
be the transverse coordinates of a given site; the xi are
integers at even times and half-integers at odd times, and
the M = 2d potential parent sites of ~x have coordinates
(x1 ± 1/2, x2 ± 1/2, . . . , xd ± 1/2) in the previous time
section.

We consider also a mean-field version (Fig. 3), where
there is no spatial structure in the transverse directions:
A time section consists of a set of N sites, and each of
them is connected to M sites chosen at random among
the N sites of the previous time section, where M might
be any number between 2 and N .

FIG. 3: Directed polymer in mean-field. At a given time, each
of the N = 4 sites is connected to M = 2 random sites at the
previous time.

We assume that each link (AB) between two connected
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sites A and B carries a random energy ε(AB). The energy
E of the polymer is then the sum of all the energies ε(AB)

of the visited links.
We choose an origin where the polymer starts, and for

any given site A on the lattice, we call EA the minimal
energy of the polymer over all the possible directed paths
connecting this origin to A. At zero temperature, the
directed polymer chooses the path which minimizes its
energy and one has the simple recursion relation

EA = min
(
EB + ε(AB), EC + ε(AC), · · ·

)
, (25)

where B, C, . . . are the M potential parent sites of site
A.

For any pair of sites A and A′ in the same time sec-
tion, we define their coalescence time (see Fig. 2) as the
number of up steps during which the two optimal paths
arriving at A and A′ differ (we suppose that the origin
of the directed polymers is at a remote enough time in
the past for the paths to coalesce). In a similar way, we
define the coalescence times of any group of p different
sites as the maximal coalescence time of any pair within
the p sites. All these quantities depend on the chosen
sites and on the realization of the disorder, and, as in
the previous section, we note by 〈·〉 the average over the
choice of sites and the disorder. In this section, we con-
sider the averaged coalesence time 〈Tp〉 and the averaged
square of the coalesence time 〈T 2

p 〉 of p sites.
We have simulated four models in dimension 1 + 1;

from top to bottom on Fig. 4:

• on the lattice of Fig. 2 with a discrete distribution
of ε with values ε = 0 or ε = 1 with probabilities
1/2,

• on the lattice of Fig. 2 with a uniform distribution
of ε in [0, 1],

• on the lattice of Fig. 2, with negative values of ε,
distributed according to ρ(ε) = eε θ(−ε)

• on a square lattice where each site is connected to
M = 3 parents (just above itself, on its right and on
its left) where ε takes positive values, with an expo-
nentially decreasing distribution: ρ(ε) = e−ε θ(+ε).

In dimension 2+1, we have simulated three models all on
the lattice with M = 4 ancestors described above; from
top to bottom on Fig. 4:

• with an exponentially increasing distribution:
ρ(ε) = e+ε θ(−ε)

• with a uniform distribution of ε in [0, 1],

• with an exponentially decreasing distribution:
ρ(ε) = e−ε θ(+ε).

Finally, we have simulated two models in mean-field with
a uniform distribution of ε in [0, 1] and either M = 2 or
M = 4 random ancestors for each site (M = 2 is above

M = 4 in Fig. 4.). Our data for all these models are plot-
ted together with the same symbol for each dimension to
emphasize the universality of our results.

To measure the Tp’s, the conceptualy simplest way
is to update a N × N matrix containing for all
pairs (i, j) of individuals the time T2(i, j) of their
most commun ancestor. Indeed, for an arbitrary
number p of individuals, one has Tp(i1, . . . , ip) =
max[T2(i1, i2), T2(i1, i3), . . . , T2(i1, ip)], so that the ma-
trix of the T2’s contains all the relevant information. Up-
dating this matrix at each time step is easy: The T2 of
two different sites is one plus the T2 of their parents, and
the T2 of a site with itself is zero. Because updating
at each time step a N × N matrix is time consuming,
we used a more sophisticated method[21] where we keep
track of the genealogical tree of all the sites at a current
time: there are of course N sites at the current time, and
at most N−1 nodes, where a node is a site from previous
times which is the most recent common ancestor of two
sites at the current time. At each time step, updating
the whole tree takes a time linear in N , and averaging
the Tp over all the choices of p individuals takes also a
time linear in N , as one simply has to recursively walk
down the tree from its root and count for each node the
number of times it is the most recent commun ancestor
of p sites in the current time. This algorithm is described
in more details in [21].

For each data point, we have run one long simulation
and averaged our results over all the time steps once the
steady state was reached. This is equivalent to averaging
over many independent realizations if we run a simulation
for a time much longer than the correlation time, which
we estimated to be of the order of magnitude of 〈T2〉. All
of our simulations were at least 20 000 times longer than
〈T2〉.

∞+ 1 dimensions (mean field)2 + 1 dimensions

1 + 1 dim
ens

ion
s

N

〈T
2
〉

104103102

104

103

102

10

FIG. 4: Averaged coalescence time 〈T2〉 of two individuals
for several models of directed polymers in dimensions 1 + 1
and 2 + 1, and in mean-field, as a function of the number
N of sites in each time section. The data are compared to
the prediction 〈T2〉 ∝ N1/(dν) in dotted lines for dimensions
1 + 1 and 2 + 1. Note that, by chance, two out of the four
models in dimension 1 + 1 and two out of the three models
in dimension 2 + 1 have nearly the same prefactor and their
data are undistinguishable.

In Fig. 4, we plot the coalescence time 〈T2〉 as a func-
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tion of the system size. For directed polymers on a lattice
which is infinite both in the time direction and in the d
transverse directions, the transverse displacement of the
optimal path scales like tν , where t is the length of the
directed polymer and ν is a universal exponent[7] equal
to ν1+1 = 2/3 in dimension 1 + 1 and ν2+1 ≈ 0.624 in di-
mension 2 + 1. In our setup, with a lattice finite of linear
size L in the transverse directions, this scaling can only
hold as long as t < Tcorr with T νcorr = L = N1/d. This
time Tcorr is the correlation time on the scale of which
the system forgets its initial condition. Moreover, if we
consider several sites and the optimal paths arriving at
these sites, these paths coalesce on a time scale of the
order of Tcorr, as can be seen on Fig. 4.

In mean-field with a finite number M of potential
ancestors per site, there is no notion of distance in
the transverse directions, and the exponent ν is mean-
ingless. We therefore expect a different scaling. The
problem of zero-temperature mean-field directed poly-
mers can be formulated[30] as a noisy Fisher-KPP like
equation [31, 32]. Recently, a phenomenological the-
ory of coalescence trees in models of Fisher-KPP fronts
suggested[21, 33, 34] that the coalescence time in such
models should be of order Tcorr ∝ (lnN)3. On Fig. 4,
one can see that the data seem to have a slower growth
than a power law, but the values of N we simulated here
are too small to check the (lnN)3 prediction. Better sim-
ulations on a closely related model are presented in [21]
where the (lnN)3 scaling appears clearly.

N

〈T3〉
〈T2〉

104103102

1.38
1.36
1.34
1.32
1.3

1.28
1.26
1.24

N

〈T4〉
〈T2〉

1.56
1.52
1.48
1.44
1.4
1.36
1.32

104103102

FIG. 5: Ratios of coalescence times for directed polymers at
zero temperature as a function of the size N of the system
in, from top to bottom, dimension 1 + 1, dimension 2 + 1
and mean-field. The dotted line represents the prediction
Eq. (4) for mean-field in the limit of infinite size. (Left) ratios
〈T3〉/〈T2〉. (Right) ratios 〈T4〉/〈T2〉.

We now turn to the ratios of coalescence times. Fig. 5
shows the ratios 〈T3〉/〈T2〉 and 〈T4〉/〈T2〉 as a function of
the system size for all the models we study (four models
in dimension 1 + 1, three in dimension 2 + 1 and two
in mean-field). Numerically, for large N , these ratios
seem to depend only on the dimension, and not on the
distribution ρ(ε) of the bond energies, nor on the shape
of the lattice. The results in mean-field are compatible
with the prediction that for an infinitely large system in
the Fisher-KPP front equation class[21], the genealogical
tree converges to a Bolthausen-Sznitman coalescent, with

ratios given by Eq. (4). In dimensions 1 + 1 and 2 + 1,
our numerical results indicate clearly that we have tree
statistics different from the Bolthausen-Sznitman coales-
cent, and also different from the Kingman coalescent for
which 〈T3〉/〈T2〉 would be 3/2 as in Eq. (3).

N

〈T 2
2 〉

〈T2〉2

104103102

2.15
2.1

2.05
2

1.95
1.9

1.85
1.8

1.75
1.7

1.65

N

〈T 2
3 〉

〈T2〉2

3.1
3
2.9
2.8
2.7
2.6
2.5
2.4
2.3

104103102

FIG. 6: Ratios of moments of the coalescence times for di-
rected polymers at zero temperature as a function of the size
N of the system in, from top to bottom, dimension 1 + 1,
dimension 2 + 1 and mean-field. The dotted line represents
the prediction Eq. (4) for mean-field in the limit of infinite
size. (Left) ratios 〈T 2

2 〉/〈T2〉2. (Right) ratios 〈T 2
3 〉/〈T2〉2.

On Fig. 6, we show the ratios 〈T 2
2 〉/〈T2〉2 and

〈T 2
3 〉/〈T2〉2. Here, the situation is less clear: the symbols

for the different models do not superpose and the ratios
do not seem to have converged (in particular, the mean-
field ratios are rather far from the prediction Eq. (4)).
For some reason we do not understand, it seems that the
〈T 2
p 〉/〈T2〉2 need much larger values of N to converge to

their final values than the 〈Tp〉/〈T2〉. We already ob-
served a similar phenomenon on an exactly solvable re-
lated model[21].

We also measured the ratios 〈TN 〉/〈T2〉, where TN is
the age of the most recent common ancestor of the whole
population and found these ratios to be close to 1.93 in
dimensions 1+1 and 2+1, while it diverges in mean-field.

A. Long tail distributions

In the directed polymer problem, it is known that the
scaling regime is modified when the distribution ρ(ε) of
the energies of the bonds decays as a power law ρ(ε) ∝
|ε|−α for large negative ε: when α < αc with αc ' 7, the
directed polymer in dimension 1 + 1 has an anomalous
scaling [7, 35] and the exponent ν depends on α. We
have measured the coalescence times in dimension 1 + 1
for a distribution of energies given by

ρ(ε) =
A(α)

(1 + |ε|)α , (26)

with α > 1 and A(α) such that ρ(ε) is normalized, for
sizes N = 100 and N = 400. The ratios 〈T3〉/〈T2〉 and
〈T4〉/〈T2〉 are presented in Fig. 7. We observe that, for
large α, these ratios converge towards the universal values
shown on Fig. 5, while for α→ 1+, they seem to converge
close to, respectively, 1.24 and 1.35.
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size N = 100
size N = 400

〈T4〉
〈T2〉

〈T3〉
〈T2〉

α

〈T
3
〉

〈T
2
〉

an
d

〈T
4
〉

〈T
2
〉

10987654321

1.55

1.5

1.45

1.4

1.35

1.3

1.25

1.2

FIG. 7: Ratios 〈T3〉/〈T2〉 and 〈T4〉/〈T2〉 as a function of the
exponent α appearing in the noise Eq. (26), for two different
system sizes in dimension 1 + 1.

As we expect 〈T2〉 to scale like N1/ν(α), it is possible
to obtain a rough estimate of the exponent ν(α) from the
only two datapoints at sizes N = 100 and N = 400. This
estimate is shown on Fig. 8. The exponent ν(α) seems to

α

ν

10987654321

1

0.95

0.9

0.85

0.8

0.75

0.7

0.65

FIG. 8: Estimate of the exponent ν of the directed polymer
as a function of the exponent α appearing in the distribu-
tion of ε Eq. (26). This exponent has been evaluated from
the formula ln(4)/ ln

ˆ
〈T2(N=400)〉/〈T2(N=100)〉

˜
. The univer-

sal value ν1+1 = 2/3 for distributions decaying fast enough is
also shown.

converge toward the universal value ν1+1 = 2/3 for large
α, while it seems to be 1 for 1 < α <∼ 2.

As with previous numerical studies[7], our results are
not precise enough to determine precisely the critical αc
above which ν = 2/3.

B. Discrete distributions

We are now going to discuss the case where the energies
of the bonds take discrete values. In this case, it may
happen in Eq. (25) that there are several paths coming
from different potential parent sites in the previous time
section with the same minimal energy, and the question
is, of course, which path should be selected as the parent
site.

The simplest idea is to choose randomly at each time
step with equal probabilities one of the paths with the
lowest energy. With this procedure, we have run numer-
ical simulations in dimension 1 + 1 for several sizes with
a binary noise for the energies ε of the bonds,

ε =

{
0 with probability p,
1 with probability 1− p, (27)

for several values of p. Our results for the ratio 〈T3〉/〈T2〉
as a function of p are shown in Fig. 9 as dotted lines.
As p varies, we observe a crossover between two values:
for small p, 〈T3〉/〈T2〉 ≈ 1.36 as for directed polymers
in dimension 1 + 1 when the distribution of energies is
continuous (see Fig. 5) and, for large p, 〈T3〉/〈T2〉 ≈ 1.4
which corresponds to the coalescence of random walks
in dimension 1, as in Eq. (24). The crossover between
the two regions becomes sharper as L increases, which
suggests a phase transition. The critical value of p is very
consistent with the known threshold 0.6447 for directed
percolation on the same lattice[36]. Thus, the system
behaves like the neutral model when the ε = 0 bonds
percolate.

N = 64

N = 32
N = 16

N = 16N = 32

N = 64

p

〈T3〉
〈T2〉

0.80.750.70.650.60.550.5

1.405
1.4

1.395
1.39

1.385
1.38

1.375
1.37

1.365
1.36

1.355

FIG. 9: Ratios 〈T3〉/〈T2〉 as a function of p for the distribu-
tion of ε of Eq. (27). The dashed lines correspond to the sim-
plest procedure of choosing with equal probabilities one of the
potential parent sites realizing the minimal energy, and the
plain lines represent the results using the weights Ω which cor-
responds to the T → 0+ limit of finite temperature directed
polymers. The vertical dotted line indicates the directed per-
colation threshold on the same lattice.

Instead of choosing with equal probabilities which
bond the polymer follows when they are energetically
equivalent, there is an alternative procedure which cor-
responds to taking the limit T → 0+ in the problem of
directed polymers at a finite temperature T . At finite
temperature, we keep track for each site A of the parti-
tion function ZA of a polymer arriving on A. Assuming
that the site A has M = 2 potential parent sites B and
C, we have the recursion Eq. (25)

ZA = ZA←B + ZA←C , (28)

where ZA←B = ZB exp(−βε(AB)) is the partition func-
tion of a directed polymer arriving on A via the site B
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and where β = 1/T . The probability that a polymer
reaching A comes from B is given by

(Prob. the polymer comes from B) =
ZA←B
ZA

. (29)

At very low temperature, the partition function is domi-
nated by the lowest energy paths:

Z ≈ Ωe−βE , (30)

where E is the minimal energy and Ω the number of ways
that this energy E can be obtained, so that Eq. (28)
reads, at low temperature,

ΩAe−βEA ≈ ΩBe−βEA←B + ΩCe−βEA←C . (31)

where EA←B = EB + ε(AB) is the minimal energy of
the path arriving at A through B. If EA←B < EA←C ,
then the first term in the right hand side of Eq. (31)
dominates and we obtain EA = EA←B and ΩA = ΩB .
Furthermore, from Eq. (29), the chosen path comes from
B. On the other hand, if EA←B = EA←C , both terms in
Eq. (31) have the same order of magnitude and we obtain
EA = EA←B = EA←C and ΩA = ΩB + ΩC . Then, from
Eq. (29), the probability that the directed polymer comes
from B is ΩB/ΩA.

In this way, we not only choose the optimal energy
but we also keep track of entropy effects. We have run
numerical simulations with the same parameters as above
but with this new procedure. The ratios 〈T3〉/〈T2〉 are
shown on Fig. 9 in plain lines. For small values of p, both
procedures yield the same results. For larger p, however,
the difference is striking, and the phase transition seems
to have disappeared: on both sides of the percolation
threshold the data seem to be in the same universality
class (as they converge to ≈ 1.36).

III. CONCLUSION

In this paper, we have presented analytical and numer-
ical results showing the existence of universality classes
in the tree structures which appear in several models of
evolution and in directed polymers (see Tab. I for a sum-
mary).

Without selection, the genealogies of neutral models
like the Wright-Fisher model or coalescing random walks
are described above the critical dimension dc = 2 by the
Kingman coalescent. For d = 1 the universality class
is different: we have obtained the distribution Eq. (22)
of the ages Tp of the most recent common ancestor of p
individuals.

For directed polymers in a random medium, the same
coalescence times Tp have been measured numerically.
In the mean field case, their values are compatible
with Bolthausen-Sznitman’s coalescent, which is already
known to appear in spin glasses [19] and in branching
random walks with a selection mechanism keeping the
size constant [21, 22]. In low dimension (at least d = 1
and d = 2), the coalescence times belong to different uni-
versality classes. It would be interesting to predict ana-
lytically the numerical values of 〈T3〉/〈T2〉 and 〈T4〉/〈T2〉
measured in Fig. 5 for fast decaying distributions of ε as
well as the ones obtained in Fig. 7 for power-law distribu-
tions of ε with exponent α ' 1+. In the mean-field case,
it would also be interesting to know if the replica method
can be used in order to determine the coalescence times.

The simulations presented in this paper deal only with
directed polymers at T = 0. Directed polymers ex-
hibit a phase transition for d > 2 as the temperature
increases[37]. We expect the tree statistics to change at
Tc from the universality class of directed polymers at
zero temperature to the universality class of coalescing
random walks.

The construction of the minimal energy path for di-
rected polymers can be related to spatial models in pres-
ence of selection. In population dynamics, selection can
be taken into account through a parameter, called the fit-
ness or the adaptability, which characterizes the ability of
an individual to survive and reproduce[38, 39, 40, 41, 42].
Individuals with a higher fitness have a higher probability
of having a descendance. This parameter is transmitted
from parents to offspring up to fluctuations due to mu-
tations. An analogy can be drawn between the minimal
energy of a directed polymer arriving on a site, and minus
the fitness of an individual living on a site. In presence of
local selection, a spatial model of population could there-
fore be formulated as follows: on each site there would be
one (or a finite number m of individuals); at each gen-
eration, each individual would branch into k offspring
with mutated fitnesses. These offspring diffuse and, un-
der the effect of selection, only the best (or the m best)
individual(s) on each site would be kept. Because of the
similarity of such spatial models of population dynamics
in presence of selection with the directed polymers, we
expect these models to belong to the same universality
classes.

We performed preliminary simulations on such a spa-
tial model of evolution with selection in dimension 1 + 1
with m = 5 individuals per site. Our results for the ratios
〈T3〉/〈T2〉 and 〈T4〉/〈T2〉 coincide with those of directed
polymers.
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