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PARTICLE REPRESENTATIONS FOR MEASURE-VALUED
POPULATION MODELS’

By PETER DONNELLY? AND THOMAS G. KUrTZ®

University of Oxford and University of Wisconsin

Models of populations in which a type or location, represented by a
point in a metric space E, is associated with each individual in the
population are considered. A population process is neutral if the chances
of an individual replicating or dying do not depend on its type. Measure-
valued processes are obtained as infinite population limits for a large class
of neutral population models, and it is shown that these measure-valued
processes can be represented in terms of the total mass of the population
and the de Finetti measures associated with an E”-valued particle model
X = (X;, X,,...) such that, for each ¢ > 0, (X;(¢), X,(¢),...) is exchange-
able. The construction gives an explicit connection between genealogical
and diffusion models in population genetics. The class of measure-valued
models covered includes both neutral Fleming-Viot and Dawson—
Watanabe processes. The particle model gives a simple representation of
the Dawson—Perkins historical process and Perkins’s historical stochastic
integral can be obtained in terms of classical semimartingale integration.
A number of applications to new and known results on conditioning,
uniqueness and limiting behavior are described.

1. Introduction. We begin by considering two models for the evolution
of a finite population. Although we concentrate mainly on continuous-time
processes, we indicate the analogous results for discrete-time processes later.

1.1. Model 1. Let N(t) denote the total size of a population at time ¢, let
N,(¢) denote the number of births up to and including time ¢ and let N (¢)
denote the number of deaths, so

N(¢) = N(0) + Ny(¢) — Ny(2).

(Note that we are assuming that N, N, and N, are right continuous.) We
allow simultaneous and/or multiple births and deaths, but we assume that
all the births that happen simultaneously come from the same parent. At a
birth event, the parent is selected at random (by which here and throughout
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we mean uniformly at random) from the population; at a death event, the
individuals that are eliminated from the population are selected at random,
that is, if there are & deaths, the (¥(~)) possible subsets of the population
immediately prior to the death event are equally likely to be eliminated. For
definiteness, assume that if birth and death events happen simultaneously,
then the individuals who die are removed from the population before the
parent of the new individuals is selected. We assume that at each time ¢, each
individual in the population has a type or location in a space E, which we
take to be a complete separable metric space. (Typically, in a genetic model,
type is the appropriate interpretation, while in a model of a dispersing
population, location is appropriate.) We assume that at a birth event, the
offspring are given the same type as the parent and in between birth and
death events, the types evolve as independent, E-valued Markov processes
corresponding to a specified generator B. Therefore, the population at time ¢
can be described by a vector (Yy(2),...,Yy.) in EN® in which we order the
population by decreasing age or, since age and hence the above order do not
play a role in the birth and death events, by the empirical measure
N@)

Zl(t) = Z 3Y,-(t)~
i=1

Note that if N is Markov, then Z will be also. This model is neutral in the
sense that the type of an individual does not affect its chances of dying or
giving birth.

1.2. Model II. The population size is defined as in Model I, and in
between birth and death events, the types or locations of the individuals
evolve as independent Markov processes with generator B; however, the
order of (Xy(¢),..., Xy(#)) plays a significant role in the birth and death
events. The description of a death event is simple: the individuals removed
are the individuals with the highest indices. Birth events, however, are more
complex. Suppose there is a birth event at time ¢ at which there are %
offspring. The type of the offspring will again be the type of the parent. We
must specify how to select the parent and how to specify the indices of the
population after the birth event. Select % + 1 indices, i; < - <i,,, at
random from {1,..., N(¢)}. Note that the smallest of these indices, i, will be
the index of some individual in the population immediately before the birth
event. That individual will be the parent. After the birth event, the parent
and the % offspring will be indexed by ij,...,i,,;. The remaining N(¢) —
(£ + 1) individuals are reindexed by {1,..., N(¢)} — {i1,...,i,, 1}, maintain-
ing their previous order. For example, if & =1, then X,(¢) = X,(¢# —) for
i <iy, X, () =X;(¢t -), and X,(¢) = X;_(¢ =) for i > i,.

Model IT may seem strange; however, the following theorem explains its
interest.

THEOREM 1.1. Suppose that the initial population vectors (Y0),...,
YN(O)(O)) in Model I and (Xl(O),...,XN(O)(O)) in Model II have the same
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exchangeable distribution and define

N(@®)
Zu(t) =X x (1
i=1
Then Z'' has the same distribution as Z' and, for each t > 0, (X,(¢),...,
Xy (1) is exchangeable.

Theorem 1.1 is proved in Section 2 using a coupling argument. We also
give the corresponding result for models with discrete generations. Intu-
itively, Model II can be obtained from Model I by looking into the future and
ordering the individuals in terms of the time of survival of their line of
descent. Neutrality assures that, conditioned on all information up to time ¢,
each particle alive at time ¢ has the same chance of having the longest line of
descent, the second longest line of descent, etc. Consequently, this ordering is
a random permutation of (Y;(#),...,Yy). For example, this interpretation
explains why in Model II we require the individuals with highest index to die
first. The randomness of the permutation explains the exchangeability prop-
erty for (X(2),..., Xy ).

Our primary interest in Theorem 1.1 is its implications for large popula-
tion approximations. Special cases of Model I include neutral Moran models
from population genetics [let N,(¢) = N,(¢)] and branching Markov processes
in which the offspring distribution does not depend on the location of the
parent. Consequently, large population approximations of the measure-val-
ued process Z! = Z™ include neutral Fleming-Viot processes and a large
class of Dawson-Watanabe (super) processes. [See Dawson (1993) for a
general discussion of these processes.]

In Section 3, for a sequence of these models, we assume that the nor-
malized population size P" = n"IN" converges in distribution to a process
P and show that, under additional technical assumptions, Model II
(xr,..., X]’\}n) converges to a process with values in E”. The limiting process
has the property that, for each ¢ > 0, (X,(¢), X,(¢),...) is exchangeable and
the sequence of normalized empirical measures

1 N

- Z 6Xn
(?)

nog,

converges in distribution to PZ, where Z is the de Finetti measure

1 m
Z(t) = nlzl_lflw ;{kgl Ox(t)-

Section 4 discusses the martingale properties of the infinite population
models and, in particular, gives conditions under which the measure valued
process PZ is the unique solution of a martingale problem. Section 5 de-
scribes how the population genealogy is embedded in the model. In particular,
the Dawson—Perkins historical process is constructed.
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Section 6 includes a number of applications of the E”-representation of the
measure-valued processes. In particular, generalizations of a variety of re-
sults on Dawson—Watanabe and Fleming—Viot processes can be obtained.

One of the advantages of the E”-valued limit process over the simpler
measure-valued limit is that the E”-valued process retains information about
the ancestral relationships of the individual particles. In the Fleming—Viot
(genetic) setting, the model incorporates the full genealogical (coalescent) tree
for the population at each time ¢. This fact is explored in more detail for a
related but somewhat different construction in Donnelly and Kurtz (1996). In
the Dawson—-Watanabe setting, the model incorporates the “historical pro-
cess’ as studied by Dawson and Perkins (1991) and Perkins (1992, 1995) (cf.
Section 5.2). In particular, we are able to represent the stochastic equation
given by historical Brownian motion studied by Perkins in terms of an
infinite system of ordinary It6 equations (cf. Section 6.5).

1.3. Conditions on the type /location process. Throughout we will assume
that P(¢, x,T) is the transition function for a Markov process with sample
paths in Dg[0, ), where (E, r) is a complete, separable metric space. The
corresponding semigroup on B(E) is defined by

T()f(x) = [f(9)P(¢, %, dy),

and the weak infinitesimal operator [in the sense of Dynkin (1965)] is defined
by
T(f -
B = by T
t—0

when the limit exists. Let P, denote the distribution on Dg[0, ») correspond-
ing to the Markov process with initial position x. Under these assumptions,
we have the following lemmas.

LEMMA 1.2. There exists a countable subset D C 2(B) that is separating in
P(E) in the sense that, for u,v € 2(E), [fdu = [fdv for all f € D, implies
that u = v.

ProOF. See Donnelly and Kurtz (1996), Lemma 1.1.

Let D ={f,, k> 1} c2(B) be separating and assume that [|f,ll < 1.
Define the metric

1

1.1 , V) = — dp — d
(1.1) pp( 1, ) kglzk ffk I /fk v
on 2(E). The notation pg is not really appropriate, since the metric depends
on D rather than B. But B is part of the primary “data” for the process and
the main restriction on D is that D c2(B). Consequently, it seems more
important to emphasize the connection to B. Typically, D can be taken to be
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convergence determining, and the topology generated by p; will be the weak
topology. In particular, if E is locally compact and @(B) is dense in C(E), D
can be selected to be convergence determining. In general, it is desirable to
select D so as to make the topology generated by the metric as strong as
possible. [See Donnelly and Kurtz (1996), Remark 2.5, for an example in
which the topology is not the weak topology.]

LEMMA 1.3. There exists a probability space (Qy, %, Py) and a measur-
able mapping M: E X [0,%) X Q, — E such that, for each x, € E, x(¢) =
M(x,,t,-) is a Markov process with transition function P(¢,x,I') and
x0) =x,. If x = P, is weakly continuous, then the mapping from E into
Dy[0,) given by x = M(x, -, ) can be taken to be almost surely continuous
at each x € E. If x — P, is weakly continuous and P{ x(¢) = x(¢ =)} = 1 for
all x € E and t = 0 (that is, x has no fixed points of discontinuity), then for
each (t,, x,) € [0,°) X E, with probability 1, the mapping (¢, x) - M(¢, x, )
is continuous at (¢, x).

ProOOF. The lemma follows by the construction of Blackwell and Dubins
(1983) and the continuous mapping theorem. O

2. A coupling of finite population models.

2.1. A coupling lemma. The proof of Theorem 1.1 relies on a coupling of
the two models

(Yl(t)’ ) YN(t)) = ( 1(t)(t) 9N(t)(t)( ))

in which 6(#) is uniformly distributed over all permutations of (1,..., N(¢))
and is independent of ¥ = o(Y(s): s < ¢). # will change only at birth /death
event times, and we next describe an inductive procedure for its construction
in a somewhat more general context.

For n > 0, let S, denote the collection of permutations of {1,..., n}, let P,
denote the collection of all subsets of {1,...,n} and let P, , c P, be the
subcollection of subsets with cardinality 2. We think of a permutation as a
mapping from (1,..., n} onto {1,..., n}.

Let n, be a positive integer and let {£,,} € Z, k,, # 0. Define n,, = n,,_, +
k,, and m* = min{m: n,, < 0}. We construct a sequence of random permuta-
tions {6,,}, that is, a sequence of random variables with 6, taking values in
Sn B and a sequence of random subsets {¢,,}, £, taking values in P, ,in the
followmg way. Let 6, be uniformly distributed over S,, . Let {n,,: 1 < m < m*,
k,, > 0} be independent random sets, independent of 6y, such that 7, is
umformly distributed over P, , ., and let {g,,: 1 <m <m*, k,, > 0} be
independent random permutatlons independent of 6, and {n,,} such that o,
is uniformly distributed over S, ;. 1,,(i) will denote the ith largest element
in 7,,. Proceeding inductively, assume that 6,, _; is defined, m < m*, and that

6,1 is uniformly distributed over S,
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If %, <0 (corresponding to a death event), let &, = 6,!,(n, +

1,...,n,_,) and let 6,, be the permutation in S, with the same order as
6,1 restrlcted to{1,...,n,,_1) — &, Note that 0 is uniformly distributed
over S, and is 1ndependent of ¢,,. (The indices of the individuals removed
from the population in Model II are n, + 1,. _1. &, determines the

individuals to be removed from the populatlon in Model I)

If &,, > 0 (corresponding to a birth event), let «,, = min 7,,. Define ¢, =
6,1 (k). (In this case, ¢, is a singleton subset. We use ¢, to denote both
the subset and the value of the index in the subset.) Let 6, restricted to

{(¢,,n,_1+1,...,n,} satisfy 6,(¢,) = n,(0,1) and 6,(n,_; +1i) =
(0, + 1)). Let 6, restricted to {1,...,n,,_;} — &, be the mapping onto
{1,...,n,,} — m,, having the same order as 6,,_; restricted to{1,...,n,,_;} —

£, (n,, gives the set of indices determining the parent and the indices of the
offspring in Model II. ¢, determines the parent in Model I.)

Let %, = a{6,, &,: B < m}. The independence properties of the 7,, and o,
imply that

(2.1) E[ (8, &) Fn-1] = E[F(0, £)] 60 1]

LemMA 2.1. For each m, &,,..., &,, 0, are independent. If k,, <0, ¢, is
umformly distributed over P, ., . if k >0, &, is uniformly distributed
over{1,...,n,,_4}; and 6,, is unlformly dlstrlbuted over S,

PrOOF. Proceeding by induction, assume that the result holds for m
replaced by m — 1. Then by (2.1) and the induction hypothesis, we have, for
any choice of f and &,

E fwm)klfllhk(gk)} [ [F(6) R (£)|70 ] H ha(£) ]
=E'[E'[f(em)hm(‘.‘;:m)|0m—1]':]-:_‘[1 hk(gk)]

m—1
= E[£(8,) hn(&0)] kl:II E[hy(&)]-

It remains only to show that 6,, is independent of ¢, and that they have the
correct distributions. If %, < 0, these observation follow immediately from
the fact that 6,,_; is uniformly distributed. If %2,, > 0, conditioning on ¢, and
M., it is clear that 6,, is uniformly distributed over all permutations that
map {(¢,,n,_;+1,...,n,} onto n, and that conditioning on ¢,, m, is
uniformly distributed on P, , .;.It follows that the conditional distribution
of 6, given ¢, is uniform on S, , giving the desired independence and
distribution. The uniformity of 6, _, 1mphes that ¢, is uniformly distributed
over {1,...,n, _;}, completing the proof of the lemma. O
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2.2. Proof of Theorem 1.1. Suppose a realization of Model II is given. Let
{t,,} denote the sequence of times at which birth or death events occur,
0 <t <ty < - .If there are simultaneous birth and death events at time ¢,
then, for the appropriate m, we have ¢,, = ¢,,,.; = ¢. Under our convention of
doing removals first, k,, is the negative of the number of deaths occurring at
time ¢ and &, ; is the number of births. If £, > 0, then 7, is the subset in
Model II determining the indices of the parent and the offspring. Finally, let
6, be independent of X (and hence of {n,}) and uniformly distributed over
Sy for &, >0, let g, be independent (of everything) and uniformly
dlstrlbuted over S, ,;; and define 6,, as above. Set 6(¢) = 6,, for ¢, <¢ <

+1- Then by the propertles of {£,} given in Lemma 2.1,

( (t)7""YN(t)) = ( 0(t, 1)(t) 9(t N(t))(t))

is the desired version of Model I. Since Y(¢) depends only on Y(0), {¢,,: ¢,, < ¢}
and the evolution of the type processes between birth and death events 0(t)
must be conditionally independent of & = o(Y(s): s < t) given N(¢). More
generally, let # = o(N(0), N,(s), N,(s): s > 0) and &, = % V.# Then 6(¢) is
conditionally independent of , given N(¢). Consequently, the inverse per-
mutation 67 !(¢) will also be conditionally independent of &, and uniformly
distributed over Sy ,). Since

(Xl(t)""’XN(t)) = ( ~1ge, 1)(t) l(t N(t))(t))
it follows that (X,(¢),..., Xy(¢)) is exchangeable. O

2.3. Exchangeability at stopping times. As in the proof of Theorem 1.1, let
7Y = o (Y(s): s <t), #= o(N(), Ny(s), Ny(s): s > 0) and &, =5 VZ

PROPOSITION 2.2.  Let y be a {Z,}-stopping time. Then (X (), ..., Xy, (y)
is exchangeable. (In particular, v can be any nonnegative #measurable
random variable) If in addition, vy is a {Z,}-predictable stopping time, then
(Xy(y =), ..., Xyiy— (v —)) is exchangeable.

ProOF. As in the proof of Theorem 1.1, it is enough to show that 6(y) is
conditionally independent of &, given N(y). Assume first that y is discrete.
Let II,, denote the uniform distribution over S,,. Then, for A € &,

Y E[R(0(6) Taniyos]

E[R(6(y))IL4]

k;E[f h( 9)“N<tk>(d9)IAm<v=tk}]

=E[fh(0)HN(y)(d0)IA]’

where the second equality follows from the fact that 6(¢,) is conditionally
independent of &, and A N {y=¢,} € ¥,. This identity gives the desired



PARTICLE REPRESENTATIONS 173

conditional independence. The result for general y follows by approximating
v by a decreasing sequence of discrete stopping times. If y is predictable,
then there exists an increasing sequence {v,} of {Z,}-stopping times such hat
Y, <7,as.and lim, v, = y. Consequently, the exchangeability of (X,(y —),
s Xny—(y —)) follows from the exchangeability of (X(y,),..., Xney (V)

0O

2.4. Models with discrete generations. We now consider the analogue of

Theorem 1.1 for models with discrete generations. Let Ny, IV;,... be positive
integer-valued random variables giving the population size for each genera-
tion, and, for each m > 1, let K,,, 1<K, , <N,,_;, and L7 , L't be

positive integer-valued random variables satisfying YX» L™ = N The Lr
are the litter sizes for the K,, members of generation m — 1 that have
descendants in the mth generation.

MopEL III.  Let Y{",...,Yy" denote the types of the individuals in genera-
tion m. The parent of each litter in generation m is selected randomly,
without replacement, from the members of generation m — 1. For definite-
ness, the LT members of the first litter are numbered 1,..., LT, the LY
members of the second litter are numbered LT + 1,..., LT + L}, etc. If «x is
the type of the parent of litter i, then the type of each member of litter i has
distribution n(x, - ), where 7 is a transition function from E to E, and types
of different individuals are conditionally independent given the types of their
parents.

MopEgL IV. Let X" 1,..., X7 ! denote the types of the individuals in
generatlon m — 1. Let the 1ntegers {1 , N} be partitioned randomly into
set AT K satisfying |AT'| = L7, that is, the

N,
Ly... Ly,

distinct partitions are equally likely. Let o™ be the permutation of (1,..., K,,)
defined so that the indices a’” = min A are ordered

o < g < <o
m

Then X" ! becomes the parent for litter A™. oy X3 -1 the parent for litter
A7u, ete. Conditioned on X™~ ! the types of the 1nd1v1duals in generation m
vv1th indices in A7 are iid W1th distribution n(X™"1,-).

The proof of the following theorem is similar to that of Theorem 1.1.

THEOREM 2.3. Suppose that the initial population vector in Model IV
(x70,.. XN) is exchangeable and that the znztzal populatzon vector
Yp,.. YN ) in Model IIT satisfies Z° = Yo 15Yo =270=3xMN 10x0. Define

nl

Z aym Zm = Z 8Xim.
i=1
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Then Z and Z have the same distribution, and, for each m > 0,(X[",..., XI'\);,,,)
is exchangeable.

PROOF Let Y° = (Y?,. YN ) be given. Let {L7"} be as above, and define
=o(LM1<i<K,, m= .). Let H,, H,,... be a sequence of ran-
dom permutations 1ndependent of Y0 such that, conditioned on%,Hy,H,,...
are independent and H,, is uniformly distributed over Sy . Let J§" = 0, and

fori=1,...,K,, define J™ = X! _,L7" and
= {H,(j): Iy <j <}
Note that AT,..., A¥ gives a random partltlon as in the description of

Model IV. Startlng with exchangeable X° = (Y2 1y - YHO( n,))s construct
X1, X2 ... as prescribed in Model IV using the partltlons (AT, 1<i<K,}).
Define Om(k) =jif H,(j) =k and set Y, = XJ" 4y The parent of the ith
litter in the mth generation is Y~ (;) = X1 and if H, _, is independent
of {Y°,... Y™ 1}, then the parents of Y™ are selected randomly from Y™ !
and Y°, Y1 .. will be a version of Model III. To see that this independence
holds, ﬁrst observe that Y° is independent of H, by assumption. Proceeding
by induction, suppose H,,_, is independent of {Y0 Y™ Let g, =
oY% ...,Y" L H°, . H'n HYv&Zand#z, = o(Y?,...,Y" L H®, ..., H™)
VEZ. Then
E[f(H,)h(Y™)|7,]
= f(H,) [ [h(31,---, w,) n 3l (Yo 45;)s
=1 j=dm,+1

and since H,, is independent of &,

E[f(H,)n(Y™)|%,]

m’

=E[f(Hm)]ffh(y1’ s N )ﬁ ]._l.[ (YH,,, 1(;)’dyj),

"=l j=dr 1

so the desired independence follows. O

2.5. Models with simultaneous births to multiple parents. The discrete
generation model described in the previous section is a special case of a class
of models in which simultaneous births may occur to multiple parents (in
contrast to Models I and II in which only one parent is involved in each birth
event). The analogous coupling for the more general models can be handled
using essentially the same construction as in the previous section. For
example, a birth event in which one parent has L; offspring and another L,
offspring, increasing the population size from N to N + L, + L,, can be
treated as creating a “new generation” with one litter of size L; + 1, one of
size L, + 1 and N — 2 litters each of size 1. Note that mutation /movement
does not affect the coupling as long as it is defined the same way for both
models and depends only on parental type.
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3. Infinite population limit. In this section, we concentrate on continu-
ous-time models in which each birth event involves only a single parent.

3.1. Limit of total population size.

3.1.1. Birth and death processes. In order to motivate the scaling that
will be used in our general limit theorem, first consider a sequence of simple
linear birth and death processes. These can be obtained as solutions of the
equation

(3.1) N*(t) = N"(0) + V,,(/Ot A, N"(s) ds) = Vd(fo,u,nN"(s) ds),

where V, and V,; are independent, unit Poisson processes. If we rescale N,
defining P™(¢) = n " *N™(nt), (3.1) becomes

1 t 1 t
P"(¢) = P*(0) + ;Vb(nzj; A, P™(s) ds) - ;Vd(nz A w, P"(s) ds)
1. ¢ 1 . ¢
(3.2) =P*(0) + ;Vb(nzfo AP (s) ds) - ;Vd(n2 A w, P"(s) ds)

+n(A, = ) [ P"(s) ds,
0
here V(x) = V(u) — u. Note that
( 1 V(2 1 V(02 )
n 5(n70), n a(n®-)
is normalized so that it converges in distribution to (W,,W,), a pair of
independent, standard Brownian motions. Consequently, if we assume that

A, = A, n(A, — p,) = ¢ and P™(0) = P(0), P" converges in distribution to a
solution of

(3.3) P(t) =P(0) + Wb(ft/\P(s) ds) - Wd(ft)\P(s) ds) + cftP(s) ds.
0 0 0
Note, in addition, that the normalized total number of births satisfies
Ny (n-) :
More generally, we can consider birth and death processes satisfying
Ni(t) = Vl(nzft A(P"(s)) ds) + Vs(nzft A(P"(s)) ds),
0 0
¢ .
NM(t) = Vz(nzf w,(P™(s)) ds) + Vs(n2/ A(P"(s)) ds),
0 0

1 1
PP(t) = P"(0) + ~NJ(t) = —Nj(2).
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If P™(0) = P(0) and A,() = A("), Xn(-) — A(-) and n(A, (") = u,(-)) = b() uni-
formly on compact sets, then P" converges to a solution of

P(t) = P(0) + Wl(fot)\(P(s)) ds)

(3.4)
—Wz(fot)\(P(s))ds) + fotb(P(s))ds
and
Ni(- : )
(59 S~ [+ Kpo) as

provided the solution of (3.4) does not blow up in finite time. In this case, P is
a diffusion with generator

Gf(z) = Mz)"(2z) +b(z)['(2)
[see Ethier and Kurtz (1986), Theorem 6.5.4].

3.1.2. Branching processes. Another example of interest is for N” to be a
branching process. For each n, let {£], £ = 1,2,...} be independent, integer-
valued random variables with &} > —1. Suppose that there exist «, — «
such that

| <=

(3.6) sup E l

n
and (1/n)Lf &} = Y,. Let V be a unit Poisson process and define a
compound Poisson process

ap

&

1
np=1

V(a,t)

Vr(t) = kZ &
-1

Then Y" = n~ V" = Y (in the Skorohod topology), where Y(1) has the same
distribution as Y;. Let N"(0) = n. Then the solution of

N™(t) = N"(0) + V"([tn*Nn(s) ds)
0
is a continuous-time Markov branching process. Normalizing N”, we have
P(t) =1+ Y"(ftP”(s) ds)

0

and P" = P satisfying
P(t)=1+ Y([‘P(s) ds).
0

[See Ethier and Kurtz (1986), Theorem 9.1.4.]
The limiting process Y can be any Lévy process with generator of the form

Hf(z) = jaf"(2) + bf'(2)
+f(0 L +y) = 1(2) =of'(2))v(dy),
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where v satisfies [ .,y(y A Dv(dy) < . In particular, Y has no negative
jumps. The condition on v is stronger than necessary for a general
Lévy measure ([|y|*> A 1v(dy) < ). The stronger condition assures that
E[|Y(#)] <  and that P does not blow up in finite time. The generator for P
is

GF(v) = vHf(v).

In addition, the convergence of (1/n)L{ £ implies the convergence of
(1/n®»)Lgr (€12 [This assertion follows from the central convergence crite-
rion in Loeve (1963), Section 22.4.] This convergence implies the convergence
of the quadratic variation [Y,].= [Y]. which in turn implies [P"].= [P]..
Note that [Y] is a process with independent increments with generator

Hyf(y) = af (y) + f:(f(y T+ u?) — f(y))v(du),

and setting y(¢) = [{P(s)ds, [P], = [Y]y(t).

3.1.3. Population models with multiple simultaneous births and deaths.
Suppose that V; and V, are independent, unit Poisson processes and that
{£%} and {{Z} are iid sequences of nonnegative integer-valued random vari-
ables with finite mean and variance. [ E[ {,°] = m,, Var({?) = o2, E[{ kd] =
my, Var({®) = a2.] Let

Np(6) = V[ [ 0, (P(9)) s,
N@
an(t) = E fkb,
k=1
Np(2) = Vil [ (P (5)) s,
NHt)
Ndn(t) = Z gkd’
E=1
1 1
Pr(t) = P7(0) + ~N§ (1) — —Np(t).

If P*(0) = P(0) and A,(-) = AC:) and n(A,()m, — w,()m,) — b(-) uniformly
on compact sets, then P" converges in distribution to a solution of

P(t) = P(0) + ale(fOt)\(P(s)) ds) + mbWz(fOt)\(P(s)) ds)

my

- UdWB(LnZ—Z/;t)\(P(s)) ds) - de4(——f0t/\(P(s)) ds)

my

-I—fotb(P(s)) ds,
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where the W, are standard Brownian motions, provided the solution does not
blow up in finite time. The quantity

S £33 10}

n

where [ N'], denotes the quadratic variation of N, will play a critical role in
our discussion. Note that under the above assumptions, U, = U given by

(3.7) U(t) = (my + o + m%)fot/\(P(s)) ds.

3.1.4. Models with constant population size. Assume that N"(0) = n and
that N = N}, so that N"(¢) =n for all ¢ > 0. Under our convention of
“killing first,” we must have NJ(¢) — Ny(¢ —) < n. Again, consider

Un(t) _ [an]t;:le;l(t) .

If N; has stationary, independent increments, then so does U". Under this
hypothesis, the possible limits U™ = U are the nondecreasing processes with
stationary, independent increments and jumps bounded by 1, that is, pro-
cesses with generators of the form

Df () = af () + [ (f(u +v) ~ F(u))v(dv),

where v satisfies [§vv(dv) < «. In Section 5, we will see that this model is
related to coalescent models of Pitman (1997).

3.2. Conditions on total population size. With the above examples in
mind, define

1 1 1
Pr(¢) = —N"(0) + —N;'(¢) - ;Nd”(t),

" = inf{¢: P"(¢) = 0},
(38) Un(t) _ [an]t + Nb”(t)
n2 ’
H () = [! oy W)

where [ N;'], denotes the quadratic variation of N. In the birth and death
examples, Section 3.1.1, N is a counting process and [N}'], = NJ(¢), so
by (3.5),

U, = /()tz(A(P(s)) +A(P(s))) ds.
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For the branching process examples, Section 3.1.2,

V(a, [{P™(s)ds)

N () = kZ &V 0,
=1

and observing that (£} vV 0)% + ¢ v 0 = £7(& + 1), we see that
1
U,(¢) = [P"], + ;Pn(t) = [P],.

For the models in Section 3.1.3, the limit of U, is given in (3.7). For the
constant population size models of Section 3.1.4, the limit of U, has station-
ary, independent increments.

We assume that there are no further births after 7". Our basic convergence
assumption is that

(3.9) (P",U") = (P,U).

For &> 0, let 7 = inf{¢: P™(¢) < ¢} and 7, = inf{t: P(¢) < &}. In general,
(3.9) does not imply 7" = 7_; however, this convergence will hold for all but
countably many & > 0. Define

(3.10) T= lin}) 7, = inf{¢: P(¢) A P(¢ —) = 0}

and

H(t) = fot“ dU(s).

P(s)’
Then (3.9) implies the existence of a sequence &, — 0 such that

(3.11) (P, U", H*(-A 7}), %) = (P,U,H, 1),

n

where the convergence in distribution is in D[O,m)x[o’w)X[O,m][O, ) X [0, ] with
the Skorohod topology on Dy o) (0, «)x[0,«0> ). Note that we allow H, and H
to assume the value = if the integrals diverge in finite time. For simplicity,
we will usually assume

(3.12) (P, U",H",t") = (P,U,H, ).

In particular, if 7= % a.s., then (3.12) holds. If (P",U", ") = (P,U, 7) and
H(7) = ® on {r < =}, then (3.12) also holds.

3.3. Limit in E*. Let X" be a version of Model II of the previous section
determined by N}, N} and a fixed Markov evolution with generator B
satisfying the conditions in Section 1.3. In particular, a process y correspond-
ing to B has cadlag sample paths. We also assume that, for every initial
condition, the process has no fixed points of discontinuity [i.e., P{x(¢) =
x(t =)} =1 for all ¢ > 0]. (This last condition is unnecessary most of the
time, in particular, if the population size processes are Markov birth and
death processes as described above.)
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Let X,(0), X,(0),... be an infinite exchangeable sequence in E, and as-
sume that, for each n,

(X7(0), ..., Xuy(0)) = (X1(0), ..., Xyu)(0)).

We will refer to X' as the kth level process. It will be convenient to define
X7 (¢) for k> N™(¢) to be X,(0) if max,_, N"(s) < k and to be X;( B;(¢) —),
where B;(¢) = sup{s < ¢: N"(s) > k}, otherwise.

Note that the first-level process X{ is just an E-valued Markov proc-
ess with generator B and fixed initial distribution stopped at 7" = inf{¢:
N™¢) = 0}, so X converges in distribution provided 7" does. (The assump-
tion of no fixed points of distinuity is needed here unless the limit of the 7"
“misses” all such points with probability 1.)

Next, recall that X evolves as a Markov process with generator B except
at those tims when the first two levels are involved in a birth event. At each
such time, the second-level process “copies” the value of the first-level pro-
cess. Let N{3(¢) denote the number of birth events up to time ¢ that involve
the levels 1 and 2. Then (X, XJ) converges in distribution provided the
counting process N converges in distribution. (Again, we need the assump-
tion of no fixed points of discontinuity unless the jump times of the limit of
N7, miss these.) Note that if there is a birth event at time ¢ with % offspring,
then, conditioning on N* and N, for all time (not just up to time %), the
probability that levels 1 and 2 are involved is just

N™(t) — 2
( k-1 ) _ k(k +1)
(MWU N () (N"(8) = 1)
E+1
Consequently,
km(km + 1)
N (t) — _ :

(3.13) ® {m:tms§km>0}N (tm)(N™(t,) — 1)

n t 1 n
VO - T~ 1w )

is a martingale with respect to the filtration
g =o(X"(s),N;(s),s<t,1<i<j;N"(u), Nj(u),u=0),

at least if the process is stopped the first time the sum exceeds an arbitrary
constant K. By (3.12), the sum converges in distribution to

(3.14) H(:) = [0'“ dU(s).

P(s)’

[Note that the ratio P™(¢)/(P™(¢) — 1/n) is bounded by 2 for ¢ < 7" and
converges to 1 uniformly on [0,7" — §] for each & > 0.] By Lemma A.1, it
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follows that NJ, converges in distribution to a counting process with distribu-
tion determined by H and hence that (X, XJ') converges in distribution.

In general, fix a level [, and let K < {1,..., [}. | K| will denote the cardinal-
ity of the set. Define

Ng(t) =|{{m:t,, <t,m, 0 {1,...,1} =K}

Then
Nn(tm) -1
(3.15) N (2) y b 171K
. (¢ — _
e, <t by 1=k |V (En)
B+ 1

is a martingale with respect to {&,"}. Let Hg(¢) denote the sum in (3.15) and
U, denote the continuous part of U. The summands can be rewritten as

N-1

(k+1—|K|)_ (kB +1)!
( N ) ~ (E+1-|K))!N...(N - K|+ 1)
k+1

(N—k-1)...(N-k—1+IK]
(N-IKl)...(N—1+1)

If |K| = 2, it follows from (3.12) that H} converges in distribution to

AU(s) (1 ~ VAT(5) )1‘2

Ar 1
(3.16) [0 WdUc(sH 2 o)

where AU(s) = U(s) — U(s —). Note that if [ = 2, then (3.16) is just (3.14). If
|[K| > 2, then the sum converges in distribution to

[ ]

P(s) P(s)

P(s)

(3.17) Y

S<'AT

In particular, if U is continuous and |K| > 2, then N2 = 0, that is, in the
limit, only two levels are involved in any birth event. Note that typically U is
continuous even when the original model has multiple simultaneous births.
(See Section 3.1.3.)

In general, if AU(s) > 0, then conditioned on U and P, levels are included
in the birth event independently with probability y/AU(s) /P(s). In any case,
by Lemma A.1, the family of counting processes {N}: K c{1,...,{}} con-
verges in distribution in the Skorohod topology on D [0, ).
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Given U and P, we can construct the limiting process in the following
manner. Let {V;;, i <;j} be independent unit Poisson processes, independent
of U and P. Define

tAT 1
(3.18) Li(t) = Vij( A Py dUc(s>).

L;; determines the times of the birth events that involve only i and j. Let
{y,,)] be some ordering of the times of discontinuity of U, let «, =

VAU(%,,) ) /P(y,,) and let {vjm} be independent, uniform [0, 1] random vari-
ables that are independent of U, P and the V;;. Define

(3.19) Lit) = X Iy, <

Ym <t

and, for K c{1,...,1},

(3‘20) (t) = Z H (vjm < CY,") H I(Ujm > am).

Y <t JEK jef1,..., }-K

L; determines whether or not level j is involved in the birth event at each
discontinuity of U and the L% track the subsets of {1,..., [} that are involved
in birth events at each discontinuity of U.

We can construct the limit process X = (X, X,,...) inductively. X, is just
a Markov process with generator B stopped at 7. Suppose that (Xl, e Xy)
has been constructed. Then between the jump times of L;, j </, and L;;,
i <j <1, and before 7, X, evolves as a Markov process w1th generator B,
dependent on the other levels only through its value at the most recent jump
time. For ¢ > 7, X,(¢) = X,(7 —). At a jump time ¢ of L, the level processes

satisfy

ij

X, () =X,(t-), k<,
X;(2) = X(¢),
Xp(2) =X 4(t =), k>,
and at a discontinuity time ¢ of U, defining i = min{;j: AL(¢) > 0} and
K,(t) = X;., AL(#) — 1, the level processes satisfy
X, (t) =X,(¢-), k<i,
X, (t) =X,(t), k>i,AL,(t) >0,

Note that X can be explicitly constructed using the mappings M(x,¢,)
described in Lemma 1.3, or X can be characterized by the requirement that
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there exists a filtration {Z,} such that L,; is &;-measurable for all i, j and

F(X() = [ BA(Xi(s)) ds

= I [A(Xi(s 2) = A(Xls =) dLy()

1<i<j<k

= L [A(F(Xi(s =) — (Xl -))) dLa(s)

1<i<k

- ) fot(f(Xmin(K)(s _)) - f(Xk(S _))) dL’;{(S)

Kc{1,..., k},keK
- ) fot(f(Xk—|K|+1(S _)) —f(Xk(S _))) dL’}{(s)

is a {Z,}-martingale for all f € Z(B).
For ¢t < 7", define

1 Nn(t)
Zn(t) = Nn(t) kgl 6X,?(t)’

and, for all ¢ > 0, define
1 !
Z(t) = lim = ) 8x,(t)-
ity |

PrROPOSITION 3.1.  For each t > 0, (X,(¢), X,(t),...) is exchangeable. More
generally, let 7 = o(Z(s): s <t)V o(U(s), P(s): s >0) and let y be an
{#Z}-stopping time. Then (X (y), Xy(v),...) is exchangeable. If vy is {Z}-pre-
dictable, then (X,(y =), X,(y —),...) is also exchangeable.

Proor. Let 7" = inf{¢: N*(¢) < I}. The fact that (P", 7") = (P, 7) implies
(P™, 7') = (P, 1), since P™(1') = 0. The exchangeability of (X{'(¢ A 1),
..., XMt A 7)) then implies the exchangeability of (X,(¢),..., X,(¢)) and,
since [/ is arbitrary, of (X,(¢), X,(¢),...). The remainder of the proof is similar
to the proof of Proposition 2.2. O

THEOREM 3.2. Let X" be a version of Model II of the previous section
determined by Nj', Nj and a fixed Markov evolution with generator B
satisfying the conditions in Section 1.3. Assume that, for each initial condi-
tion, the cadlag process corresponding to B has no fixed points of discontinu-
ity. Let X,(0), X,(0),... be an infinite exchangeable sequence in E and assume
that, for each n,

(XI”(O),..., Xl(l,n(o)(O)) = (XI(O),...,XN,I(O)(O)).
Let P", ", U" and H" be defined as in (3.8), and assume that (3.12) holds.
Then
(3.21) (P",U", P"Z" X"} = (P,U, PZ, X)
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in Dgzy yzyx 710, ). If, in addition, U is continuous, then, for each f € 2(B),

JF(=)Z(- A 7, dx)
is continuous a.s., and hence Z(- A 1) is continuous in the pgy metric.

REMARK 3.3. (a) If (3.9) holds but not (3.12), then there exists a sequence
g, — 0 such that
(3.22) (P, U™, P"Z", X"(-A 1]')) = (P,U, PZ, X).

(b) As noted in Section 1.3, continuity in pp is usually equivalent to
continuity in the weak topology.

Proor oF THEOREM 3.2. The assumptions and discussion above give
(P",U", X") = (P,U, X). To see that (3.21) holds, define

1 !
Zln(t) = 'l_ Z 5X,;’(t),
k=1

and similarly for Z,. Then P"Z'(- A 1') = PZ,(- A 7) by the convergence of
( P n’ Xn )
Consequently, the theorem will follow if we show that Z]' approximates Z"
well enough. The following lemmas verify the necessary approximation.
Since the discontinuities of [f(x)Z,(- A 7) are bounded by |/fl|/, the last
statement follows by Lemma 3.5. O

LEMMA 3.4. For each T > 0, ¢ > 0 and & > 0 and each f € 2(B), there
exists a sequence 6, such that 2,6, < © and

P{fgg [f(x)zn(t A TF, dx) — /f(x)z,n(t A 7F, dx)

<8,

> 1le, UNT) < c}

Proor. By Lemma A.2, for any ¢ > 0 and & > 0,

P{ J )z (e A 7 dx) = [ £(2)Z](8 A 7, dx)

where 1 depends only on || f]| and . More generally, let
2" =o(P"(s),U™(s):s>0) Vo(Z"(s):s<t).

Then for any {#"}-stopping time a with « < 7/,

Pl [ (02 () = [ £ 23 (s )

Fix [/ and &. Define
af =inf{t: U™(t) > I} AL A1)

> 8} < 2e M,

> s} < 2e ™,
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and
ag. = inf{t: Ur(t) > U o) + l_4} Ao +17%) ATl
In addition, define

= inf{t > ayt

[f(x)zn(t,dx) - [f(x)zn(a,g,dx) > 68} N

Note that, for &, = 2(c + T)l*, Plaj <T A 1], UMa}) < ¢} = 0. Defining

Hy =|[ ()2t ) — [ ()20t dv)

V| 0z ar ) - [0 20ag, a0,
we have that

P{ sup Hp > s} < 8(c + T)l*e .
k<k,
It remains to estimate the variation in the intervals («}, af, ;).

To simplify the notation, we suppress the index n. For each % and j, let
vjr, = infls > &, X;(a;) has no descendants at time s}. For o), <s < v, let
B;i(s) be the smallest index of a descendant of X(«,) and define X'j(s) =
XBj(s)(s A ¥;). Then, for a;, <u < a4,

()2} (u, dx) = [ f(2)Z}(, dx)

l

(3.23) = [ ()2 (u, dx) — 7 g F(Xp ()

1 8

71§1( (X(u)) (Xj(ak)))'
Let

1
Ki=max s | [f(2)ZF (4 dx) = 7 T /(Xplw)

and

!

%Z(ﬁ&w»—d&www-

Jj=1

K} = max  sup
E<k; a,<u<ay,,

Note that the first term on the right of (3.23) is bounded by 2|f]-
N/(ey, oy, ,1)/1, where N/*(a,, a;,, 1) is the number of new individuals added
to the population in the time interval («;, ; , ;) with initial index less than
or equal to /. Then, with %,, and ¢, as in the construction in the previous
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section, using the fact that

k) + 1)k
(824) UMy —) —UMey) = X Gen Db _ 14,

ap<tp <oy nm(nm - 1)

we have

o (y)Uerk 1

1
E[Nln(ak? ak+1)|Un,Pn] < n(n, — 1) BYE

ap<tp<apyy
Consequently, for || f|ll3 < &,

P{K} > 2¢}
k-1

&
<X P{IN,”(ak,ak+1) ~ B[N7 (e, a0 |U", P Zl2llfll}'
k=0

We can write

N'(ay,ap.) = L  (L-D7,

ap<ty,<apiy

where, conditional on U" and P”, the {, are independent hypergeometric
random variables. (Let ¢, = 0 if £,, < 0.) Using the fact that, for £2,, > 0,

E[((Ln — 1) (&n — q)]
(3.25) (kp +1) .. (kpy +1—q)
R R D e o Sy YN o

the inequalities
[(z - 1)+]2 <z(z-1),
[(z - 1)+]4 <3z(z—-1)(z—-2)(z—-3) +32(z - 1),

and (3.24), we can estimate fourth moments to obtain

&
p{lNﬁ(ak, 1) = B[N/ (e, a01) U7, PT]| 2 lZIIfII}

16]1£11*
< 4—;[51-4 +3172]
&

and hence

k161 f11*

P{K} > 2s} < i

[507%+38172%].
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The second term on the right-hand side of (3.23) can be rewritten as

7 A 0) A o)

1! _ Wnve
(3.26) = ; ( A X)) = A( X)) = [ Bf(Xj(s))ds)

Qp

1
g

Z /‘u/\VJka(X (8))

53

Then

17 - - uny; -
My () = 7 Zl(f(Xj(u)) ~ (X))~ [ ”Bf(X,.(s))ds)
J= %k
is a martingale, and if I *||Bf|| < &, we have
k-1
P(K}>26) < ¥ P{ sup | My(w)| = g} < Ce ™,

k=0 QpSU<Qpq
where C and 7, depend only on & and 2| fIl + ¢~ *[| BfI.
Finally, note that if max, _, H; <&, K{ < 2¢ and K3 < 2¢, then a; >
a1 and SUP.p<;cap, I/f(x)Z”(t dx) — [f(x)Z™(a}, dx)| < 6¢. Hence, un-
der these conditions,

[f(x)zn(t A Tf, dx) — ff(x)Zl”(t AT dx)| < 11e,

sup

t<aﬂ
and the conclusion of the lemma follows with
k16| f11*
& =8(c+T)l% ™+ %{51‘4 +3172] + Ce 7!, O
&

LEmMMA 3.5. For each T > 0, ¢ > 0 and ¢ > 0 and each f € 2(B), there
exists a sequence 8, such that ¥;8, < © and

{tsllg ff( x)Z(t A 7,dx)

— [(x)Z,(¢ A 7,dx)| > 115, U(T) < c} <,

ProoF. For §; as in Lemma 3.4, by the same argument as above, we have

{fljg /f(x)Zm(t A T,dx)

—[f(x)Zl(t A T,dx)| = 11e, U(T) < C} < &,
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for all m > [. This inequality and the fact that X,5, < © implies by the
Borel-Cantelli lemma that, with probability 1,

(3.27) {ff(x)Zl(~/\ T,dx)}

is a Cauchy sequence in the complete metric on Cy[0, ),

d,(x,y) = / e tsup 1 Alx(s) —y(s)]|de,
0 s<t

giving the topology of uniform convergence on bounded time intervals. Since

for each fixed ¢, {[f(x)Z,(t A 7,dx)} converges a.s. to [f(x)Z(¢ A 7,dx), the

lemma follows. O

4. Martingale properties. In this section, we examine more carefully
the martingale properties of the processes constructed in Section 3. In
particular, we consider the martingale problem satisfied by the particle
model, and more importantly, the martingale problem satisfied by the mea-
sure-valued process assuming that the order of the particles is unknown. We
restrict our attention to models in which the population size process is given
as a function of a Markov process @, that is, P(#) = p(Q(¢)), where @ has
state space E, and generator G. For simplicity, we assume that E; is a
locally compact, separable, metric space with metric , and that the strong
closure of G is the generator of a Feller semigroup {S(¢)} on C(E,) extended
so that 1 €e2(G) and G1 = 0. In addition, we assume

U() = [[a(Q(s)) ds + L aa(Q(s =), Q(5)),
s<t
where g,(v,v) =0, that is, U(#) = [{q,(Q(s)) ds and AU(s) = q,(Q(s —),
Q(s)) > 0 only if @ has a discontinuity at time s. Define a(v) = q,(v)/p(v)?
and B(v,v') = y/qy(v,v") /p(v"), that is, a(Q(#)) is the intensity for the L,;
and B(Q(¢ —), Q(¢)) is the probability that a level is involved in a birth event
at time ¢ if there is a discontinuity in @ at time ¢. We assume that there
exists a kernel 7 such that, for each € > 0, the closure of G, defined by

G.f(v) = Gf(v) - [ (f(v') = f(0))n(v, dv"),  [E2(G),

v':rg(v,v)> e}

generates a Feller semigroup corresponding to a Markov process €, satis-
fying
sup ro(Q,(s —),Q,(s)) <& as.
S

Of course, 1 is just the jump intensity measure for the process. For the
branching process example (Section 3.1.2), B(v,v’) = (v' — v)/v' and
n(v, dv") = vv(dv’).

Let E denote the type space which we continue to assume is a complete,
separable, metric space. We do not require B to be all of the weak infintesi-
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mal operator. We assume that @(B) c C(E) and is separating, 1 € 2(B)
with B1 = 0 and %#(B) c B(E). In addition, we assume that the martingale
problem for B is well posed, that is, for each u € #(E), there exists a unique
solution of the martingale problem for (B, ), and that any solution of the
martingale problem for B has a modification with sample paths in Dz[0, «).
It follows immediately that the martingale problem is well posed for the
operator

m
Cf(v,xq,...,%,) =GF(v,21,...,%,) + 2 Bif(v,%1,..., %),
i=1

where G operates on f as a function of v only and B, operates on f as a
function of x; only. [See Ethier and Kurtz (1986), Theorem 4.10.1.] Note that
C,, is the generator of the process with state space E, X E™ consisting of @
and m independent copies of the mutation process. We can take the domain

for C,, to be

(1) 2(C,) = {f&v)ﬁﬁ(m: fo€2(G), f; co(B), i - 1m}

although for some purposes we may want to extend C,, to the closure of its
linear extension.

The martingale problem for the first m levels in the particle model has
generator

A, f(v,x™)
= Cf(v, ™) + X a(u)(f(v, 0,(=™)) = f(v, x'™))
l<i<jsm
(42) K| m—IK|
+ Y f B(v,v) (1= B(v,v"))
Kc{1,..., m}) E,
X(f(v', 0 (x™)) = f(v', x))n(v, dv'),
where, for x € E*, x'™ = (x4,..., x,,),
0, /(X 15 X)) =Xqyeeey Xj g, %y Xjyenns Xpy_1,

and 0(x'™) is the element in E™ obtained from x'™ by inserting copies of
X mincxy at the levels in K — {min(K)} and dropping the |K| — 1 components
with highest indices. If K = {i, j}, then 6,; = 0.

If « and B, = [g, B(:,v)2n(-,dv’) are bounded, there is essentially no
difficulty in verifying existence and uniqueness for the martingale problem
for A,. Existence follows by a direct construction. If B satisfies the
Hille-Yosida range condition, then so will C,,. The range condition for A,
then follows since A,, is a bounded perturbation of C,,. Uniqueness for the
martingale problems will typically follow from Theorem 4.4.1 or Corollary
4.4.4 of Ethier and Kurtz (1986). If 8 = 0 (i.e., U is continuous), uniqueness
follows from Theorem 4.10.3 of Ethier and Kurtz (1986), at least if the state
description is expanded to include the counting processes, V;;. If the mutation
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process can be obtained as the unique solution of a stochastic differential
equation, then a system of sde’s can be written for X, and uniqueness of the
solution of the system used to prove uniqueness for the martingale problem.
See, for example, Section 6.4.

We will simply assume that the martingale problem is well posed for A,,
for any o« and B such that « and B, are bounded. Taking 2(A) =
Uz_12(A,,) and defining Af(v, x) = A,, f(v, x™) for feD(A,), we see
that the martingale problem for A is well posed.

Models with unbounded « and/or B, can be treated by a localization
argument. Assume that there exist open subsets U, < E, such that, for each
k, a and B, are bounded on U, and U;_, U, = U = {v: a(v) + B,(v) < =} (In
the diffusion models discussed in Section 3, we could take U, = {v: p(v) >
k1)) Let 7, = inf{t: Q(¢) ¢ U, or Q(¢t —) ¢ U,}, and define 7= lim, 7,
[which, for the diffusion models, is the extinction time defined in (3.10)]. Then
the stopped martingale problem for (A, v,, U, X E*) is well posed for each %
[see Ethier and Kurtz (1986), Theorem 4.6.1] and hence the sequence of
stopped martingale problems uniquely determines the process up to time 7. If
we assume that 7, < 7 a.s.,, then 7 is predictable, and since by Ethier and
Kurtz [(1986), Theorem 4.3.12], (®, X,) is quasi-left continuous, we have
Q(r) = Q(r — ) and X(7) = X|(t — ) on {7 < «}. (Note that A, is independent
of o and B, so (@, X;) is uniquely determined for all time.) If [J(a(Q(s)) +
B,(Q(s))ds = = (i.e., there are infinitely many lookdowns prior to time ),
then as in Theorem 6.1, X,(r — ) = X (7 — ) = X,(7) a.s. for each i, and we
will simply define X,;(7) = X;(r —) = X (7). If [§(a(Q(s)) + B,(Q(s)) ds < o,
then, for each i, there is a last lookdown at or below level i at a time strictly
less than 7, and the exchangeability of the historical paths discussed in
Section 5.2 shows that X; and X, have the same distribution on the interval
between the last lookdown and 7. Consequently, we will again set X,(7) =
X;(r—).

With the understanding that we can treat unbounded « and B, by the
above localization argument, we will focus our attention on the bounded case.

Since any process of this form arises as a limit of the type discussed in
Section 3, we have that, if X;(0), X,(0),... is exchangeable and independent
of Q(0), then X,(¢), X,(¢),... is exchangeable for each ¢ > 0. More generally,
we have the following.

THEOREM 4.1. Let A, be as above, and assume that the martingale
problem for A,, is well posed. Let vy € #(E, X E*), and let (, X, X,,...) be
a solution of the martingale problem for (A, v,). If there exists a transition
function n, from E, to P(E) such that, for all T € B(E,) and H; € #(E),

VO(T XHI Ny XHm XE°°)
= fl_fg(E)(ﬁM(Hi))ﬂo(U,dM)Vg(dv),

i=1
where v)) is the E,-marginal of v, then, for each t > 0, X,(¢), X,(¢),... is an
exchangeable sequence. Denoting the corresponding de Finetti measure by

(4.3)
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Z(t), we have
E[h(Xy(2), ..., X,(1))]527]

— [ [ R0 2,) 2(8, ) - Z(E, dxy,).

REMARK 4.2. Note that (4.3) is essentially just the exchangeability of the
initial distribution.

ProOOF. The result is an immediate consequence of Proposition 3.1. O

One consequence of Theorem 4.1 is that, for h € 2(A,),

(H(@(0), ), 2()") = [[{ Anh(Q(s),"), 2(s)") ds

is a martingale with respect to the filtration {%% Z}. Consequently, if we
define an opertor

A: Z(A) c C(Ey x#(E)) —» B(E, x2(E))
by taking
D(A) = (F: F(v,pn) =(h(v,"), W™, h€2(A,), m=1.2,...}
and defining
(4.4) AF(v, 1) =(Anh(v, ), w"),
we have existence of solutions of the martingale problem for A. Note that for
a a constant, A gives the standard martingale problem for the Fleming—Viot

process. [See, e.g., Ethier and Kurtz (1993).] We now consider the conditions
for uniqueness of the martingale problem.

THEOREM 4.3. Let a and B, be bounded and suppose that there exists a
A > 0 such that #(\A — B) is bp-dense in B(E). [ Recall that we are assuming
that the closure G of G generates a Feller semigroup on C(E,), so #(\ — G) =
C(E,) for every A > 0] Then, for every A >0, %(A — A) is bp-dense in
B(E, X 2(E)) and the martingale problem for A is well posed.

Proor. Note that the conclusion of the theorem is valid if and only if it is
valid with G replaced by G, so without loss of generality, we assume G = G.
If X is a solution of the martingale problem for B, then it is a solution of the
martingale problem for B, the _bp-closure of B. [See Ethier and Kurtz (1986),
Proposition 4.3.1. In general, B will be multivalued and should be considered
to be a set of ordered pairs; however, we will continue to use the more
intuitive notation Bf.] Since the martingale problem for B is well posed, for
h € %(A — B) we have

(4.5) (X —B) 'h(x) =E[/Owe‘“h(Xx(t))dt ,
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where X, is a solution of the martingale problem for (B, §,), which, by
assumption, we can take to be right continuous. Consequently, if {,} C
%\ — B)and h = bp-lim, _,, h,, then the bp-limits of £, = (A — B)"'h, and
Bf, = Af, — h, will exist. It follows from the assumption that (A — B) is
bp-dense in B(E) that B satisfies #(A — B) = B(E). Consequently, we may
as well assume that B is bp-closed and hence that %#(A — B) = B(E). But if
this condition holds for one A > 0, it holds for all A > 0[See Ethier and Kurtz
(1986), Lemma 4.2.3. Note that (A — B)~! will be single-valued even if B is
multivalued.]

Let B, ={(f,g) € B:geg (é )}. Then B, generates a strongly continu-
ous (in the sup norm) contraction semigroup on L = Z( B) [Ethier and Kurtz
(1986), Theorem 1.4.3.] The fact that X is right continuous implies & (B) is
bp-dense in B(E), so linear combmatlons of functions of the form

(v, %5005 %) = fo(V) fi(%1) - F( %)
fo€2(G), f; €2(B,),1<i<m,

will be bp-dense in B(E, X E™). Call this collection of functions D,,, and note
that the semigroup {S,,(¢)} corresponding to the process (@, X,,..., X)),
where X, ..., X,, are independent solutions of the martingale problem for B,
maps D,, into D,,. It follows by Ethier and Kurtz [(1986), Proposition 1.3.4],
that the closure of C,, restricted to the linear span of D,, generates a
strongly continuous contraction semigroup on L, , the closure of the linear
span of D,,. Since the strong closure of the linear span of %#(A — C,,) contains
L,,, the bp-closure must equal B(E, X E™). Finally, since A,, is a bounded
perturbation of C,,, it follows that the linear span of %#(A — A,,) is bp-dense
in B(E, X E™). Since, for f € 2(A,) and F(v, u) = {f(v, "), u™,

)‘F(v> :U“) - AF(U’ /"") =</\f(l),‘) _Amf(v")’ /"Lm>a

it follows that (A — A) is bp-dense in B(E, X #(E)). Consequently, by
Ethier and Kurtz [(1986), Theorem 4.4.1], the martingale problem for A is
well posed. O

THEOREM 4.4. Let D be a countable subset of 2(G) that separates points
in E,, is closed under multiplication and vanishes nowhere, and let D, be a
countable subset of 2(B) that separates points in E, is closed under multipli-
cation and vanishes nowhere. Suppose that, for f € D,, Bf € C(E) and that
the martingale problems for G restricted to D, and for B restricted to D, are
well posed. If o and B are bounded and continuous and (v, ) is weakly
continuous in v, then the martingale problem for A is well posed.

PrOOF. Recall that we are assuming that 2(B) c C(E) and 2(G)
C(E,). Note that the martingale problem for A restricted to the domain
generated by D, and D, is still well posed and satisfies the conditions of
Theorem 2.6 of Kurtz (1998) [i.e., Bhatt and Karandikar (1993), Theo-
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rem 4.1]. Define y(v, x4, x,,...) = (v, u) € E; X 2(E) if the limit

exists, and define y(v, x;, x,,...) = (v, §,) for some fixed a € E otherwise.
Then uniqueness for the martingale problem for A follows by Kurtz (1998),
Corollary 3.7, where the mapping y is defined above and the transition
function « (not to be confused with « in the present paper) is determined by

m
a(v>l-"’F0XF1X”'XFmXEm) ZSU(FO)H”’(FL) O
i=1

If @ is continuous, the formulation of the martingale problem for A can be
simplified [cf. E1 Karoui and Roelly (1991)].

THEOREM 4.5. Let (@, Z) be a process with sample paths in Cg, , 5z 0, %),
and assume that 2(G) is an algebra. Suppose that, for f, €2(G) and
fl EQ(B)’

F(QUOX Fia Z(0) = [[(FOIGR(Qs)) + Fo Q) BA(). Z(5)) ds

is a continuous {9“?’2 }-martingale with quadratic variation
[ (i 2GN(GF(Q(s)) = 2/o(@(5) Gol @()))

+a(Q(s) (RN 2. 2(5)) —( 1, Z(5))")) ds.
Then (@, Z) is a solution of the martingale problem for A.

PrOOF. Apply It0’s formula to (h(Q(¢), ), Z(¢)") for h €e2(A,) =2(C,,)
defined by (4.1). O

ExamMpLE 4.6 (Dawson-Watanabe process). Let E, =[0,%), Gf,(v) =
avfy(v) + bufy(v), and let p(v) = v, that is, the population size is given by @.
Then C10,»), the space of continuously differentiable functions with compact
support in [0,), is a core for G. Note also that 0 is absorbing, that is, if
7= inf{¢: Q(¢) = 0}, then Q(¢) =0 for all ¢ > 7. Let K be an .Z(E)-valued
process such that, for f € 2(B),

(f,K(2)) — /Ot< bf + Bf, K(s)) ds

is a continuuous {%, K}.martingale with quadratic variation

/(:2a<f2,K(s)> ds.
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Taking f = 1, and setting Q(¢) = |K(¢)| [the total mass of K(¢)] and Z(¢) =
|K(2)|"'K(2), we see that

t
Q(t) — [ bQ(s) ds
0
is a continuous martingale with quadratic variation

fOtZaQ(s) ds.

Consequently, @ is a solution of the martingale problem for G. Let U, =
(k~1,), and set a(v) = 2a /v, v # 0. Applying It&’s formula, we can see that
(Q, Z) satisfies the martingale conditions of Theorem 4.5, provided we stop
the process at 7, = infl¢: Q(¢) & U,}. Consequently, (Q(- A 7,), Z(- A 7,)) is a
solution of the stopped martingale problem for (A, U, X %#(E)). Since @
absorbs at zero, if B satisfies the conditions of Theorem 4.3 or 4.4, the
martingale conditions on K uniquely determine its distribution for any
initial distribution on .Z(E). This result is a special case of the characteriza-
tion of the Dawson—Watanabe process in El Karoui and Roelly (1991). O

ExaMPLE 4.7 (General diffusion population size). More generally, let E, =
[0,%), p(v) = v and Gf,(v) = a(v)f(v) + b(v)fy(v), and assume that C[0, »)
is a core for G. [See Ethier and Kurtz (1986), Theorem 8.2.1 for sufficient
conditions on a and b.] Setting b(v) = b(v)/v and a(v) = a(v)/v, let K be
an .#(E)-valued process such that, for f € 2(B),

(fK(t)) — fot(l;(lK(s)IX £, K(s)) +{Bf, K(s))) ds

is a continuous {%; K}.martingale with quadratic variation

fot%t(lK(s) X 72, K(s)) ds.

As in Example 4.6, let Q(¢) = |K(¢)| and Z(¢) = |K(¢)| 'K(t). Taking f =1,
we see that

t
Q(t) — [ b(Q(s))ds
0
is a continuous martingale with quadratic variation
[ 2a(Q(s)) ds,
0

and hence @ is a solution of the martingale problem for G. Setting a(v) =
2v2a(v), U, = {v: a(v) < k} and 7, = inf{t: Q(¢) & U,}, (QC- A 7,), Z(- A 7))
is a solution of the stopped martingale problem for (A, U, X #(E)).

5. Genealogy.

5.1. The Coalescent. Let L;; and L be defined as in (3.18) and (3.20). For
eacht > 0and k =1,2,..., let N/(s), 0 < s < ¢, be the level at time s of the
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ancestor of the particle at level & at time ¢. In terms of the L, for 0 < s < ¢,

th(s) =k - Z f I{N’(u)>]) dLU(u)

1<i<j<k

l]’

- Z f( - i) (N} (1)=} dLij(u)

1<i<j<k ™S

- T [(Ni(w) - min(K)) e x) AL (u)
Kc{1,..., R} S

- T (K0 N )] - )
KcA{y,..., k}

XN iy > min(K), Niw) ¢ K) dLi (u).
Fix 0 <t < 7, and, for s < ¢, define an equivalence relation, R(s), by
(5.1) Ri(s) = {(k,1): k,1=1,2,...,Ni(s) = N/(s)}.
Informally, (k, 1) € R'(s) iff the two levels & and [ have the same ancestor at
time s.

THEOREM 5.1. Assume that U is continuous and that t < 7. Let vi(u) be
the time change determined for u < H(t) = [{(1/P(s)*) dU(s) by

;1
/ =~ dU(s) = u.
viw) P(s)

Up to time H(t), the process R' defined by R'(u) = R'(v'(w)) is Kingman’s
(1982) coalescent.

Proor. Observe that R(0) ={(z,7),i=1,2,...}. Define

1 ,
v;;.(u)=v,.j([ TS dU(s)) (/;)v(u)P( % dU(S))

Since V(u) is the increment of a unit Poisson process over a (random) time
1nterva1 of length u for which the location of the interval is independent of
the process V;;, it follows that (the right continuous modification of) V}’; is a
unit Poisson process stopped at H(t). Further, these processes are indepen-
dent for distinct pairs (Z, j).

The result then follows as in Theorems 3.1 and 3.2 of Donnelly and Kurtz

(1996). O

Pitman (1997) considers coalescent models with multiple collisions. His
models are given by (5.1), if the underlying population model is that described
in Section 3.1.4. In particular, the finite measure A in the definition of
Pitman’s coalescent is related to v by the identity

flg(x)A(dx) =ag(0) + flg(\/;)vy(dv).
0 0



196 P. DONNELLY AND T. G. KURTZ

[Recall that [jvr(dv) < «.] Compare (3.17) with the definition of A, x in
Pitman’s paper.

Suppose U is continuous and 7 = «. Then, on the event {lim, _,,, H(¢) = o},
R! converges in distribution, as ¢ — «, to Kingman’s coalescent. In particular,
under these conditions, for large enough ¢, all the levels at time ¢ share a
common ancestor at time 0. If 7 < © and H(7) = «, then with

7, = inf{t: P(¢) < &},
R’ converges in distribution to Kingman’s coalescent as £ — 0. In particular,
under these conditions, for some time ¢ sufficiently close to 7, all the levels at
time ¢ share a common ancestor at time 0.

Dropping the continuity assumption on U, the existence of a common
ancestor at time 0 will still hold on the event

1

¢ = o
(5.2) fim [ 55 AU =
although R’ can no longer be transformed by a time change to Kingman’s
coalescent. If (5.2) fails, then the question of the existence of a time at which
all particles have a common ancestor at time 0 becomes more delicate. See
Pitman [(1997), Section 3.6] for a discussion of this question for the models of
Section 3.1.4, that is, models in which P = 1 and U has stationary, indepen-
dent increments.

The property that all the levels can be traced back to a single common
ancestor in finite time is closely related to the ergodicity of the particle
process, since it facilitates the coupling of versions of the process for different
initial conditions. For details of the argument, see Donnelly and Kurtz (1996),
Section 4. For example, under the assumptions on P and U in the first
paragraph of Section 4, suppose that the process @ is strongly ergodic (i.e.,
for each initial distribution, the one-dimensional distributions converge in
total variation to the unique stationary distribution) and, in addition, that
the type/location process is strongly ergodic. Then the proof of Theorem 4.1
of Donnelly and Kurtz (1996) is easily extended to show that, if all the levels
can be traced back to a single common ancestor in finite time, the particle
process, and the associated measure-valued process, are also strongly ergodic.

5.2. The Dawson—Perkins historical process. Let N/} be as above. For
eacht > 0and k£ =1,2,..., define

X[(s) = Xyys(s), O0<s<t.

Then X %, as a process on the interval [0, ¢], is Markov with generator B, and
the sequence {X/} is exchangeable as a sequence of Dy[0, ¢]-valued random
variables. (Alternatively, we can define X/(s) = X/(t) for 5 > ¢ and consider
X! as a Dg[0,)-valud random variable.) Let K(¢) denote the de Finetti
measure corresponding to the sequence, and define K(¢) = P(¢)K(¢). In the
branching case, K, viewed as an .Z(Dg[0, ©))-valued process, is the historical
process of Dawson and Perkins (1991).
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6. Applications and examples.

6.1. Type distribution at the extinction time. In the case of super Brown-
ian motion, Tribe (1992) has shown that

lim Z(t) =§, as.

t—> 71—

for some R9valued random variable {,. From the above construction, it is
easy to see that ¢, = X,(7). More generally, we have the following theorem.

THEOREM 6.1. The limit
lim Z(t) = 8x,¢—)

to>T—
holds almost surely on {r < «} if and only if
T 1 T 1 AU(S)
6.1 dU(s) = dU(s) + = o
(61) fo P(s)? (s) fo P(s)* (s) ; P(s)*

holds almost surely on {T < «}.

PrOOF. Let N,(¢) = L,,(¢) + L%m,(t). By (6.1), for each &> 0, Nj,(1) —
Nyy(7 — &) = @ on {r < «}. It follows that X,(r — ) = X,( — ) a.s. But since 7
is Z,-measurable, it is {Z,}-predictable and (X,(r —), X,(r —),...) is
exchangeable by Proposition 3.1. Consequently, we must have X,(r —) =
X(r =) for all £ and hence Z(1 —) = 8y (,_,. O

6.2. Conditioning. In general, the effect of conditioning on U and P is
clear. The only impact on the process is through the time change in the
definition of L;; at (3.18) and through the definition of LlK at (3.20). For
example, if the original process is the Dawson—Watanabe process so that

t 1 t C
fo_—P(s)“’ dU(s) =[O mals,

then conditioning on P =1 is equivalent to setting L, (¢) = V,(ct), which
makes Z the Fleming—Viot (genetic) process, a result due to Etheridge and
March (1991). See Perkins (1991) for related results.

Again, in the Dawson—Watanabe setting, conditioning P on nonextinction
[ef. Evans and Perkins (1990) and Section 6.3] is equivalent to replacing P
with generator Gf(v) = avf” (v) — bvf'(v) (b = 0) by a process with generator

(6.2) Gf(v) = avf"(v) + (2a — bv) f'(v).
If P(0) > 0, then P never hits zero, but P grows slowly enough that
0 C
j;) P(s) ds = o,

It follows that eventually all particles trace their ancestry back to the
bottom-level particle. In particular, the bottom-level particle in our construc-
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tion is the “immortal particle” of Evans (1993), and if b > 0, the ergodicity
argument outlined in Section 5.1 applies whenever X, is ergodic.

6.3. Asymptotic independence. The following theorem extends a result of
Evans and Perkins (1990) for critical superprocesses conditioned on nonex-
tinction. As noted in Section 6.2, conditioning a Dawson—Watanabe process
on nonextinction is equivalent to letting P be the diffusion with generator
(6.2). It follows that in the critical case (ie., b =0), for a >0, P%(?) =
P(at)/a is a diffusion with generator G, and hence, as a —> », P%= P,
where P, is the diffusion with generator G and P(0) = 0. Note that P,(¢) > 0
for all ¢ > 0, and, consequently, that (6.3) below is satisfied.

THEOREM 6.2. Suppose that 7=« a.s. and that the type process has
stationary distribution 7 and is ergodic in the sense that lim, ,,, T(¢)f(x) =
[fdw for every f € C(E). Assume either that the convergence is uniform
on compact subsets of E or that X,(0) has distribution 7 (that is, X, is
stationary with marginal distribution ) and the convergence holds almost
everywhere 1.

If

1
t+r
6.3 li

(6:3) lim |

P(s)’

in probability for each r > 0, then lim, ., Z(t) = 7 in probability.

dU(s) = 0

PROOF. Again, let Nyy(¢) = Lyy(¢) + L} 5(¢). Let y(¢) = sup(s < ¢
N,(s) # Nyy(s — )}. Then by (6.3),

lim P{¢ — y(¢) >r} =1
]

for each r > 0. By the conditional independence of the type processes and the
assumption on {T'(¢)}, for each f € C(E),

}1_{130 E[< fs Z(t)>2] }I_,I?o E[F(X:(8))f(Xa(2))]

lim E[(T(t - v(£)) F(X(v())))]]

={f,m)

[Note that since y(¢) is independent of X, if X, is stationary with marginal
distribution 7, then X,(y(¢#)) has districution =.] But since E[{f, Z(¢))] =
(f, >, it follows by the Chebychev inequality that Z(¢) — 7 in probability.

O

6.4. Sochastic equations for diffusion type processes. Let L;; and L% be
defined as in (3.18) and (3.20). Suppose the type process is a diffusion in R¢
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given as the unique solution of an It6 equation,
t ¢
Xo(t) = X,(0) + [0 o (X,(s)) dW(s) + /O b(Xy(s)) ds,
where o is d X d-matrix-valued function, W is a standard Brownian motion

in R4, and b is an R%valued function. Then the particle process satisfies the
system of equations

X, (1) = X,(0) + /()to(Xk(S))de(s) + /Otb(Xk(S)) ds

+ L [{(Xi(s ) = Xuls =) dLu(s)

1<i<k
(6.4) + 1<§:.<kft(Xk—1(s -) —X,(s _)) dLij(s)
D [ (Kaols —) ~ Xils ) dL(s)

Kc{1,..., k}, keK

t
+ Y [(Zege(s o)~ X(s —)) dLi(s),
Kc{l,..., k), kek 0

where the W, are independent, R?-valued, standard Brownian motions.

6.5. Measure-valued diffusion with spatial interaction. In the Dawson—
Watanabe setting, Perkins (1992) introduced stochastic equations driven by
historical Brownian motion, that is, the historical process with Brownian
location process (see Section 5.2). In our context, we can modify (6.4) to obtain
a version of Perkinsg’s models corresponding to our more general population
models. We assume, for simplicity, that U is continuous and write

X(1) = X,(0) + [ 7 (P(5), Z(5), X,(s)) dWi(s)

-I—fotb(P(s),Z(s),Xk(s))ds
(6.5) t
+ L [ (X(s =) —X(s =) dLy(s)

1<i<k "0
+ X Z k/t(Xk—1(3 =) — X,(s)) dL;;(s).

For each ¢ > 0, we require the solution {X,(¢)} to be exchangeable with de
Finetti measure Z(t¢). The connection of this system to the equation of
Perkins is more obvious if we first define

~ ld S
Wi(s) = X [ Toviw-n AWi(w), 0 <s<t,
i=1
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and note that the de Finetti measure for {Wk} multiplied by P(t) gives
historical Brownian motion. Then, for each ¢ > 0, X,(¢) = X/(t), where

Xi(s) = X/(0) + fo o (P(u), Z(u), Xi(u)) dWi(u)
(6.6) . )
+] b(P(u), Z(u), Xi(u)) du.

Note that in (6.6), Z(w) is still the de Finetti measure for {X,(«)}, not that of
{X k‘(u)} In the branching setting, (6.6) is essentially equation (SE) of Perkins
(1992). Perkins aso considered more general equations in which the coeffi-
cients depend on the past of the processes.

Following Perkins, let p, denote the Wasserstein metric on 2(R¢) and
assume

‘a-(p>zl’x1) - U'(P’Zz’x2)| +|b(p,zl,x1) - b(p>22’x2)|
< K(py(21,25) +1x; — x5),

for z4, z, e 2(R%) and Xy, X9 € R?. Consider the n-dimensional system, 1 <
k<n,

(6.7)

Xp(1) = X,(0) + [0 (P(5), 2"(s), Xi () AW, (5)
+ftb(P(s),Z”(s),X,f(s))ds

+ X[ 2) ~ Xp (s -)) dLu(s)

1<i<k
£ T k/‘(X;_1<s—)—X;:l(s))dLij(s),

where Z"(s) = (1/n)L}_8xp) The Lipschitz assumption (6.7) implies exis-
tence and uniqueness for (6. 8) below.

Suppose that there exists a solution of (6.5), and note that, as in (6.6),
X (t) = X](¢), where

Xpt(s) = X{0) + [ o (P(0), 27 (), X (w) AV ()
(6.8)
+ [To(P(w), 2" (), P! (u)) d.

By (6.7) and the usual Lipschitz estimates for It6 equations, for each T' > 0,
there exists a constant K, such that, forall0 <s <t < T,

B[ Xi(s) - X4 (9)[]

< Ko B p2(2(0), 2°(w) +| K (w) - %[ d,
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and hence, by Gronwall’s inequality, for 0 < ¢ < T,

B x,(0) - xp(0)] = E[| £10) - Zp (0[]
(6.9) t
< exp(TKT)]O E[ p2(Z(w), Z"(u))] du.

Now let Z"(t) = (1/n)L}_ 8%, ;) and note that
A 1 2
P(27(6),2°(1)) = o B (Xy(1) ~ Xp(1))"
By (6.9),
2(r7n n ¢ 2 on
E[ pi(27(2), 2"(1))] < 2exp(TKy) [ (E p}(2(w), 2"(w))]

+B[ p2(2"(u), 2"(w))]) du,

and again by Gronwall’s inequality, we have
(6.10) B[ p2(27(2), 2"(1))| < exp(t2¢™r) ['E[ p2(2(u), 2" (u))] du.
0

By the requirement that {X,(«)} be exchangeable with de Finetti measure
Z(u), the right-hand side of (6.10) goes to zero as n — «. It follows that the
right-hand side of (6.9) goes to zero also, which, in particular, implies
uniqueness for (6.5). Existence for (6.5) follows by using much the same
argment to show that {Z"(¢)} is a Cauchy sequence for each ¢.

Assume that P and U satisfy the conditions of Section 4. To simplify
notation, assume that o and b depend explicitly on @ rather than P, and set
a(v, z, x) = o (v, 2, x)o (v, z, x). For f €2(B) = C2(R?), define

d d
Bf(v,z,x) =5 Y, a;(v,z,%)3,0,f(x) + ) b(v,z,x)d;f(x).
ij=1 i-1

The generator A for (@, Z, X) is given by the obvious modification of (4.2). In
formulating the corresponding martingale problem, we require that a solu-
tion have the exchangeability property, so that Z(¢) is defined to be the de
Finetti measure for X(¢). Under the conditions above on o and b, uniqueness
for the system (6.5) implies uniqueness for the corresponding martingale
problem. [Every solution of the martingale problem is a weak solution
of (6.5).] If we define A as in (4.4), uniqueness for the martingale problem
for A follows by the same argument as used in the proof of Theorem 4.4.

6.6. Models with immigration. A particle representation for models with
immigration can be constructed in much the same way as for models without.
We simply insert new “immigrants” at each level at a rate that is indepen-
dent of the level or the current type at the level. In the case B =0, the
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generator (4.2) becomes

Apf(v, &™) = Cpf(v,a™) + X a(o)(f(v, 6,(2™) = f(v, x™))

1<i<j<m
© X 70 (0. 0(x"15) - F(v, 57)a(v, d).

where 6,(xy,..., x,ly) = (xy, ..., 2,1, ¥, %;5..., X,,_1) and q is a transition
function from E, to E which gives the distribution of the type of the
immigrant conditioned on the value of the Markov driving process Q. If «
and y are bounded, then uniqueness of the martingale problem for A, will
typically follow under the same conditions as in the case y =0 and the
exchangeability results follow also. In particular, if we define A as before,
that is, AF(v, u) = (A, h(v,-), u™), then Theorem 4.3 extends to the model
with immigration under the assumption that « and y are bounded. If y is
bounded and continuous and the mapping v — q(v, ) from E; into P(E) is
continuous, then Theorem 4.4 extends as well.

If the original finite population model is a branching Markov process with
constant immigration rate and iid immigrant types with distribution q,, then
Gfo(v) = avfy(v) + (bv + ) fy(v), p(v) =v, alv) = 2a/v, q(v,dy) = q,(dy)
and y(v) = ¢/v for some constant c. Defining K = QZ, for f € 2(B),

(6.11) (F, () = [ (bf + Bf, K(s)) + ([, 0)) ds
is a continuous {7, X}-martingale with quadratic variation
(6.12) [ 2a(£?, K(s)) ds.

0

As in Example 4.6, if B satisfies the conditions of Theorem 4.3 or 4.4, (6.11)
and (6.12) determine a well-posed martingale problem.
Models with migration between colonies will be treated elsewhere.

APPENDIX

LeMMA A.1. For each n, let NJ',..., N} be counting processes satisfying
[N/, Nj"l, = 0 for i # j (i.e., there are no simultaneous jumps). Suppose that
{H]"} are nondecreasing processes with H/*(t) — H(¢t —) < 1 for all i and
t> 0, that

Nt —-H!, i=1,...,m,
are {Z]"}-martingales and that H(t) is Z}'-measurable for each i and t > 0. If
(H,...,H})=H=(H,,...,H),)
in the Skorohod topology on Dgnl0,®), then
(N5, Ng) = (Ny,o, N ),
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where (Ny, ..., N,,) are counting processes with joint distribution determined
by
H]

=1+ ‘§1 fot @r(u —)(exp(—fi(u)) — 1) dH;(u)

3

er(t) = E[exp(— Y [f(s) dM-(s))

i=1°0

for all nonnegative, continuous, R™-valued functions f = (fy,..., [,,)-

Proor. Using the fact that there are no simultaneous jumps among
the N,

exp| - £ ['1) a9

=1+ é fot (exp(~7i()) = 1)exp(— =Zl fou_fi(S) dN}"(S))
XdN/(u)
=1+ ) fot (exp(—f;(u)) - 1)exp(— é fou_ﬂ(S)dM"(S))

Xd(N(u) ~ H}'(u))

(A1)

t
0

+ £ [l e(-p) - en| - £ [ i) ano.

Using the martingale assumption and the measurability assumption, condi-
tioning both sides of (A.1) on H", we have

[, o (e ) (exp(=fi(w) = 1) dH (w),

o (t) =E

exp(— Y [i(s) dM”(S))

i=1

Mz

=1+
i
and the convergence of H" to H implies the convergence of H" to H implies
the convergence of ¢/ to ¢;. [The convergence can be obtained by applying

Theorem 5.4 of Kurtz and Protter (1991) or more directly from Avram (1988).]

LEMMA A.2. Let &,,...,&, be exchangeable and suppose there exists a
constant K such that | ¢,| < K a.s. Define

1 k
Mﬁngi.
i=1
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Let & > 0. Then there exist C and n depending only on K and &, such that, for
[ <n,

P{IM, - M| > &} < C(e,K)e 1=K,

(In particular, the right-hand side does not depend on n.)

Proor. Note that {M,} is a reverse martingale and that

2K
E+1

My 1 — Ml <

It follows that
Elexp(MM, — M)))]
n—-1
=1+ kglE[exp()\(Mn - M,)) — exp(M( M, — M, .,))
MM, — M,)exp(M M, — Mk+1))]
n-1 2K 2K
<1+ kgl (exp()\m) -1- )\m)E[exp()\(Mn - Mk+1))]

and, by Gronwall’s inequality, that

E[exp(M M, — M)))] < eXp{:g (eXp()‘;TKI) 1= Aszl )}

2K \ (A2K)*
l+1) }

< exp{exp()\——~ 7

Hence,

/\l+1 l

)
< exp{(e‘sé2 - 2—I€a)l},

where we take A = 8//2K. The same inequality holds with M, replaced by
—M,. Consequently, we can take n = —infs(e%?* — (§/2K)¢e) and C = 2. O

P{(M, - M) > ¢} < exp{exp( 2K )_(B_K__)_ - /\s}

LEMMA A.3. For x € Dg[0,») and & > 0, define 7§{(x) = 0 and 77, ,(x) =
inflt > 77(x): r(x(8), x(77(x))) > &}. Let J(x,¢, &) = min{k: 77(x) > ¢t}. Then
J(x,t, &) is bounded on compact subsets of Dg[0, ).

Proor. The lemma follows easily from the characterization of the com-
pact subsets of D;[0, ) in terms of a modulus of continuity. See, for example,
Ethier and Kurtz (1986), Theorem 3.6.3. O
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