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Abstract

Consider a population model in which there are N individuals in each generation. One can
obtain a coalescent tree by sampling n individuals from the current generation and following
their ancestral lines backwards in time. It is well-known that under certain conditions on the joint
distribution of the family sizes, one gets a limiting coalescent process as N → ∞ after a suitable
rescaling. Here we consider a model in which the numbers of o5spring for the individuals are
independent, but in each generation only N of the o5spring are chosen at random for survival.
We assume further that if X is the number of o5spring of an individual, then P(X ¿ k) ∼ Ck−a

for some a¿ 0 and C¿ 0. We show that, depending on the value of a, the limit may be
Kingman’s coalescent, in which each pair of ancestral lines merges at rate one, a coalescent
with multiple collisions, or a coalescent with simultaneous multiple collisions.
c© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

We consider a population model in which the number of o5spring of each individual
is chosen independently from some distribution on {0; 1; : : :} with mean greater than 1,
as with supercritical Galton–Watson processes. However, we assume that only N of the
o5spring survive to form the next generation, so that the population size remains >xed.
For a concrete example, consider annual plants. Each plant produces many seeds, but
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the total population size remains roughly constant since the environment can support
a limited number of plants per acre. If we sample n individuals from one generation,
we can follow their ancestral lines backwards in time to obtain a coalescent tree. The
goal of this paper is to determine what coalescent processes arise in the limit, after
suitable rescaling, as N → ∞.
We focus on the case in which the probability that an individual has k or more

o5spring decays like k−a for some a¿ 0. We show that when a¿ 2, the limit is
Kingman’s coalescent, a coalescent process in which each pair of blocks merges at
rate 1. When 16 a¡ 2, the limit is a coalescent with multiple collisions, in which
many blocks can merge at once but no two such mergers occur at the same time.
When 0¡a¡ 1, the limit is a discrete-time coalescent with simultaneous multiple
collisions, in which many blocks can merge at one time, and many such mergers can
occur simultaneously.
The rest of this paper is organized as follows. In Section 1.1, we introduce the

relevant families of coalescent processes. In Section 1.2, we describe how these coa-
lescent processes can be obtained by taking limits of ancestral processes. In Section
1.3, we formulate our model more precisely and state the convergence results. Then in
Section 2, we prove convergence to Kingman’s coalescent when a¿ 2. In Section 3,
we consider the case 16 a¡ 2. In Section 4, we prove the convergence result for
0¡a¡ 1 and establish a formula for the transition probabilities of the limiting coa-
lescent process.

1.1. Coalescent processes

We >rst review some facts about coalescent processes that we will need. For a more
thorough survey of coalescence, see Aldous (1999). Let Pn be the set of partitions of
{1; : : : ; n}, and let P∞ be the set of partitions of N. Kingman (1982a) introduced the
n-coalescent, which is a Pn-valued continuous-time Markov process (�n(t); t¿ 0)
such that �n(0) is the partition of {1; : : : ; n} into singletons, and then each pair of
blocks merges at rate one. More precisely, for �; �∈Pn, write � ≺ � if � can be
obtained by merging two blocks of �. If � and � are distinct partitions of {1; : : : ; n},
then

lim
t↓0
t−1P(�n(s+ t) = �|�n(s) = �) =

{
1 if � ≺ �;

0 otherwise:

Kingman (1982a) also showed that there exists a P∞-valued Markov process (�∞(t);
t¿ 0), which we call Kingman’s coalescent, whose restriction to the >rst n positive
integers is the n-coalescent. That is, we have

(Rn�∞(t); t¿ 0) =d (�n(t); t¿ 0);

where for all �∈P∞, the partition Rn�∈Pn is de>ned such that two integers i and j
are in the same block of Rn� if and only if they are in the same block of �.
Pitman (1999) introduced coalescents with multiple collisions. A coalescent with

multiple collisions is a P∞-valued Markov process (�∞(t); t¿ 0) such that for each
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n, the restriction (Rn�∞(t); t¿ 0) is a Pn-valued Markov process with the property
that whenever there are b blocks, each k-tuple of blocks is merging to form a sin-
gle block at some rate �b;k , and no other transitions are possible. The rates �b;k do
not depend on n or the sizes of the blocks. Pitman showed that the transition rates
satisfy

�b;k =
∫ 1

0
xk−2(1− x)b−k�(dx) (1)

for some >nite measure � on [0; 1]. Eq. (1) sets up a one-to-one correspondence
between coalescents with multiple collisions and >nite measures � on [0; 1], and the
process whose transition rates are given by (1) is called the �-coalescent. Kingman’s
coalescent is the special case in which � is the unit mass at zero. See Sagitov (1999)
and Schweinsberg (2000a) for further results on coalescents with multiple collisions.
One can generalize these processes further to obtain coalescents with simultaneous

multiple collisions, which were studied by MLohle and Sagitov (2001) and Schweinsberg
(2000b). Suppose b; k1; : : : ; kr ; s are nonnegative integers such that kj¿ 2 for j=1; : : : ; r
and b = s +

∑r
j=1 kj. De>ne a (b; k1; : : : ; kr; s)-collision to be a merger of b blocks

into r + s blocks in which s blocks remain unchanged and the other r blocks after
the collision are unions of k1; : : : ; kr blocks before the collision. A coalescent with
simultaneous multiple collisions is a P∞-valued Markov process (�∞(t); t¿ 0) such
that for each n, the process (Rn�∞(t); t¿ 0) is a Pn-valued Markov process with
the property that when there are b blocks, each (b; k1; : : : ; kr; s)-collision is occurring
at some >xed rate �b;k1 ;:::;kr ;s. Schweinsberg (2000b) showed that there must be a >nite
measure � on the space � = {(x1; x2; : : :): x1¿ x2¿ · · ·¿ 0;

∑∞
i=1 xi6 1} such that

if � = �0 + a�0, where �0 has no atom at zero and �0 is a unit mass at zero, then
�b;k1 ;:::;kr ;s equals

∫
�




s∑
l=0

∞∑
i1 ;:::; ir+l=1
all distinct

(
s

l

)
xk1i1 : : : x

kr
ir xir+1 : : : xir+l


1− ∞∑

j=1

xj



s−l


/

∞∑
j=1

x2j �0(dx) + a1{r=1; k1=2}: (2)

The coalescent process whose transition rates are given by (2) is called the �-
coalescent. As noted in Lemma 3.3 of MLohle and Sagitov (2001) and Lemma 18
of Schweinsberg (2000b), these transition rates satisfy the recursion

�b+1; k1 ;:::; kr ; s+1

=�b; k1 ;:::; kr ; s −
r∑
j=1

�b+1; k1 ;:::; kj−1 ; kj+1; kj+1 ;:::; kr ; s − s�b+1; k1 ;:::; kr ; 2; s−1: (3)

Using (3), we can compute all of the transition rates from those in which s= 0.
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If � has no atom at zero and∫
�
1

/ ∞∑
j=1

x2j �(dx)6 1;

then regardless of the number of blocks, the total rate of all transitions is at most 1.
Consequently, the �-coalescent is a jump-hold Markov process in which the expected
holding time in every state is at least 1. Schweinsberg (2000b) showed that in this case,
one can de>ne a discrete-time �-coalescent such that the formula (2) gives transition
probabilities rather than transition rates. More precisely, the discrete-time �-coalescent
is a P∞-valued Markov chain (Ym)∞m=0 such that for each n, the restricted process
(RnYm)∞m=0 is also a Markov chain. If � and � are partitions of {1; : : : ; n} such that �
contains b blocks, � contains r+ s blocks, s blocks of � consist of a single block of �,
and the remaining r blocks of � are unions of k1; : : : ; kr blocks of �, then the transition
probability P(RnYm+1 = �|RnYm = �), which we denote by pb; k1 ;:::; kr ; s, is given by (2).
These transition probabilities also satisfy the recursion (3).

1.2. Coalescents as limits of ancestral processes

It is known that the coalescent processes de>ned above can arise as limits of ances-
tral processes in a population model that was introduced by Cannings (1974, 1975).
Here we describe the model and the convergence results. Assume that the population
has N individuals in each generation, and that there are in>nitely many generations
backwards in time. Generations do not overlap. For all nonnegative integers m and all
i∈{1; : : : ; N}, let "(m)i;N denote the number of children of the ith individual in generation

−(m + 1). Note that "(m)1;N + · · · + "(m)N;N = N because the population size is >xed. We
assume that the family sizes in di5erent generations are independent. We also assume
that the vector of family sizes ("(m)1;N ; : : : ; "

(m)
N;N ) has the same distribution for all m, so

we will drop the superscript in the notation when we are concerned only with the
distribution of the family sizes. See MLohle (2002) for some results when the family
size distribution may depend on m. We also assume here that ("1;N ; : : : ; "N;N ) is ex-
changeable; see MLohle (1998) and GriNths and TavarOe (1994) for some results that do
not require exchangeability. As we will explain in more detail in the next subsection,
the model described at the beginning of the introduction satis>es these conditions.
Sample n6N distinct individuals at random from generation 0. De>ne a discrete-

time Pn-valued Markov chain (#n;N (m))∞m=0, where #n;N (m) is the partition of
{1; : : : ; n} such that i and j are in the same block if and only if the ith and jth
individuals in the sample have the same ancestor in generation −m. Let

cN =
E[("1;N )2]
N − 1

;

where (r)0=1 and (r)k = r(r−1) : : : (r−k+1) for positive integers k. Note that cN is the
probability that two individuals chosen at random from one generation have the same
ancestor in the previous generation. We review here some conditions under which the
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processes (#n;N (
t=cN �); t¿ 0), converge as N → ∞ to a limiting coalescent process.
(Since these Markov processes have a >nite state space, we can equivalently consider
either convergence of >nite-dimensional distributions or convergence in the Skorohod
topology.) The time scaling by a factor of cN ensures that regardless of the population
size, the expected time for two given ancestral lines to merge equals 1.
We >rst state the most general convergence result, due to MLohle and Sagitov (2001),

which gives conditions under which the processes converge to a coalescent with si-
multaneous multiple collisions. See Sagitov (2002) for another approach to proving
convergence.

Proposition 1. Suppose that for all r¿ 1 and k1; : : : ; kr¿ 2, the limits

lim
N→∞

E[("1;N )k1 ("2;N )k2 : : : ("r;N )kr ]
Nk1+···+kr−rcN

(4)

exist. If

lim
N→∞

cN = 0;

then the processes (#n;N (
t=cN �); t¿ 0) converge as N → ∞ to a process (#n;∞(t);
t¿ 0) which has the same law as the restriction to {1; : : : ; n} of a coalescent with
simultaneous multiple collisions. Furthermore, if k1; : : : ; kr¿ 2 and b = k1 + · · · + kr ,
then the transition rate �b; k1 ;:::; kr ; 0 is given by the limit in (4), and these transition
rates uniquely determine all the transition rates. If

lim
N→∞

cN = c¿ 0; (5)

then the processes (#n;N (m))∞m=0 converge as N → ∞ to a process (Ym)∞m=0, which
has the same law as the restriction to {1; : : : ; n} of a discrete-time coalescent with
simultaneous multiple collisions. When k1; : : : ; kr¿ 2 and b=k1+· · ·+kr , the transition
probabilities pb; k1 ;:::; kr ; 0 satisfy

pb; k1 ;:::; kr ; 0 = lim
N→∞

E[("1;N )k1 ("2;N )k2 : : : ("r;N )kr ]
Nk1+···+kr−r

:

Furthermore, these transition probabilities uniquely determine all of the transition
probabilities.

The convergence results in Proposition 1 are part of Theorem 2.1 of MLohle and
Sagitov (2001). The formulas for the transition rates and transition probabilities can
be seen from Theorem 2.1 and Eq. (28) of MLohle and Sagitov (2001). The fact that
the transition rates �b; k1 ;:::; kr ; 0 and transition probabilities pb; k1 ;:::; kr ; 0 uniquely deter-
mine the remaining transition rates and transition probabilities is a consequence of
recursion (3).
A consequence of Proposition 1 is that to prove that the processes (#n;N (m))∞m=0

converge to the restriction to {1; : : : ; n} of the discrete-time �-coalescent, where � has
no atom at zero, it suNces to show (5) and to show that for all r¿ 1 and k1; : : : ; kr¿ 2,
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we have

lim
N→∞

E[("1;N )k1 : : : ("r;N )kr ]
Nk1+···+kr−r

=
∫
�

∞∑
i1 ;:::; ir=1
all distinct

xk1i1 : : : x
kr
ir

/ ∞∑
j=1

x2j �(dx): (6)

Note that the right-hand side of (6) is the expression in (2) when s=0 and � has no
atom at zero.
Although all coalescents with simultaneous multiple collisions, up to a time-scaling

constant, can arise as limits in these models (see Schweinsberg, 2000b), one gets King-
man’s coalescent in the limit as long as the family sizes are not too large. Kingman
(1982b) showed that the processes (#n;N (
t=cN �); t¿ 0) converge to the n-coalescent
as long as Var("1;N ) converges to a >nite limit as N → ∞ and the higher moments
E["k1;N ] are bounded as N → ∞. MLohle (1998) gave some other conditions that guar-
antee convergence to the n-coalescent. To prove convergence to the n-coalescent, we
will use the following result from Section 4 of MLohle (2000).

Proposition 2. Suppose

lim
N→∞

E[("1;N )3]
N 2cN

= 0: (7)

Then, as N → ∞, the processes (#n;N (
t=cN �); t¿ 0) converge to the n-coalescent.

MLohle (2000) showed that (7) implies that limN→∞cN = 0, which is why (7) ensures
that we get a continuous-time process in the limit.
Coalescents with multiple collisions arise in the limit when there are occasionally

large families whose size is order N , but typically at most one large family per gener-
ation. Since coalescents with multiple collisions are special cases of coalescents with
simultaneous multiple collisions, one could establish convergence to the �-coalescent
using Proposition 1. We will >nd it more convenient, however, to use an equivalent
condition that can be expressed in terms of the tail probabilities of the family sizes.
Proposition 3 below can be deduced from Theorem 2.1 and Remark 1 in MLohle and
Sagitov (1998). Alternatively, the result follows from Theorem 3.1 of Sagitov (1999),
the equivalence of the limits in (16) and (20) of MLohle and Sagitov (2001), and the
monotonicity condition given in Eq. (17) of MLohle and Sagitov (2001).

Proposition 3. Suppose

lim
N→∞

cN = 0 (8)

and

lim
N→∞

E[("1;N )2("2;N )2]
N 2cN

= 0: (9)

Also, assume that for some probability measure � on [0; 1], we have

lim
N→∞

N
cN
P("1;N ¿Nx) =

∫ 1

x
y−2�(dy)
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for all x∈ (0; 1) at which the limit function is continuous. Then, as N → ∞, the
processes (#n;N (
t=cN �); t¿ 0) converge to a process (#n;∞(t); t¿ 0) that has the
same law as the restriction to {1; : : : ; n} of the �-coalescent.

1.3. A model involving supercritical Galton–Watson processes

We now describe more precisely the model mentioned at the beginning of this sec-
tion. The model is of the form considered in Section 1.2, with a >xed population
size N and in>nitely many generations backwards in time. Note that the model is
determined by the distribution of the vectors ("(m)1;N ; : : : ; "

(m)
N;N ) of family sizes. We will

obtain these family sizes by sampling from the o5spring of a supercritical Galton–
Watson process. To obtain the family sizes in generation −m, start with i.i.d. random
variables X1; : : : ; XN . Here Xi represents the number of o5spring of the ith individual
in generation −(m + 1), but only some will survive to form the next generation. If
X1+· · ·+XN ¿N , then we obtain the next generation by sampling N of these o5spring
at random without replacement. We de>ne "(m)i;N to be the number of o5spring of the
ith individual in generation −(m+ 1) that are among the N chosen for survival. Note
that "(m)1;N + · · ·+ "(m)N;N = N .
We make two assumptions on the distribution of the number of o5spring. First, we

assume that

E[X1]¿ 1: (10)

As we will see, this assumption ensures that X1 + · · · + XN ¿N with suNciently
high probability that we may de>ne the family sizes ("(m)1;N ; : : : ; "

(m)
N;N ) arbitrarily when

X1 + · · ·+ XN ¡N without a5ecting the results. Secondly, for most of our results, we
assume that there exist constants C¿ 0 and a¿ 0 such that

P(X1¿ k) ∼ Ck−a; (11)

where ∼ means that the ratio of the two sides approaches 1 as k → ∞.
Before we state our main result, recall that the Poisson–Dirichlet distributions, which

were studied extensively by Pitman and Yor (1997), are a two-parameter family of
probability distributions on �. The parameters are denoted by ((; )), and the distribution
is de>ned when 06 (¡ 1 and )¿−(. When )=0 and 0¡(¡ 1, which is the case
that we will consider in this paper, the Poisson–Dirichlet distribution can be constructed
as follows (see Perman et al. (1992) and Proposition 6 of Pitman and Yor (1997)).
Let Z1¿Z2¿ · · · be the ranked points of a Poisson point process on (0;∞) with
characteristic measure �(, where �(((x;∞))=Cx−( for all x¿ 0. Note that (Z1; Z2; : : :)
has the same law as the ranked jump sizes up to time 1 of a pure-jump subordinator
(+t ; t¿ 0) whose LOevy measure is �(. This process is a stable subordinator of index (
and satis>es E[e−�+t ]=e−tC,(1−()�

(
. For all j, let Wj=Zj=

∑∞
i=1 Zi. Then, the sequence

(W1; W2; : : :) has the Poisson–Dirichlet distribution with parameters ((; 0).

Theorem 4. Assume (10) is satis>ed.
(a) If E[X 2

1 ]¡∞ (in particular, if (11) holds and a¿ 2), then the processes
(#n;N (
t=cN �); t¿ 0) converge as N → ∞ to the n-coalescent.
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(b) If (11) holds and a= 2, then the processes (#n;N (
t=cN �); t¿ 0) converge as
N → ∞ to the n-coalescent.
(c) When (11) holds with 16 a¡ 2, the processes (#n;N (
t=cN �); t¿ 0) converge

as N → ∞ to a continuous-time process (#n;∞(t); t¿ 0) that has the same law as
the restriction to {1; : : : ; n} of the �-coalescent, where � is the probability measure
associated with the Beta(2− a; a) distribution. The transition rates are given by

�b;k =
B(k − a; b− k + a)

B(2− a; a) ; (12)

where B((; /) = ,((),(/)=,((+ /) is the beta function.
(d) For 0¡a¡ 1, let 0a be the probability measure on � associated with the

Poisson–Dirichlet distribution with parameters (a; 0). Let �a be the measure on �
de>ned by

�a(dx) =


 ∞∑

j=1

x2j


0a(dx):

When (11) holds with 0¡a¡ 1, the processes (#n;N (m))∞m=0 converge as N → ∞
to a discrete-time Markov chain (Ym)∞m=0 that has the same law as the restriction to
{1; : : : ; n} of a discrete-time �a-coalescent. The transition probabilities are given by

pb; k1 ;:::; kr ; s =
ar+s−1(r + s− 1)!

(b− 1)!

r∏
i=1

(ki − a)ki : (13)

Note that large family sizes are more likely for small values of a. The above theo-
rem says that when a¿ 2, large families are suNciently rare that we get Kingman’s
coalescent in the limit. When 16 a¡ 2, there are enough large families to produce
multiple collisions, but it is rare to have two large families in any one generation.
When 0¡a¡ 1, each generation has many large families, which is why we get a
discrete-time coalescent with simultaneous multiple collisions.
Note that the transition rates in (12) follow immediately from (1) and the fact that

�(dx) = B(2 − a; a)−1x1−a(1 − x)a−1 dx. When a = 1, the measure � is the uniform
distribution on (0; 1), and (12) becomes

�b;k =
,(k − 1),(b− k + 1)

,(b)
=
(k − 2)!(b− k)!

(b− 1)!
;

as noted in Pitman (1999). The limiting coalescent process in this case is the
Bolthausen–Sznitman coalescent, which was introduced by Bolthausen and Sznitman
(1998). Bertoin and Le Gall (2000) showed that the Bolthausen–Sznitman coalescent is
closely related to a continuous-state branching process that was >rst studied by Neveu
(1992). See Bertoin and Pitman (2000) and Pitman (1999) for additional work related
to the Bolthausen–Sznitman coalescent.
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Schweinsberg (2000a) showed that if � is the Beta((; /) distribution, then the
�-coalescent “comes down from in>nity,” meaning that there are only >nitely many
blocks at all positive times even when there are in>nitely many blocks at time zero,
if and only if (¡ 1. If Tn denotes the >rst time at which the integers {1; : : : ; n} are
in the same block (or, equivalently, the >rst time at which the process restricted to
{1; : : : ; n} contains only a single block), then the condition that the coalescent comes
down from in>nity was shown in Schweinsberg (2000a) to be equivalent to

lim
n→∞E[Tn]¡∞: (14)

Thus, in part (c) of Theorem 4, the limiting coalescent process satis>es (14) when
1¡a¡ 2, but not when a=1. The fact that the Bolthausen–Sznitman coalescent does
not come down from in>nity had previously been shown by Bolthausen and Sznitman
(1998), and Sagitov (1999) considered some related examples.

2. Convergence to Kingman’s coalescent when a¿ 2

Throughout this section, as well as the next two sections, we will assume that we
are working with the model de>ned in Section 1.3, and that Eq. (10) holds. We >rst
introduce some notation. Let

SN = X1 + · · ·+ XN :
Let

3 = E[X1]:

When (11) holds, we can de>ne positive constants C′ and C′′ such that

C′k−a6P(X1¿ k)6C′′k−a (15)

for all positive integers k.
Our goal in this section is to show that when E[X 2

1 ]¡∞ or when (11) holds and
a=2, the limit of the ancestral processes de>ned in the introduction is the n-coalescent.
We will need to check the condition (7) in Proposition 2. We begin with two lemmas
that can be applied whenever (10) holds.

Lemma 5. There exists a constant A¡ 1 such that P(SN 6N )6AN for all N .

Proof. For all r ∈ [0; 1], let 5(r) = E[rX1 ]. Then 3 = 5′(1), regardless of whether 3
is >nite or in>nite (see, for example, Theorem 13 in chapter 5 of Fristedt and Gray
(1997)). Note that E[rSN ]¿ rNP(SN 6N ), which means

P(SN 6N )6 r−NE[rSN ] = (r−15(r))N

for all r ∈ [0; 1]. Since 5(1) = 1 and 5′(1) = 3¿ 1, there exists a number r ∈ (0; 1)
such that 5(r)¡r and therefore r−15(r)¡ 1. It follows that P(SN 6N )6AN , where
A= r−15(r).
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Lemma 6. For all r¿ 1 and k1; : : : ; kr¿ 2, we have

lim
N→∞

E[("1;N )k1 : : : ("r;N )kr ]
Nk1+···+kr−rcN

= lim
N→∞

Nr

cN
E

[
(X1)k1 : : : (Xr)kr
Sk1+···+krN

1{SN¿N}

]
; (16)

in the sense that if either limit exists, then so does the other, and the limits are equal.
Also,

cN ∼ NE
[
(X1)2
S2N

1{SN¿N}

]
; (17)

where ∼ means that the ratio of the sides approaches zero as N → ∞. Moreover,
there exists a constant A1¿ 0 such that

cN ¿
A1
N

(18)

for all N .

Proof. Place the individuals in the current generation in random order. Independently,
place the individuals in the previous generation in random order. Let Bk1 ;:::; kr be the
event that the >rst k1 individuals in the current generation are descended from the >rst
individual in the previous generation, the next k2 individuals in the current generation
are descended from the second individual in the previous generation, and so on. We
have

P(Bk1 ;:::; kr ) = E[P(Bk1 ;:::; kr |"1;N ; : : : ; "N;N )] = E
[
("1;N )k1 : : : ("r;N )kr

(N )k1+···+kr

]
: (19)

Thus,

Nr

cN
P(Bk1 ;:::; kr ) ∼

E[("1;N )k1 : : : ("r;N )kr ]
Nk1+···+kr−rcN

: (20)

We have

P(Bk1 ;:::; kr ) = P(Bk1 ;:::; kr ∩ {SN ¿N}) + P(Bk1 ;:::; kr ∩ {SN ¡N})
= E[P(Bk1 ;:::; kr ∩ {SN ¿N})|X1; : : : ; XN ] + P(Bk1 ;:::; kr ∩ {SN ¡N})

= E
[
(X1)k1 : : : (Xr)kr
(SN )k1+···+kr

1{SN¿N}

]
+ P(Bk1 ;:::;kr ∩ {SN ¡N}): (21)

Eq. (19) gives cN = E[("1;N )2]=(N − 1) = NP(B2). Therefore, using (21) for the >rst
inequality, Jensen’s inequality for the fourth, and Lemma 5 for the last, we have

cN = NP(B2)¿NE
[
(X1)2
(SN )2

1{SN¿N}

]
¿NE

[
X1(X1 − 1)

S2N
1{SN¿N}

]

¿
N
2
E

[(
X1
SN

)2
1{X1¿2;SN¿N}

]
¿
N
2

(
E
[
X1
SN
1{X1¿2;SN¿N}

])2
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=
N
2

(
E
[
X1
SN

∣∣∣∣X1¿ 2; SN ¿N
]
P(X1¿ 2; SN ¿N )

)2

¿
N
2

(
E
[
X1
SN

∣∣∣∣X1¿ 2; SN ¿N
] (
P(X1¿ 2)− AN ))2 :

For all k¿ 1, we have E[X1=SN |SN = k] = 1=N . Therefore E[X1=SN |X1¿ 2; SN =
k]¿ 1=N . Thus,

cN ¿
N
2

(
P(X1¿ 2)− AN

N

)2
=
(P(X1¿ 2)− AN )2

2N
:

Since 3¿ 1, we have P(X1¿ 2)¿ 0. Since A¡ 1, for suNciently large N we have
P(X1¿ 2)− AN ¿ 0. Thus, there exists a positive constant A1 such that (18) holds.
To prove (16), note that 06P(Bk1 ;:::;kr ∩{SN ¡N})6AN by Lemma 5. Combining

this fact with (18), we get

lim
N→∞

Nr

cN
P(Bk1 ;:::; kr ∩ {SN ¡N}) = 0: (22)

It follows from (21) and (22) that

lim
N→∞

Nr

cN
P(Bk1 ;:::; kr ) = lim

N→∞
Nr

cN
E
[
(X1)k1 : : : (Xr)kr
(SN )k1+···+kr

1{SN¿N}

]

= lim
N→∞

Nr

cN
E

[
(X1)k1 : : : (Xr)kr
Sk1+···+krN

1{SN¿N}

]
:

This fact, combined with (20), implies (16).
Finally, (17) follows from (16) when r=1 and k1 = 2, as the left-hand side of (16)

equals 1 in that case.

The next proposition, combined with Proposition 2, proves part (a) of Theorem 4.

Proposition 7. If E[X 2
1 ]¡∞, then

lim
N→∞

E[("1;N )3]
N 2cN

= 0:

Proof. Using (16) and (18) from Lemma 6, we get

lim sup
N→∞

E[("1;N )3]
N 2cN

= lim sup
N→∞

N
cN
E
[
(X1)3
S3N

1{SN¿N}

]

6 lim sup
N→∞

N 2

A1
E
[
(X1)3
S3N

1{SN¿N}

]
:
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Thus, to prove the proposition, it suNces to show that

lim
N→∞

N 2E
[
(X1)3
S3N

1{SN¿N}

]
= 0: (23)

We have

N 2E
[
(X1)3
S3N

1{SN¿N}

]
6N 2E

[
X 3
1

max{X 3
1 ; N 3}

]

= N 2

(
N−1∑
k=0

k3

N 3P(X1 = k) +
∞∑
k=N

P(X1 = k)

)

=
1
N

N−1∑
k=0

k3P(X1 = k) + N 2P(X1¿N ): (24)

Since E[X 2
1 ]¡∞, we have

lim sup
N→∞

N 2P(X1¿N )6 lim sup
N→∞

E[X 2
1 1{X1¿N}] = 0: (25)

Let 6¿ 0. Choose a positive integer L such that E[X 2
1 1{X1¿L}]¡6=2. Suppose N is

large enough that LE[X 2
1 ]=N ¡6=2. Then,

1
N

N−1∑
k=0

k3P(X1 = k) =
1
N

L−1∑
k=0

k3P(X1 = k) +
1
N

N−1∑
k=L

k3P(X1 = k)

6
L
N

L−1∑
k=0

k2P(X1 = k) +
N−1∑
k=L

k2P(X1 = k)

6
LE[X 2

1 ]
N

+ E[X 2
1 1{X1¿L}]¡6:

Therefore,

lim
N→∞

1
N

N−1∑
k=0

k3P(X1 = k) = 0: (26)

Equations (24)–(26) imply (23).

We now establish the results necessary to handle the case in which (11) holds and
a= 2.

Lemma 8. If 3¡∞, then there exists a constant A2¿ 0 such that

cN ¿A2NE
[

(X1)2
max{X 2

1 ; N 2}
]
:
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Proof. Using Lemma 6 for the asymptotic equivalence in the >rst line, Lemma 5 in
the third line, and Markov’s inequality in the fourth line, we obtain

cN ∼ NE
[
(X1)2
S2N

1{SN¿N}

]
¿NE

[
(X1)2
S2N

1{SN¿N}1{X2+···+XN62(N−1)3}

]

¿NE
[

(X1)2
(X1 + 23(N − 1))2

1{X2+···+XN62(N−1)3}

]
− NP(SN ¡N )

¿NE
[

(X1)2
(X1 + 23(N − 1))2

]
P(X2 + · · ·+ XN 6 2(N − 1)3)− NAN

¿
N
2
E
[

(X1)2
(X1 + 23(N − 1))2

]
− NAN ¿ N

832
E
[

(X1)2
(X1 + N )2

]
− NAN

¿
N
3232

E
[

(X1)2
max{X 2

1 ; N 2}
]
− NAN : (27)

The lemma follows from (27) and the fact that cN ¿A1=N by Lemma 6.

Lemma 9. Let g be a real-valued function de>ned on {0; 1; : : :}, and let X be a
{0; 1; : : :}-valued random variable. Then

N∑
k=0

g(k)P(X = k)

= g(0)− g(N )P(X ¿N + 1) +
N∑
k=1

[g(k)− g(k − 1)]P(X ¿ k): (28)

If limN→∞g(N )P(X ¿N − 1) = 0, then

E[g(X )] =
∞∑
k=0

g(k)P(X = k) = g(0) +
∞∑
k=1

[g(k)− g(k − 1)]P(X ¿ k): (29)

Proof. This result is just summation by parts. We have

N∑
k=0

g(k)P(X = k) =
N∑
k=0

g(k)[P(X ¿ k)− P(X ¿ k + 1)]

= g(0)P(X ¿ 0)− g(N )P(X ¿N + 1)

+
N∑
k=1

[g(k)− g(k − 1)]P(X ¿ k);

which implies (28) because P(X1¿ 0) = 1. Equation (29) follows by taking the limit
as N → ∞ in (28).
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Lemma 10. If (11) holds with a= 2, then there exists a constant A3 such that

cN ¿
A3 logN
N

for all N .

Proof. Note that (k)2 − (k − 1)2 = 2(k − 1). Using this fact, Lemmas 8 and 9, and
Eq. (15), we get

cN ¿ A2NE
[

(X1)2
max{X 2

1 ; N 2}
]
¿A2N

N∑
k=0

(k)2
N 2 P(X1 = k)

=
A2
N

(
−N (N − 1)P(X1¿N + 1) +

N∑
k=1

2(k − 1)P(X1¿ k)

)

¿
A2
N

(
−C

′′N (N − 1)
(N + 1)2

+
N∑
k=1

2C′(k − 1)
k2

)
: (30)

The >rst term inside the parentheses on the right-hand side of (30) stays bounded as
N → ∞, while the second term is asymptotically equivalent to 2C′ logN . The lemma
follows from these observations.

The next proposition implies part (b) of Theorem 4.

Proposition 11. If (11) holds with a= 2, then

lim
N→∞

E[("1;N )3]
N 2cN

= 0:

Proof. By Lemma 6, it suNces to show that

lim
N→∞

N
cN
E
[
(X1)3
S3N

1{SN¿N}

]
= 0: (31)

It follows from (24) that

N
cN
E
[
(X1)3
S3N

1{SN¿N}

]
6

1
N 2cN

N−1∑
k=0

k3P(X1 = k) +
N
cN
P(X1¿N ): (32)

By Lemmas 9 and 10 and the upper bound from (15),

1
N 2cN

N−1∑
k=0

k3P(X1 = k)6
1

A3N logN

N−1∑
k=1

(k3 − (k − 1)3)P(X ¿ k)

6
1

A3N logN

N∑
k=1

(3k2)(C′′k−2) =
3C′′

A3 logN
: (33)
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Likewise,

N
cN
P(X1¿N )6

N 2

A3 logN
(C′′N−2) =

C′′

A3 logN
: (34)

Eqs. (32), (33), and (34) imply (31).

3. Convergence to the �-coalescent when 16 a ¡ 2

Our goal in this section is to prove that when 16 a¡ 2, the limiting coalescent
process is the �-coalescent, where � has the beta density given by �(dx) = B(2 −
a; a)−1x1−a(1 − x)a−1 dx. When a = 1, we have E[X1] =∞, so this case requires a
di5erent argument from the case 1¡a¡ 2.

Lemma 12. If (11) holds with 16 a¡ 2, then

lim
M→∞

MaE
[

(X1)2
(X1 +M)2

]
= CaB(2− a; a):

Proof. By Lemma 9,

MaE
[

(X1)2
(X1 +M)2

]
=Ma

∞∑
k=1

(
k(k − 1)
(k +M)2

− (k − 1)(k − 2)
(k − 1 +M)2

)
P(X1¿ k)

=Ma
∞∑
k=1

(
(k − 1)(2M (k +M) + k)
(k +M)2(k − 1 +M)2

)
P(X1¿ k):

Let 6¿ 0. Choose L large enough that if k¿L, then (1 − 6)Ck−a6P(X1¿ k)6
(1 + 6)Ck−a, and if k¿L and M¿L, then

(1− 6)
∫ k+1

k

2Mx1−a

(x +M)3
dx6

(k − 1)[2M (k +M) + k]k−a

(k +M)2(k − 1 +M)2

6 (1 + 6)
∫ k+1

k

2Mx1−a

(x +M)3
dx:

Since a¡ 2, we have

lim
M→∞

Ma
L−1∑
k=1

(
(k − 1)(2M (k +M) + k)
(k +M)2(k − 1 +M)2

)
P(X1¿ k) = 0:

Therefore,

lim sup
M→∞

MaE
[

(X1)2
(X1 +M)2

]
6 (1 + 6)2CMa

∫ ∞

L

2Mx1−a

(x +M)3
dx (35)
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and

lim inf
M→∞

MaE
[

(X1)2
(X1 +M)2

]
¿ (1− 6)2CMa

∫ ∞

L

2Mx1−a

(x +M)3
dx: (36)

Making the substitution y=M=(M + x), so that x=My−1(1−y) and dx=dy=−My−2,
we get

∫ ∞

L

x1−a

(x +M)3
dx=

∫ M=(M+L)

0

(
M (1− y)

y

)1−a ( y
M

)3
My−2 dy

=M−1−a
∫ M=(M+L)

0
ya(1− y)1−a dy:

Therefore,

lim
M→∞

Ma
∫ ∞

L

2Mx1−a

(x +M)3
dx= 2

∫ 1

0
ya(1− y)1−a dy = 2,(a+ 1),(2− a)

,(3)

=
a,(a),(2− a)

,(2)
= aB(2− a; a): (37)

By letting 6→ 0, we obtain the conclusion of the lemma from (35)–(37).

Lemma 13. If (11) holds with 1¡a¡ 2, then

lim
N→∞

Na−1cN = Ca3−aB(2− a; a):

Proof. By Lemma 6, it suNces to show that

lim
N→∞

NaE
[
(X1)2
S2N

1{SN¿N}

]
= Ca3−aB(2− a; a): (38)

Let 6¿ 0, and choose �¿ 0 to be small enough that (1−�)3¿ 1. By the law of large
numbers,

P((1− �)N36X2 + · · ·+ XN 6 (1 + �)N3)¿ 1− 6 (39)

for suNciently large N . For N large enough that (39) holds,

E
[
(X1)2
S2N

1{SN¿N}

]
= E

[
(X1)2
S2N

1{SN¿N}1{X2+···+XN¡(1−�)N3}

]

+E
[
(X1)2
S2N

1{X2+···+XN¿(1−�)N3}

]
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6 6E
[

(X1)2
max{X 2

1 ; N 2}
]
+ E

[
(X1)2

(X1 + (1− �)N3)2
]

6 46E
[

(X1)2
(X1 + N )2

]
+ E

[
(X1)2

(X1 + (1− �)N3)2
]

(40)

and

E
[
(X1)2
S2N

1{SN¿N}

]
¿ E

[
(X1)2
S2N

1{SN¿N}1{(1−�)N36X2+···+XN6(1+�)N3}

]

¿ (1− 6)E
[

(X1)2
(X1 + (1 + �)N3)2

]
: (41)

It follows from (40) and Lemma 12 that

lim sup
N→∞

NaE
[
(X1)2
S2N

1{SN¿N}

]

6 46CaB(2− a; a) + [(1− �)3]−aCaB(2− a; a): (42)

Likewise, (41) and Lemma 12 give

lim inf
N→∞

NaE
[
(X1)2
S2N

1{SN¿N}

]
¿ (1− 6)[(1 + �)3]−aCaB(2− a; a): (43)

Finally, (38) follows from (42) and (43) after letting �; 6→ 0.

Lemma 14. If (11) holds with 1¡a¡ 2, then for all x∈ (0; 1),

lim
N→∞

N
cN
P
(
X1
SN

1{SN¿N}¿ x
)
=

1
B(2− a; a)

∫ 1

x
y−1−a(1− y)a−1 dy:

Proof. Fix x∈ (0; 1). Let 6¿ 0, and choose �¿ 0 to be small enough that (1−�)3¿ 1.
Assume N is large enough that (39) holds. By considering separately the events {X2 +
· · ·+ XN ¡ (1− �)N3} and {X2 + · · ·+ XN ¿ (1− �)N3}, we get

P
(
X1
SN

1{SN¿N}¿ x
)
6 6P

(
X1
N
¿ x

)
+ P

(
X1

X1 + (1− �)N3 ¿ x
)
: (44)

By considering only the event {(1− �)N36X2 + · · ·+ XN 6 (1 + �)N3}, we obtain

P
(
X1
SN

1{SN¿N}¿ x
)
¿ (1− 6)P

(
X1

X1 + (1 + �)N3
¿ x

)
: (45)
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Combining (44) with (11) and Lemma 13, we get

lim sup
N→∞

N
cN
P
(
X1
SN

1{SN¿N}¿ x
)

6 lim sup
N→∞

N
cN

(
6P(X1¿ xN ) + P

(
X1¿

x
1− x (1− �)N3

))

= lim sup
N→∞

CN
cN

(
6x−aN−a +

(
x

1− x
)−a

(1− �)−a3−aN−a
)

=
1

B(2− a; a)
(
6x−a

a3−a
+
(
1− x
x

)a (1− �)−a
a

)
: (46)

Likewise, from (45) and Lemma 13, we get

lim inf
N→∞

N
cN
P
(
X1
SN

1{SN¿N}¿ x
)
¿

1− 6
B(2− a; a)

(
1− x
x

)a (1 + �)−a
a

: (47)

Taking the limit as �; 6→ 0 in Eqs. (46) and (47), we get

lim
N→∞

N
cN
P
(
X1
SN
1{SN¿N}¿ x

)
=

1
aB(2− a; a)

(
1− x
x

)a
:

The lemma now follows from the fact that∫ 1

x
y−1−a(1− y)a−1 dy = 1

a

(
1− x
x

)a
;

which can be seen by substituting z = (1− y)=y.

Lemma 15. If 3¡∞, then

lim
N→∞

E[("1;N )2("2;N )2]
N 2cN

= 0:

Proof. By Lemma 6, it suNces to show

lim
N→∞

N 2

cN
E
[
(X1)2(X2)2

S4N
1{SN¿N}

]
= 0: (48)

Note that

E
[
(X1)2(X2)2

S4N
1{SN¿N}

]
6 E

[
(X1)2(X2)2

(max{X 2
1 ; N 2})(max{X 2

2 ; N 2})
]

=
(
E
[

(X1)2
max{X 2

1 ; N 2}
])2

:
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By Lemma 8,

E
[

(X1)2
max{X 2

1 ; N 2}
]
6

cN
A2N

:

Since limN→∞cN = 0 by Lemma 13,

lim sup
N→∞

N 2

cN
E
[
(X1)2(X2)2

S4N
1{SN¿N}

]
6 lim sup

N→∞

N 2

cN

(
cN
A2N

)2
= lim sup

N→∞

cN
A22

= 0;

which proves the lemma.

We next prove three lemmas that pertain to the case in which a = 1. These lemmas
are similar to Lemmas 13–15.

Lemma 16. If (11) holds with a= 1, then limN→∞(logN )cN = 1.

Proof. By Lemma 6, it suNces to show that

lim
N→∞

(N logN )E
[
(X1)2
S2N

1{SN¿N}

]
= 1:

Fix B¿ 0. De>ne Yi = Xi1{Xi6BN}. For all positive integers L such that L6BN ,

E[Y1] =
∞∑
k=1

P(Y1¿ k) =
	BN
∑
k=1

[P(X1¿ k)− P(X1¿BN )]

=
L−1∑
k=1

P(X1¿ k) +
	BN
∑
k=L

P(X1¿ k)−
	BN
∑
k=1

P(X1¿BN ): (49)

Since P(X1¿ k)6 1 for all k and P(X1¿BN )6C′′(BN )−1 by (15),

lim
N→∞

1
logN


L−1∑
k=1

P(X1¿ k)−
	BN
∑
k=1

P(X1¿BN )


= 0 (50)

for all L. Let �¿ 0. By (11), we can choose L large enough that

C(1− �)
∫ k+1

k
x−1 dx6P(X1¿ k)6C(1 + �)

∫ k+1

k
x−1 dx (51)

for all k¿L. Note that

lim
N→∞

C
logN

∫ 	BN
+1

L
x−1 dx = lim

N→∞
C

logN
(log(
BN�+ 1)− log L) = C: (52)

It follows by combining (49)–(52) and letting �→ 0 that

lim
N→∞

E
[
Y1
logN

]
= C:
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Also, using (15) and Lemma 9,

Var(Y1)6E[Y 21 ] =
∞∑
k=1

[k2 − (k − 1)2]P(Y1¿ k)

6
	BN
∑
k=1

2kP(X1¿ k)6 2C′′BN: (53)

Furthermore, we have

lim
N→∞

P
(
max
16i6N

Xi ¿BN
)
= lim
N→∞

1− (1− P(X1¿BN ))N = 1− e−C=B:

Let 0¡�¡ 1=2, and let 6¿ 0. Choose B large enough that 1− e−C=B ¡ 6=4. Choose
N large enough that the following three conditions hold:∣∣∣∣1− E

[
Y2 + · · ·+ YN
CN logN

]∣∣∣∣¡ �
2
;

∣∣∣∣P
(
max
16i6N

Xi ¿BN
)
− 1 + e−C=B

∣∣∣∣¡ 6
4
;

8C′′B
C2(logN )2�2

¡
6
2
:

By Chebyshev’s inequality and (53),

P
(∣∣∣∣X2 + · · ·+ XN

CN logN
− 1
∣∣∣∣¿ �

)

6P
(∣∣∣∣Y2 + · · ·+ YN

CN logN
− E

[
Y2 + · · ·+ YN
CN logN

]∣∣∣∣¿ �
2

)
+ P

(
max
16i6N

Xi ¿BN
)

6Var
(
Y2 + · · ·+ YN
CN logN

)(
�
2

)−2
+
6
2
6

8C′′BN (N − 1)
C2N 2(logN )2�2

+
6
2
¡6: (54)

Also, since �¡ 1=2, Chebyshev’s inequality and (53) give

P
(
X2 + · · ·+ XN 6 C

2
N logN

)

6P
(
Y2 + · · ·+ YN 6 C

2
N logN

)

6P
(∣∣∣∣Y2 + · · ·+ YN

CN logN
− E

[
Y2 + · · ·+ YN
CN logN

]∣∣∣∣¿ 1
4

)

6 16Var
(
Y2 + · · ·+ YN
CN logN

)
6

32C′′B
C2(logN )2

: (55)
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We now consider separately the events D1 = {X2 + · · · + XN ¡ C
2 N logN}, D2 =

{C2 N logN6X2 + · · · + XN ¡C(1 − �)N logN}, and D3 = {X2 + · · · + XN ¿
C(1− �)N logN}. Inequalities (54) and (55) imply

E
[
(X1)2
S2N

1{SN¿N}

]
6 P(D1)E

[
(X1)2

max{X 2
1 ; N 2}

]
+ P(D2)E

[
(X1)2

(X1 + C
2 N logN )

2

]

+E
[

(X1)2
(X1 + C(1− �)N logN )2

]

6
128C′′B
C2 (logN )2

E
[

(X1)2
(X1 + N )2

]
+ 6E

[
(X1)2

(X1 + C
2 N logN )

2

]

+E
[

(X1)2
(X1 + C(1− �)N logN )2

]
:

Let D4 = {C(1− �)N logN6X2 + · · ·+ XN 6C(1 + �)N logN}. Then

E
[
(X1)2
S2N

1{SN¿N}

]
¿ P(D4)E

[
(X1)2

(X1 + C(1 + �)N logN )2

]

¿ (1− 6)E
[

(X1)2
(X1 + C(1 + �)N logN )2

]
:

Note that CaB(a; 2−a)=C when a=1. Therefore, by applying Lemma 12 with M=N ,
M = C

2 N logN , M = C(1− �)N logN , and M = C(1 + �)N logN , we get

lim sup
N→∞

(N logN )E
[
(X1)2
S2N

1{SN¿N}

]
6 lim sup

N→∞

(
128C′′B
C logN

+ 26+
1

1− �
)

= 26+
1

1− �
and

lim inf
N→∞

(N logN )E
[
(X1)2
S2N

1{SN¿N}

]
¿

1− 6
1 + �

:

The lemma follows by taking �; 6→ 0.

Lemma 17. If (11) holds with a= 1, then for all x∈ (0; 1),

lim
N→∞

N
cN
P
(
X1
SN

1{SN¿N}¿ x
)
=
∫ 1

x
y−2 dy:

Proof. Let 0¡�¡ 1=2, and let 6¿ 0. As shown in the proof of Lemma 16, Eqs. (54)
and (55) hold for large enough N . De>ne the events D1, D2, D3, and D4 as in the
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proof of Lemma 16. Then, for all x∈ (0; 1),

P
(
X1
SN

1{SN¿N}¿ x
)
6 P(D1)P

(
X1
N
¿ x

)
+ P(D2)P

(
X1

X1 + C
2 N logN

¿ x

)

+P
(

X1
X1 + C(1− �)N logN ¿ x

)

6
32C′′B

C2(logN )2
P(X1¿Nx) + 6P

(
X1¿

xCN logN
2(1− x)

)

+P
(
X1¿

xC(1− �)N logN
1− x

)
:

Also,

P
(
X1
SN
1{SN¿N}¿ x

)
¿ P(D4)P

(
X1

X1 + C(1 + �)N logN
¿ x

)

¿ (1− 6)P
(
X1¿

xC(1 + �)N logN
1− x

)
:

Using (11) and Lemma 16,

lim sup
N→∞

N
cN
P
(
X1
SN

1{SN¿N}¿ x
)

6 lim sup
N→∞

(N logN )

[
32C′′B
C(logN )2

(Nx)−1 + 6C
(
2(1− x)
xCN logN

)
+ C

(
1− x

xC(1− �)N logN
)]

=
2(1− x)6

x
+

1
1− �

(
1− x
x

)
: (56)

Also,

lim inf
N→∞

N
cN
P
(
X1
SN

1{SN¿N}¿ x
)
¿ (N logN )(1− 6)C

(
1− x

xC(1 + �)N logN

)

=
1− 6
1 + �

(
1− x
x

)
: (57)

Combining (56) and (57) and letting �; 6→ 0, we get

lim
N→∞

N
cN
P
(
X1
SN

1{SN¿N}¿ x
)
=
1− x
x

=
∫ 1

x
y−2 dy;

as claimed.
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Lemma 18. If (11) holds with a= 1, then

lim
N→∞

E[("1;N )2("2;N )2]
N 2cN

= 0:

Proof. As in the proof of Lemma 15, it suNces to prove (48). By the argument used
to prove (55), there exists a constant K such that

P
(
X3 + · · ·+ XN 6 C

2
N logN

)
6

K
(logN )2

:

Therefore,

E
[
(X1)2(X2)2

S4N
1{SN¿N}

]

6
K

(logN )2
E
[(

(X1)2
max{X 2

1 ; N 2}
)(

(X2)2
max{X 2

2 ; N 2}
)]

+E

[(
(X1)2

max{X 2
1 ; (

C
2 N logN )

2}

)(
(X2)2

max{X 2
2 ; (

C
2 N logN )

2}

)]

6
K

(logN )2

(
4E
[

(X1)2
(X1 + N )2

])2
+

(
4E

[
(X1)2

(X1 + C
2 N logN )

2

])2
: (58)

Using (58) and Lemmas 12 and 16, we get

lim sup
N→∞

N 2

cN
E
[
(X1)2(X2)2

S4N
1{SN¿N}

]

6 lim sup
N→∞

(N 2 logN )

(
K

(logN )2
16C2

N 2 +
16C2

(C2 N logN )
2

)
= 0;

and (48) follows.

We now combine the results of the previous six lemmas to prove the desired con-
vergence. We >rst state one additional lemma regarding the tail probabilities of the
hypergeometric distribution. Recall that the hypergeometric distribution with parame-
ters (N; R; n) is the distribution of the number of red balls drawn, when n balls are
chosen without replacement from an urn containing N balls, R of which are red. The
following bound appears in ChvOatal (1979).

Lemma 19. Suppose X has a hypergeometric distribution with parameters (N; R; n),
where n6N . Let 6¿ 0. Then

P
(
X ¿

(
R
N
+ 6
)
n
)
6 e−26

2n
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and

P
(
X 6

(
R
N

− 6
)
n
)
6 e−26

2n:

Proof of part (c) of Theorem 4. We need to verify the three conditions of Pro-
position 3. When 1¡a¡ 2, condition (8) can be deduced from Lemma 13. When
a = 1, (8) follows from Lemma 16. Condition (9) is a consequence of Lemma 15
when 1¡a¡ 2 and Lemma 18 when a=1. It remains to show that if (11) holds with
16 a¡ 2, then

lim
N→∞

N
cN
P("1;N ¿Nx) =

∫ 1

x
y−2�(dy)

=
1

B(2− a; a)
∫ 1

x
y−1−a(1− y)a−1 dy (59)

for all x∈ (0; 1).
Fix x∈ (0; 1). Note that

lim
N→∞

N
cN
P("1;N ¿Nx) = lim

N→∞
N
cN
E[P("1;N ¿Nx|X1; : : : ; XN )]

= lim
N→∞

N
cN
E[P("1;N ¿Nx|X1; : : : ; XN )1{SN¿N}]; (60)

where the second equality holds because

lim
N→∞

N
cN
P(SN ¡N ) = 0

by Lemma 5 and Eq. (18) of Lemma 6. Let 0¡6¡x. On {SN ¿N}, the conditional
distribution of "1;N given X1; : : : ; XN is hypergeometric with parameters (SN ; X1; N ).
Therefore, by Lemma 19,

lim
N→∞

N
cN
E[P("1;N ¿Nx|X1; : : : ; XN )1{SN¿N}1{X1=SN6x−6}] = 0 (61)

and

lim
N→∞

N
cN
E[P("1;N 6Nx|X1; : : : ; XN )1{SN¿N}1{X1=SN¿x+6}] = 0: (62)

By (60) and (61),

lim sup
N→∞

N
cN
P("1;N ¿Nx)

6 lim sup
N→∞

N
cN
E[P("1;N ¿Nx|X1; : : : ; XN )1{SN¿N}1{X1=SN¿x−6}]
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6 lim sup
N→∞

N
cN
P
(
{SN ¿N} ∩

{
X1
SN
¿ x − 6

})

= lim sup
N→∞

N
cN
P
(
X1
SN

1{SN¿N}¿ x − 6
)
: (63)

By (60) and (62),

lim inf
N→∞

N
cN
P("1;N ¿Nx)¿ lim inf

N→∞
N
cN
P
(
{SN ¿N} ∩

{
X1
SN
¿ x + 6

})

= lim inf
N→∞

N
cN
P
(
X1
SN

1{SN¿N}¿ x + 6
)
: (64)

By combining equations (63) and (64) with Lemmas 14 and 17, and then letting 6→ 0,
we obtain (59).

4. Convergence to the �-coalescent when 0¡ a ¡ 1

In this section, we consider the case in which 0¡a¡ 1 and prove part (d) of
Theorem 4. De>ne Y1;N ¿Y2;N ¿ · · ·¿YN;N by ranking in decreasing order the values
of N−1=aX1; : : : ; N−1=aXN . Let Z1¿Z2¿ : : : be the ranked points of a Poisson point
process on (0;∞) with characteristic measure �a, where �a((x;∞)) = Cx−a for all
x¿ 0. For all j, let Wj = Zj=

∑∞
i=1 Zi. Recall from the introduction that the sequence

(W1; W2; : : :) has the Poisson–Dirichlet distribution with parameters (a; 0).

Lemma 20. For all positive integers j, we have

(Y1;N ; : : : ; Yj;N )→d (Z1; : : : ; Zj)

as N → ∞.

Proof. Fix positive real numbers x1¿ x2¿ · · ·¿ xj, and take x0 =∞. For 16 i6 j,
let LNi = #{k: xi6Yk;N ¡xi−1} and Li = #{k: xi6Zk ¡xi−1}, where #S denotes the
cardinality of the set S. Note that Li is the number of points of the Poisson process
between xi and xi−1. Thus, L1; : : : ; Lj are independent Poisson random variables, and

E[Li] = �a((xi; xi−1)) = Cx−ai − Cx−ai−1:
Also, (LN1 ; : : : ; L

N
j ; N − LN1 − · · · − LNj ) has a multinomial distribution with parameters

(N ;p1; : : : ; pj; p), where pi = P(xi6Y1;N ¡ xi−1) and p = 1 − p1 − · · · − pj = 1 −
P(Y1¿ xj). Using ∼ to denote that the ratio of the two sides tends to 1 as N → ∞,
we have

pi = P(X1¿N 1=axi)− P(X1¿N 1=axi−1) ∼ N−1(Cx−ai − Cx−ai−1)
for 16 i6 j and

pN−n1−···−nj = [1− P(X1¿N 1=axj)]N−n1−···−nj

∼ (1− CN−1x−aj )N ∼ e−Cx
−a
j
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for all nonnegative integers n1; : : : ; nj. Therefore, for all nonnegative integers n1; : : : ; nj,

P(LN1 = n1; : : : ; L
N
j = nj) =

(N )n1+···+nj
n1! : : : nj!

pn11 : : : p
nj
j p

N−n1−···−nj

∼ Nn1+···+nj

n1! : : : nj!

( j∏
i=1

N−ni(Cx−ai − Cx−ai−1)ni
)
e−Cx

−a
j

=
j∏
i=1

e−(Cx
−a
i −Cx−a

i−1)(Cx−ai − Cx−ai−1)ni
ni!

= P(L1 = n1; : : : ; Lj = nj): (65)

Note that Yi;N ¿ xi if and only if LN1 + · · · + LNi ¿ i and Zi¿ xi if and only if L1 +
· · ·+ Li¿ i. It thus follows from (65) that

lim
N→∞

P(Y1;N ¿ x1; : : : ; Yj;N ¿ xj) = lim
N→∞

P(LNi ¿ i for 16 i6 j)

= P(Li¿ i for 16 i6 j)

= P(Z1¿ x1; : : : ; Zj¿ xj):

This is enough to establish that as N → ∞, (Y1;N ; : : : ; Yj;N ) converges weakly to
(Z1; : : : ; Zj) (see Section 2 of Billingsley, 1999).

Lemma 21. For all positive integers j,
Y1;N ; : : : ; Yj;N ; N∑

i=j+1

Yi;N


→d


Z1; : : : ; Zj; ∞∑

i=j+1

Zi




as N → ∞.

Proof. For all Borel subsets A of Rj+1 and all r ¿ 0, let Ar = {x∈Rj+1: |x − y|¡r
for some y∈A}. Let d be the Prohorov metric on the set of probability measures on
Rj+1, de>ned by d(P;Q)= inf{r ¿ 0: P(A)6Q(Ar)+ r and Q(A)6P(Ar)+ r for all
Borel sets A}. Convergence in the Prohorov metric is equivalent to weak convergence
(see Chapter 6 of Billingsley, 1999).
Let PM be the distribution of the random vector (Z1; : : : ; Zj;

∑M
i=j+1 Zi), and let P

be the distribution of (Z1; : : : ; Zj;
∑∞

i=j+1 Zi). Also, let QM;N denote the distribution of

(Y1;N ; : : : ; Yj;N ;
∑M

i=j+1 Yi;N ), and let QN be the distribution of (Y1;N ; : : : ; Yj;N ;
∑N

i=j+1

Yi;N ). Let 6¿ 0. Since (Z1; : : : ; Zj;
∑M

i=j+1 Zi) converges almost surely to (Z1; : : : ; Zj;∑∞
i=j+1 Zi) as M → ∞, there exists M1 such that d(PM ; P)¡6=3 for all M¿M1.

Let � = [62(1 − a)=(18C′′)]1=(1−a). Choose M¿M1 such that P(ZM ¿ �=2)¡6=12.
Note that YM;N converges weakly to ZM as N → ∞ by Lemma 20, so there exists
a positive integer N1 such that for all N¿N1, we have P(YM;N ¿ �)¡6=6. Also,
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we have

E

[
N∑
i=1

Y1;N1{Yi; N6�}

]
= N 1−1=aE[X11{X16N 1=a�}]

= N 1−1=a
∞∑
k=1

P(X11{X16N 1=a�}¿ k)

6N 1−1=a
	N 1=a�
∑
k=1

P(X1¿ k)6C′′N 1−1=a
	N 1=a�
∑
k=1

k−a

6C′′N 1−1=a
∫ N 1=a�

0
x−a dx =

C′′

1− a�
1−a: (66)

By (66) and Markov’s inequality,

P

(
N∑

i=M+1

Yi;N ¿
6
3

)
6 P(YM;N ¿ �) + P

(
N∑
i=1

Yi;N1{Yi; N6�}¿
6
3

)

6
6
6
+
3
6

(
C′′

1− a�
1−a
)
=
6
3
:

Therefore, for N¿N1, we have d(QM;N ; QN )6 6=3. It follows from Lemma 20 that
(Y1;N ; : : : ; YM;N ) →d (Z1; : : : ; ZM ), which means there exists N2 such that d(QM;N ; PM )
¡6=3 for all N¿N2. Thus, for N¿max{N1; N2}, we have

d(QN ; P)6d(QN ;QM;N ) + d(QM;N ; PM ) + d(PM ; P)¡
6
3
+
6
3
+
6
3
= 6;

which proves the lemma.

Lemma 22. As N → ∞, we have(
Y1;N

Y1;N + · · ·+ YN;N ; : : : ;
YN;N

Y1;N + · · ·+ YN;N ; 0; 0; : : :
)

→d (W1; W2; : : :):

Proof. Fix j∈N. The function
(x1; : : : ; xj+1) �→ (x1=(x1 + · · ·+ xj+1); : : : ; xj=(x1 + · · ·+ xj+1))

is continuous except on {x1 + · · · + xj+1 = 0}. Since P(∑∞
i=1 Zi = 0) = 0, it follows

from Lemma 21 and the Mapping Theorem (Theorem 2.7 of Billingsley, 1999) that(
Y1;N

Y1;N + · · ·+ YN;N ; : : : ;
Yj;N

Y1;N + · · ·+ YN;N

)
→d

(
Z1∑∞
i=1 Zi

; : : : ;
Zj∑∞
i=1 Zi

)

=(W1; : : : ; Wj): (67)
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For sequences in �, weak convergence of a >nite number of coordinates implies weak
convergence of the sequence (see chapter 4 of Billingsley, 1999), so the lemma follows
from (67).

Lemma 23. Suppose (11) holds with 0¡a¡ 1. For all k1; : : : ; kr¿ 2,

lim
N→∞

NrE

[
(X1)k1 : : : (Xr)kr
Sk1+···+krN

1{SN¿N}

]
=

∞∑
i1 ;:::; ir=1
all distinct

E[Wk1
i1 : : : W

kr
ir ]:

Proof. We have

NrE

[
(X1)k1 : : : (Xr)kr
Sk1+···+krN

1{SN¿N}

]
∼

N∑
i1 ;:::; ir=1
all distinct

E

[
(Xi1 )k1 : : : (Xir )kr
Sk1+···+krN

1{SN¿N}

]
; (68)

where ∼ means that the ratio of the two sides approaches 1 as N → ∞. Also,

N∑
i1 ;:::; ir=1
all distinct

E

[
(Xi1 )k1 : : : (Xir )kr
Sk1+···+krN

1{SN¿N}1{Xij¿N 1=4 for j=1;:::; r}

]

∼
N∑

i1 ;:::; ir=1
all distinct

E

[
X k1i1 : : : X

kr
ir

Sk1+···+krN

1{SN¿N}1{Xij¿N 1=4 for=1;:::; r}

]
: (69)

Note that

N∑
i1 ;:::; ir=1
all distinct

E

[
X k1i1 : : : X

kr
ir

Sk1+···+krN

1{SN¿N}1{Xi16N 1=4}

]

6
N∑

i1 ;:::; ir=1

E

[(
N 1=4

N

)k1 (Xi2
SN

)k2
: : :
(
Xir
SN

)kr]

6
(
N 1=4

N

)2 N∑
i1=1

E

[
N∑

i2 ;:::; ir=1

(
Xi2
SN

)
: : :
(
Xir
SN

)]

6
1
N 3=2

N∑
i1=1

1 =
1
N 1=2 ; (70)

and the same result would hold with 1{Xij6N 1=4} in the expectation on the left-
hand side for any j = 2; : : : ; r in place of 1{Xi16N 1=4}. Furthermore, Lemma 5 implies
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that

lim
N→∞

N∑
i1 ;:::; ir=1

E

[
X k1i1 : : : X

kr
ir

Sk1+···+krN

1{SN¡N}

]
= 0: (71)

Combining (68)–(71), we get

lim
N→∞

NrE

[
(X1)k1 : : : (Xr)kr
Sk1+···+krN

1{SN¿N}

]

= lim
N→∞

N∑
i1 ;:::; ir=1
all distinct

E

[
X k1i1 : : : X

kr
ir

Sk1+···+krN

]

= lim
N→∞

N∑
i1 ;:::; ir=1
all distinct

E

[(
Yi1 ;N

Y1;N + · · ·+ YN;N

)k1
: : :
(

Yir ;N
Y1;N + · · ·+ YN;N

)kr]
; (72)

in the sense that if one of the limits exists, then so do the other two, and the values
are equal. The function f : �→ � de>ned by

f(x1; x2; : : :) =
∞∑

i1 ;:::; ir=1
all distinct

xk1i1 : : : x
kr
ir

is bounded and continuous (see the proof of Lemma 26 of Schweinsberg, 2000b).
Thus, by Lemma 22,

lim
N→∞

N∑
i1 ;:::; ir=1
all distinct

E

[(
Yi1 ; N

Y1;N + · · ·+ YN;N

)k1
: : :
(

Yir ; N
Y1;N + · · ·+ YN;N

)kr]

=
∞∑

i1 ;:::; ir=1
all distinct

E[Wk1
i1 : : : W

kr
ir ]:

Combining this result with (72) yields the conclusion of the lemma.

Before proceeding with the proof of part (d) of Theorem 4, we review some facts
about the partition structures associated with Poisson–Dirichlet distributions. These par-
tition structures were studied in Pitman (1995), and connections with excursions of
Brownian motion and Bessel processes were explained in Pitman (1997).
Suppose (Vj)∞j=1 has a Poisson–Dirichlet distribution with parameters ((; 0), where

0¡(¡ 1. De>ne random variables U1; U2; : : : to be conditionally i.i.d. given (Vj)∞j=1,
with P(Uj = N |V1; V2; : : :) = VN . De>ne a random partition �n of {1; : : : ; n} such that
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i and j are in the same block of �n if and only if Ui = Uj. Let � be a partition
of {1; : : : ; n} containing k blocks of sizes n1; : : : ; nk . For real numbers x and a and
nonnegative integers m, de>ne [x]0;a = 1 and [x]m;a = x(x + a) : : : (x + (m − 1)a) for
m¿ 1. It was shown in Proposition 9 of Pitman (1995) that

P(�n = �) = p(n1; : : : ; nk) =
(k−1(k − 1)!
(n− 1)!

k∏
i=1

[1− (]ni−1;1: (73)

The function p(n1; : : : ; nk), which is called the exchangeable probability function, is
a symmetric function of n1; : : : ; nk . As noted in Proposition 10 of Pitman (1995), we
have the recursion

p(n1; : : : ; nk) =
k∑
j=1

p(n1; : : : ; nj−1; nj + 1; nj+1; : : : ; nk) + p(n1; : : : ; nk ; 1): (74)

Fix k1; : : : ; kr¿ 2. Let � be the partition of {1; : : : ; n} with the property that the >rst k1
integers are in one block, the next k2 are in another block, and so on. Conditional on
(Vj)∞j=1, the probability that U1 = · · ·=Uk1 = i1, Uk1+1 = · · ·=Uk1+k2 = i2, and so on is
V k1i1 : : : V

kr
ir . By summing over the possible values of i1; : : : ; ir and taking expectations,

we see that

P(�n = �) =
∞∑

i1 ;:::; ir=1
all distinct

E[V k1i1 : : : V
kr
ir ]: (75)

Proof of part (d) of Theorem 4. Since (W1; W2; : : :) has the Poisson–Dirichlet distribu-
tion with parameters (a; 0), if we de>ne the measures 0a and �a as in Theorem 4,
then

E[Wk1
i1 : : : W

kr
ir ] =

∫
�
xk1i1 : : : x

kr
ir 0a(dx)

for all i1; : : : ; ir . Combining this result with Lemma 23, we get

lim
N→∞

NrE

[
(X1)k1 : : : (Xr)kr
Sk1+···+krN

1{SN¿N}

]

=
∞∑

i1 ;:::; ir=1
all distinct

∫
�
xk1i1 : : : x

kr
ir 0a(dx)

=
∫
�

∞∑
i1 ;:::; ir=1
all distinct

xk1i1 : : : x
kr
ir

/ ∞∑
j=1

x2j �a(dx): (76)

By combining (76) with Lemma 6 and the remarks following Proposition 1, we see that
to prove that the processes (#n;N (m))∞m=0 de>ned in Theorem 4 converge as N → ∞
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to the restriction to {1; : : : ; n} of a discrete-time �a-coalescent, it remains only to verify
that

lim
N→∞

cN = c (77)

for some c¿ 0.
Denote by p(n1; : : : ; nk) the exchangeable partition function de>ned above when

(Vj)∞j=1 has the Poisson–Dirichlet distribution with parameters (a; 0). Since (Wj)∞j=1
has the Poisson–Dirichlet distribution with parameters (a; 0), it follows from (73) and
(75) that

p(k1; : : : ; kr) =
∞∑

i1 ;:::; ir=1
all distinct

E[Wk1
i1 : : : W

kr
ir ]

=
ar−1(r − 1)!

(k1 + · · ·+ kr − 1)!

r∏
i=1

[1− a]ki−1;1: (78)

Combining this result with Lemmas 6 and 23, we get

lim
N→∞

cN = lim
N→∞

NE
[
(X1)2
S2N

1{SN¿N}

]
=

∞∑
i=1

E[W 2
i ] = p(2) = 1− a¿ 0;

which proves (77).
We now verify the formula (13) for the transition probabilities. It follows from

Proposition 1, Lemmas 6 and 23, and Eq. (78) that if k1; : : : ; kr¿ 2 and b=k1+· · ·+kr ,
then

pb; k1 ;:::; kr ; 0 =
∞∑

i1 ;:::; ir=1
all distinct

E[Wk1
i1 : : : W

kr
ir ]

=p(k1; : : : ; kr) =
ar−1(r − 1)!
(b− 1)!

r∏
i=1

[1− a]ki−1;1:

Recall that to obtain a formula for pb; k1 ;:::; kr ; s when s �= 0, we can use the recursion
(3). Likewise, let ps(k1; : : : ; kr) = p(k1; : : : ; kr ; 1; : : : ; 1), where k1; : : : ; kr¿ 2 and there
are s ones on the right-hand side. Then, using the fact that p(n1; : : : ; nk) is a symmetric
function of n1; : : : ; nk , we can write (74) as

ps+1(k1; : : : ; kr) =ps(k1; : : : ; kr)−
r∑
j=1

ps(k1; : : : ; kj−1; kj + 1; kj+1; : : : ; kr)

−sps−1(k1; : : : ; kr ; 2):
Thus, the transition probabilities and the exchangeable probability function satisfy the
same recursion. We conclude that for all r¿ 1, k1; : : : ; kr¿ 2, and s¿ 0 such that
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b= k1 + · · ·+ kr + s, we have

pb; k1 ;:::; kr ; s = ps(k1; : : : ; kr) =
ar+s−1(r + s− 1)!

(b− 1)!

r∏
i=1

[1− a]ki ;1: (79)

The right-hand side of (79) is equivalent to the right-hand side of (13), so the proof
of part (d) of Theorem 4 is now complete.
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