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Abstract
The purpose of this note is to point at an analog for continuous state branching

process of the description of prolific individuals in a super-critical Galton-Watson
process.

1 Introduction

Consider a supercritical Galton-Watson process Z with reproduction law π, so π is a
probability measure on Z+ with

∑∞
n=0 nπ(n) ∈]1,∞]. We also assume that π(0) > 0 and

write

g(s) :=
∞∑

n=0

snπ(n) , s ∈ [0, 1]

for the generating function of π. Then the following assertions are well-known and easy
to check. To start with, the equation g(s) = s has a unique root ρ in ]0, 1[, which
coincides with the probability of extinction of Z when the process starts from a single
ancestor. Further, splitting the graph of the generating function at (ρ, ρ) produces a pair
of generating functions (see Figure 1 below) :

ge(s) := ρ−1g(ρs) (1)

and
gp(s) := (1− ρ)−1g(ρ + (1− ρ)s) , s ∈ [0, 1] . (2)

More precisely, on the one hand, ge is the generating function of the subcritical repro-
duction law πe of the Galton-Watson process Ze which is obtained by conditioning Z to
become extincted :

ge(s) =
∞∑

n=0

snπe(n) with πe(n) := ρn−1π(n). (3)
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Figure 1: Graph of the generating function g(s) = 1
4

+ 3
4
s2 splitted at ρ = 1

3
; re-scaling

the lower-left part and the upper-right part yields the generating functions ge and gp.

On the other hand, call prolific any individual with infinite descent in the Galton-
Watson process. Then gp is the generating function of the reproduction law πp of the
Galton-Watson process Zp which is obtained by the restriction of Z to prolific individuals :

gp(s) =
∞∑

`=1

s`πp(`) with πp(`) :=
∞∑

n=`

(
n
`

)
(1− ρ)`−1ρn−`π(n) . (4)

In other words, the genealogical tree induced by Zp is distributed as that of Z after
conditioning on non-extinction and removing all the finite branches.

The purpose of this note is to point at analog of these transformations in the framework
of Continuous State Branching Processes (in short, CSBP). More precisely, the dynamics
of a CSBP are characterized by a branching mechanism Ψ, which, in some loose sense, is
related to the generating function g of the reproduction law for Galton-Watson processes.
It is well-known that conditioning a supercritical CSBP to become (eventually) extin-
guished yields another CSBP whose branching mechanism Ψe is a simple transformation
of Ψ. Our main interest here is to show that the notion of prolific individuals can also be
defined for a CSBP and yields a continuous time (but discrete space) branching process
whose characteristics are again expressed by simple transforms of that of the original
CSBP. It will certainly not come as a surprise that a result for Galton-Watson processes
possesses a counterpart in the continuous setting; however we believe that it may be in-
teresting to spell out details. Further, in the case of stable branching mechanisms, this
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points at some simple path-transformations which do not seem to have been observed
previously.

We refer to [5, 7] and references therein for background on CSBP and start by recalling
the material that will be needed here.

2 Preliminaries

Consider a conservative CSBP X = (X(t, a) : t ≥ 0 and a ≥ 0), where t is the time-
parameter and a the size of the initial population. This means that for each fixed a ≥ 0,
the process X(·, a) is a time-homogeneous Markov process with values in R+ started
from X(0, a) = a. Further the fundamental branching property holds, namely for every
a, b ≥ 0, X(·, a+ b)−X(·, a) has same the law as X(·, b) and is independent of the family
of processes (X(·, c), 0 ≤ c ≤ a).

The dynamics of X are characterized by its branching mechanism Ψ : [0,∞[→ R,
which is a convex function of the type

Ψ(q) = αq + βq2 +

∫
]0,∞[

(
e−qx − 1 + qx1{x≤1}

)
Π(dx),

where α ∈ R, β ≥ 0, and Π is a measure on ]0,∞[ such that
∫

(1 ∧ x2)Π(dx) < ∞.
Specifically, the semigroup of X(·, a) can be characterized via its Laplace transform as
follows. For every q > 0, we have

E (exp{−qX(t, a)}) = exp {−aut(q)} , (5)

where the function ut(q) solves

∂ut(q)

∂t
= −Ψ(ut(q)) , u0(q) = q . (6)

We will assume throughout this work that X is supercritical, i.e. that

Ψ′(0+) = α−
∫

]1,∞[

xΠ(dx) ∈ [−∞, 0[

and not immortal, in the sense that Ψ(q) > 0 when q is sufficiently large. As the branching
mechanism is a convex function with Ψ(0) = 0, this implies that there exists a unique
q0 > 0 that solves the equation

Ψ(q0) = 0 .

We also recall that the hypothesis that X is conservative (i.e. the process X(·, a) does
not explode in finite time a.s.) is then equivalent to

∫
0+
|Ψ(q)|−1dq = ∞ (see Grey [4]).

The importance of the role of the positive root q0 of the branching mechanism should
be already clear from the following easy consequence of (5) and (6) : For each a ≥ 0, the
process exp{−q0X(·, a)} is a martingale with values in [0, 1]; it thus converges a.s. and
it is easily seen that its limit can only take the values 0 or 1 a.s. More precisely, writing
X(∞, a) = limt→∞ X(t, a), we have

P(X(∞, a) = 0) = 1− P(X(∞, a) = ∞) = e−q0a , ∀a ≥ 0.
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In the sequel, we shall say that the CSBP with initial population of size a becomes
eventually extinguished when X(∞, a) = 0, and is prolific when X(∞, a) = ∞. We
mention that the process may become eventually extinguished without being ever entirely
extinguished, i.e. the event that X(∞, a) = 0 and X(t, a) > 0 for all t ≥ 0 may have a
positive probability.

In order to define rigorously prolific individuals, we turn our attention to specifying
the genealogy in a CSBP, which requires the connexion with subordinators and Bochner
subordination. Specifically, the branching property entails that for each fixed t ≥ 0, the
process X(t, ·) has independent and homogeneous increments with values in R+. We shall
always deal with its right-continuous modification which is then a subordinator. We see
from (5) that its Laplace exponent is the function q → ut(q), and the semigroup identity
ut+s(q) = ut (us(q)) points at the following representation (see Proposition 1 in [2] for
details).

Lemma 1 On some probability space, there exists a process (S(s,t)(a), 0 ≤ s ≤ t and a ≥
0) such that:
(i) For every 0 ≤ s ≤ t, S(s,t) =

(
S(s,t)(a), a ≥ 0

)
is a subordinator with Laplace exponent

ut−s(·).
(ii) For every integer p ≥ 2 and 0 ≤ t1 ≤ · · · ≤ tp, the subordinators S(t1,t2), . . . , S(tp−1,tp)

are independent and

S(t1,tp)(a) = S(tp−1,tp) ◦ · · · ◦ S(t1,t2)(a) , ∀a ≥ 0 a.s.

(iii) The processes (S(0,t)(a), t ≥ 0 and a ≥ 0) and (X(t, a), t ≥ 0 and a ≥ 0) have the
same finite-dimensional marginals.

For the sake of simplicity, we shall further assume from now on that

β > 0 or

∫
]0,∞[

(1 ∧ x)Π(dx) = ∞,

in order to ensure that the subordinators S(s,t) are pure jump processes (i.e. they have no
drift); see Silverstein [9]. Analyzing their jumps in the framework of the representation
above yields a natural notion of genealogy of CSBP (we refer to [2] for details) : For
every b, c ≥ 0 and 0 ≤ s < t, we say that the individual c in the population at time t has
ancestor (or is a descendant of) the individual b in the population at time s if b is a jump
time of S(s,t) and

S(s,t)(b−) < c < S(s,t)(b).

Note that when the subordinator S(s,t) has a jump at the location b, then the size of this
jump ∆S(s,t)(b) = S(s,t)(b) − S(s,t)(b−) describes the size of the sub-population at time t
which descends from the individual b in the population at time s. Considering the limit
as t →∞, this enables us to define prolific individuals.

Definition. For every b ≥ 0 and s ≥ 0, we say that the individual b in the population at
time s is prolific if

lim
t→∞

∆S(s,t)(b) = ∞.
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For every a ≥ 0 and s ≥ 0, we then introduce the number of prolific individuals in the
population at time s which descend from the initial population [0, a] of size a:

P (s, a) := Card{b ∈ [0, X(s, a)] : b is a prolific in the population at time s} .

We point that there are prolific individuals in the initial population if and only if the
CSBP is prolific. This is certainly not surprising, but it deserves however a rigorous
argument which has some importance in this study.

Lemma 2 For every initial population a ≥ 0, the events

{X(·, a) becomes eventually extinguished}

and
{P (0, a) = 0}

coincide a.s. Furthermore, P (0, a) has the Poisson distribution with parameter aq0.

Proof: The inclusion

{X(·, a) becomes eventually extinguished} ⊆ {P (0, a) = 0}

is obvious, so we just need to check that the probability of the two events coincide.
Fix an arbitrary time t > 0 and focus on the evolution of the initial population [0, a].

The fact that the subordinator S(0,t) is pure jump means that almost all the population at
time t descends from at most countably many individuals in the initial population. More
precisely, denote by (ai)i∈I the set of jump location of S(0,t)(·) on [0, a], so ∆S(0,t)(ai) is
the size of the sub-population at time t having ai as ancestor, and∑

i∈I

∆S(0,t)(ai) = X(t, a) .

Since for every t′ > t, the pure jump subordinator S(t,t′) is independent of S(0,t) and
S(0,t′) = S(t,t′) ◦ S(0,t), we see that the ancestors in the population at time t of the al-
most entire population at time t′ descend from the individuals (ai)i∈I . As a consequence,
any prolific individual in the initial population belongs to the set of ancestors (ai)i∈I .
By applying the branching property at time t, we get that the conditional probability
given the evolution of the process up-to time t that the individual ai is prolific equals
1− exp{−q0∆S(0,t)(ai)}, and for different indices i, these events are (conditionally) inde-
pendent. Thus

P (P (0, a) = 0) = E

(∏
i∈I

exp{−q0∆S(0,t)(ai)}

)

= E

(
exp

{
−q0

∑
i∈I

∆S(0,t)(ai)

})
= E (exp{−q0X(t, a)})
= exp{−q0a}
= P (X(·, a) becomes eventually extinguished) .
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This shows the first assertion. Finally the branching property entails that the process
P (0, ·) is Poisson, and since P (P (0, a) = 0) = e−q0a, its intensity is q0. �

Remark. An application of the Markov property shows that conditionally on X(t, a) = b,
the number of prolific individuals at time t has the Poisson law with parameter q0b. By
the law of large number for the Poisson laws, we deduce that conditionally on the event
that X(·, a) is prolific, we have P (t, a) ∼ q0X(t, a) as t →∞.

3 Main results

Fix a > 0 and introduce the probability measure

Pe = eq0a1{X(a,∞)=0}P

which is obtained by conditioning the CSBP with initial population of size a to become
eventually extinguished. Observe that on the sigma-field Ft = σ(X(r, a) : 0 ≤ r ≤ t),
Pe is absolutely continuous with respect to the initial probability measure P with density
given by the martingale eq0a exp{−q0X(t, a)}.

We now have all the material needed to state and prove the main results of this note.
First, let us present the continuous time analogue of the interpretation of the component
ge for Galton-Watson processes, which belongs to the folklore of CSBP.

Proposition 3 Under Pe, X(·, a) is a CSBP with initial population of size a. Its
branching mechanism is given by

Ψe(q) = Ψ(q0 + q) , q ≥ 0

and can be expressed in the form

Ψe(q) = αeq + βq2 +

∫
]0,∞[

(
e−qx − 1 + qx1{x≤1}

)
Πe(dx),

where
Πe(dx) = e−q0xΠ(dx)

and

αe = α + 2βq0 + q0

∫
]0,∞[

(
1− e−q0x

)
x1{x≤1}Π(dx).

More generally, we point out how a simple modification of the law Pe of the branching
process X(·, a) conditioned to become eventually extinguished, enables us to describe the
conditional distribution of X(t, a) on the number of prolific individuals P (t, a) at a fixed
time t > 0.

Proposition 4 For every a, t ≥ 0 and n ∈ Z+, the conditional law of X(t, a) given
P (t, a) = n is

P(X(t, a) ∈ dx|P (t, a) = n) = xn Pe(X(t, a) ∈ dx)

Ee(X(t, a)n)
.
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Proof: To start with, Remark following Lemma 2 yields the identity

E(exp{−qX(t, a)}sP (t,a)) = E(exp{−qX(t, a)} exp{−q0(1− s)X(t, a)})
= E(exp{−(q + q0)X(t, a)} exp{q0sX(t, a)})

=
∞∑

n=0

(sq0)
n

n!
E(exp{−(q + q0)X(t, a)}X(t, a)n).

Next, we define

f(t, q, a, n) := E(exp{−qX(t, a)}|P (t, a) = n) .

Using again the remark after Lemma 2, but conditioning first on P (t, a) and then on
X(t, a) we get that

E(exp{−qX(t, a)}sP (t,a)) =
∞∑

n=0

(sq0)
n

n!
f(t, q, a, n)E(exp{−q0X(t, a)}X(t, a)n).

We deduce

f(t, q, a, n) =
E(exp{−(q + q0)X(t, a)}X(t, a)n)

E(exp{−q0X(t, a)}X(t, a)n)

=
Ee(exp{−qX(t, a)}X(t, a)n)

Ee(X(t, a)n)
,

where in the second identity, we made use of the fact that on the sigma-field Ft =
σ(X(r, a) : 0 ≤ r ≤ t), the probability measure Pe for the CSBP conditioned to become
eventually extinguished is absolutely continuous with respect to the initial probability
measure P with density eq0a exp{−q0X(t, a)}. Inverting the Laplace transform (in the
variable q) yields the formula of the statement. �

Recall that with any probability law m on R+ with finite non-zero mean, one can
associate the law m of its size-biased picking, defined by

m(dy) =
y

c
m(dy)

with c =
∫∞

0
ym(dy). We may then note the following recursive identity : for every

n ∈ Z+, the law L(X(t, a)|P (t, a) = n + 1)) is obtained from L(X(t, a)|P (t, a) = n)) by
size biased picking.

In order to state the main result of this note, we first recall some further well-known
material (see, e.g. Chapter III in [1], or [6]). A continuous time branching process
Z = (Z(t, k) : t ≥ 0, k ∈ Z+), where t is the time parameter and k the number of ances-
tors, can be viewed as a Galton-Watson process in which individuals have independent
exponentially distributed lifetimes. The rate of reproduction is governed by a finite mea-
sure µ on Z+ with µ(1) = 0. Specifically, each individual lives for an exponential time
with parameter µ(Z+) and begets at its death a random number of children which is dis-
tributed according to the normalized probability measure µ(·)/µ(Z+) (that coincides with
the reproduction law of the underlying Galton-Watson process). Thus for each k ∈ Z+,

7



Z(·, k) is a Markov chain in continuous time, whose dynamics are entirely characterized
by the reproduction measure µ. In turn, the latter is determined by the function

Φ(s) :=
∞∑

n=0

(sn − s)µ(n) , s ∈ [0, 1] . (7)

More precisely the branching property entails that the generating function of Z(t, k) has
the form

E(sZ(t,k)) = γt(s)
k , s ∈ [0, 1], k ∈ Z+ , (8)

and solves
∂γt(s)

∂t
= Φ(γt(s)) . (9)

In the case when µ(0) = 0, we say that Z is immortal as each individual has at least two
children a.s.

Theorem 5 For every a ≥ 0, the process P (·, a) is an immortal branching process in
continuous time, with initial distribution given by the Poisson law with parameter q0a. Its
reproduction measure µp is characterized in terms of the branching mechanism of X by

Φp(s) =
∞∑

n=0

(sn − s)µp(n) =
1

q0

Ψ(q0(1− s)) , s ∈ [0, 1] , (10)

and is given explicitly by

µp(n) = qn−1
0

∫
]0,∞[

xn

n!
e−q0xΠ(dx) for n ≥ 3 , (11)

and

µp(2) = βq0 + q0

∫
]0,∞[

x2

2
e−q0xΠ(dx) .

Figure 2 below depicts the transformation Ψ → (Ψe, Φp) and should be compared to
Figure 1 for generating functions.

Proof: The proof of assertion that the process P (·, a) of the number of prolific individ-
uals is a branching process in continuous time follows the same route as Galton-Watson
processes by using the argument in the proof of Lemma 2. That this branching process is
immortal is obvious. Lemma 2 also states that its initial distribution is the Poisson law
with parameter aq0.

Let us now compute the generating function of its semigroup. Recall that the gener-
ating function of the Poisson distribution with parameter c ≥ 0 is s → exp{−(1 − s)c}.
On the one hand, combining Lemma 2 with the Markov property at time t yields

E(sP (t,a)) = E (exp {−(1− s)q0X(t, a)})
= exp{−aut((1− s)q0)}
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Figure 2: Graph of the branching mechanism Ψ(q) = q ln q splitted at q0 = 1. The
right-part gives the graph of Ψe and the symmetric of the left-part that of Φp.

On the other hand, using the fact that P (0, a) has the Poisson distribution with parameter
aq0 yields that the generating function γt of the continuous time branching process fulfills

E(sP (t,a)) = E
(
γt(s)

P (0,a)
)

= exp{−aq0(1− γt(s))}.

We deduce from these two observations that

1− γt(s) =
1

q0

ut((1− s)q0) .

Taking the derivative in the variable t yields by (9) and (6)

Φp(γt(s)) =
1

q0

Ψ(ut((1− s)q0)) =
1

q0

Ψ(q0(1− γt(s)))

We conclude that

Φp(s) =
1

q0

Ψ(q0(1− s)) .

Finally one recovers the measure µp by inverting of the transform Φp. This can be
performed by combining Proposition 3 and the observation that Ψ(q0(1−s)) = Ψe(−q0s).
�

In the setting of super-critical Galton-Watson processes, we can assign a type to each
individual depending on whether it has finite descent or is prolific, and this yields two-
type Galton-Watson processes. A similar observation can be made in the continuous
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setting; in this direction, recall that for every fixed t ≥ 0, there are only countably many
prolific individuals at time t, which thus do not contribute to the size of the population
at time t (but of course the descent of prolific individuals at time t may have a crucial
role in the size of the population at time t′ > t). Then one can check that the pair
((X(t, a), P (t, a)) : a, t ≥ 0) also enjoys the branching property. More precisely, for every
a ≥ 0 and n ∈ Z+, let us write (X(·, a, n), P (·, a, n)) for a version of the pair of processes
(X(t, a), P (t, a))t≥0 conditioned on P (0, a) = n. Then for every a, a′ ≥ 0 and n, n′ ∈ Z+,
there is the identity in distribution

(X(·, a + a′, n + n′), P (·, a + a′, n + n′))
L
= (X(·, a, n), P (·, a, n)) + (X ′(·, a′, n′), P ′(·, a′, n′)) ,

where, in the right-hand side, (X ′(·, a′, n′), P ′(·, a′, n′)) is independent of (X(·, a, n), P (·, a, n))
and has the same law as (X(·, a′, n′), P (·, a′, n′)).

For n = 0, X(·, a, 0) is just a version of the initial CSBP with an initial population of
size a and conditioned to become eventually extinguished (i.e. with branching mechanism
Ψe(q) = Ψ(q + q0)), and obviously P (·, a, 0) ≡ 0. This yields

E(exp{−qX(t, a, 0)}sP (t,a,0)) = exp {−a(ut(q + q0)− q0)} , (12)

for all q ≥ 0 and s ∈]0, 1], where ut(·) is defined as in (6). Next, from recall from the
remark following Lemma 2 that there is the identity

E(exp{−qX(t, a)}sP (t,a)) = E(exp{−(q + q0(1− s))X(t, a)})
= exp{−aut(q + q0(1− s))}. (13)

On the other hand, since P (0, a) has the Poisson distribution with parameter aq0, the
branching property enables us to express the preceding quantity as

E(exp{−qX(t, a)}sP (t,a))

=
∞∑

n=0

e−aq0
(aq0)

n

n!
E(exp{−qX(t, a, 0)}sP (t,a,0))

(
E(exp{−qX(t, 0, 1)}sP (t,0,1))

)n
Using (12) and considering the asymptotic when a → 0 easily yield

E(exp{−qX(t, 0, 1)}sP (t,0,1)) =
1

q0

(ut(q + q0)− ut(q + q0(1− s))) . (14)

Putting the pieces together, we conclude that the joint law of (X(t, a, n), P (t, a, n)) is
characterized by

E(exp{−qX(t, a, n)}sP (t,a,n))

= exp {−a(ut(q + q0)− q0)}
(

1

q0

(ut(q + q0)− ut(q + q0(1− s)))

)n

. (15)
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4 Some examples

We shall now present some examples in which explicit computations are possible. The
third one will point at a path-transformation relating strictly stable CSPB to some super-
critical CSBP which may be new.

Example 1 (Quadratic branching). The simplest example is when Ψ(q) = q2 − q, so
Π = 0, β = 1 and α = −1. Then we get q0 = 1 and Φp(s) = s2 − s, which yields µp = δ2.
We conclude that as time passes, the number of prolific individuals evolves as a standard
Yule process.

Example 2 (Neveu’s branching). Next, we consider Neveu’s branching process [8, 2]
which has branching mechanism Ψ(q) = q ln(q). Then q0 = 1 and

Φp(s) = (1− s) ln(1− s) =
∞∑

n=2

sn − s

n(n− 1)
.

We thus obtain µp(n) = 1
n(n−1)

for every n ≥ 2. As a check, recall that Neveu’s branching

process has no Gaussian component and that its Lévy measure is Π(dx) = x−2dx, and
thus we recover from Equation (11) that for n ≥ 2

µp(n) =

∫ ∞

0

xn

n!
e−xx−2dx =

(n− 2)!

n!
=

1

n(n− 1)
.

We also point out that ut(q) = qe−t
, and thus

γt(s) = 1− (1− s)e−t

, s ∈ [0, 1] .

Example 3 (Stable branching). Next consider the supercritical stable branching mech-
anism Ψ(q) = Γ(−ϑ)(qϑ − q), so that q0 = 1 and Π(dx) = x−ϑ−1dx, and

µp(n) =

∫ ∞

0

xn

n!
e−xx−ϑ−1dx =

Γ(n− ϑ)

n!
n ≥ 2.

It is easily checked that the total mass of µp is

µp(Z+) = Γ(2− ϑ)/ϑ = (ϑ− 1)Γ(−ϑ),

so the normalized probability measure µp(·)/µp(Z+) is given by

µp(n)

µp(Z+)
=

ϑ(2− ϑ) · · · (n− 1− ϑ)

n!
:= νϑ(n) , n ≥ 2.

The reproduction law (νϑ(n))n≥2 in the third example already appeared at the bottom
of page 74 in Duquesne and Le Gall [3] (see also Section 7 in [6]), which points at a rather
surprising connexion with strictly stable trees reduced at some finite level. More precisely,
Duquesne and Le Gall (see Sections 2.6 and 2.7 in [3]) were interested in the limit of certain

11



reduced critical Galton-Watson trees observed up-to some large generation. Following
Theorem 2.7.1 in [3], we consider a time-inhomogeneous Markov process (Z1

t )0≤t<1 with
values in N, which models the evolution of a population with the following dynamics. The
death-time of an individual which is alive at time t ∈ [0, 1[ has the uniform distribution
on [t, 1], and at its death, this individual begets a random number of children distributed
according to the reproduction law νϑ, independently of the death-time. Further, different
individuals evolve independently one of the others. Heuristically, the quantity Z1

t can be
interpreted as the number of individuals at time t which have a non-zero descent at time
1 in a strictly stable(ϑ)-CSBP, i.e. with branching mechanism Ψϑ(q) := cqϑ where c > 0
is arbitrary.

On the other hand, recall that a random variable e which has the exponential dis-
tribution with parameter c > 0 enjoys the property of absence of memory, and further
1− exp{−ce} is then uniformly distributed on [0, 1]. Putting these observations together,
we now realize that if Z1 starts with a number of ancestors distributed according to the
Poisson law with parameter a, then the time-changed process

t → Z1
1−exp{−(ϑ−1)Γ(−ϑ)t}

is a version of the process (P (t, a))t≥0 of the number of prolific individuals for a CSBP
with branching mechanism Ψ(q) = Γ(−ϑ)(qϑ − q) and started from an initial population
of size a.

We now conclude this work by providing a direct explanation for the preceding relation,
which is based on the following simple transformation of strictly stable CSBP.

Proposition 6 Let (Y (t, a) : t ≥ 0 and a ≥ 0) be a strictly stable CSBP with branch-
ing mechanism Ψϑ(q) = cqϑ, where c > 0 and ϑ ∈]1, 2], and fix b > 0. Then the process

Ỹ (t, a) := ebtY (1− e−b(1−ϑ)t, a), t ≥ 0 and a ≥ 0

is a CSBP with branching mechanism

Ψ̃ϑ(q) = bc(ϑ− 1)qϑ − bq .

This provides a pathwise proof the identity in distribution which was observed above.
Indeed, we choose b = Γ(−ϑ) and c = 1/(ϑ− 1) so that Ψ̃ϑ(q) = Γ(−ϑ)(qϑ − q). Then it
suffices to observe that Z1

1−exp{−(ϑ−1)Γ(−ϑ)t}, the number of individuals at time 1−e−b(1−ϑ)t

which have a non-zero descent at time 1 in the strictly stable CSBP Y , coincides with
the number of prolific individuals at time t in the supercritical CSBP Ỹ . For this, one
has to use the feature that, since

∫∞
dq/Ψ̃ϑ(q) < ∞, the following equivalence holds with

probability one :

Ỹ (t, a) = 0 when t is sufficiently large ⇐⇒ lim
t→∞

Ỹ (t, a) = 0.

In other words, when the CSBP Ỹ becomes eventually extinguished, it must become
entirely extinguished at some finite time. See for instance the exercise in [7] on its page
28.
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Proof: Let us write
vt(q) = − ln E(exp{−qY (t, 1)})

for the solution to the equation (6) for the branching mechanism Ψϑ(q) = cqϑ. This
equation can be solved explicitly and one finds

vt(q) = ((ϑ− 1)ct + q1−ϑ)1/(1−ϑ) , q > 0.

It is immediate to check that the transformed process Ỹ is a (possibly time-inhomogeneous)
Markov process that enjoys the branching property. The identity (5) yields

E(exp{−qỸ (t, a)}) = E(exp{−qebtY (1− e−b(1−ϑ)t, a)}) = exp{−aut(q)} ,

with

ut(q) = v1−e−b(ϑ−1)t(qebt)

=
(
(ϑ− 1)c(1− e−b(ϑ−1)t) + q1−ϑe−b(ϑ−1)t)

)1/(1−ϑ)
.

Taking the derivative with respect to t, we obtain

∂ut(q)

∂t
=

1

1− ϑ

(
b(ϑ− 1)2ce−b(ϑ−1)t − b(ϑ− 1)q1−ϑe−b(ϑ−1)t)

)
ut(q)

ϑ

= −b ((ϑ− 1)c− ut(q)) ut(q)
ϑ .

We thus see that ut(q) solves

∂ut(q)

∂t
= −Ψ̃ϑ(ut(q)) , u0(q) = q ,

and as in this PDE, the function Ψ̃ϑ does not depend on t, this ensures that Ỹ has in fact
the time-homogeneous branching property. More precisely, Ỹ is a CSBP with branching
mechanism Ψ̃ϑ. �
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