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ABSTRACT. Let S(t) be a bounded strongly continuous semi-group on a Banach space B and
−A be its generator. We say that S(t) is semi-uniformly stable when S(t)(A + 1)−1 tends to 0
in operator norm. This notion of asymptotic stability is stronger than pointwise stability, but
strictly weaker than uniform stability, and generalizes the known logarithmic, polynomial and
exponential stabilities.

In this note we show that if S is semi-uniformly stable then the spectrum of A does not intersect
the imaginary axis. The converse is already known, but we give an estimate on the rate of decay
of S(t)(A + 1)−1, linking the decay to the behaviour of the resolvent of A on the imaginary axis.
This generalizes results of Lebeau and Burq (in the case of logarithmic stability) and Liu-Rao and
Bátkai-Engel-Prüss-Schnaubelt (in the case of polynomial stability).

1. BACKGROUND

Consider a strongly continuous semi-group S(t) on a Banach space B, with generator −A.
Assume that S(t) = e−tA is bounded, i.e.

(1) sup
t≥0

∥∥e−tA
∥∥ = C̃ < ∞.

(Throughout the article, a semi-group will be strongly continuous on [0,∞), i.e., a C0-semigroup.
Moreover, ‖·‖will denote both the norm on B and the operator norm from B to B.) The opera-
tor A is closed and densely defined, and we denote by D(A) its domain, σ(A) its spectrum and
ρ(A) its resolvent set. It is a well-known property that if (1) holds, then the left open half-plane
{Re z < 0} is included in ρ(A) (see [25, 11]).

In 1988, Lyubich and Vũ [20] and Arendt and Batty [1] have shown that if σ(A) ∩ iR is
countable and σ(A∗) ∩ iR contains no eigenvalue (here A∗ is the adjoint of A), then the semi-
group is (pointwise) strongly stable, that is

∀u0 ∈ B, lim
t→+∞

∥∥e−tAu0

∥∥ = 0.

For surveys of this and other results concerning strong stability, see [4], [8]1.
In this note we investigate the rate of decay, as t tends to +∞, of the norm

∥∥e−tAu0

∥∥. The
semi-group is said to be uniformly stable if

lim
t→+∞

∥∥e−tA
∥∥ = 0.
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In this case, the semi-group property implies that this decay is at least exponential. Uniform
stability of semi-groups has been intensively studied by many authors (see [25], [30, Chapter 3],
[11, V.1.b], [2, Chapter 5] and references therein), and we are interested in the following weaker
notion of stability:

(2) lim
t→+∞

∥∥∥e−tA(1 + A)−k
∥∥∥ = 0,

where k ∈ N∗. Observe that ‖(1 + A)k · ‖ defines a norm on D(Ak) which is equivalent to the
natural norm. Thus (2) is equivalent to the fact that the norm of e−tA, as a bounded operator
from D(Ak) to B, tends to 0 as t tends to infinity. Furthermore, by density of D(Ak) in B, (2)
implies strong stability.

The aim of this work is to give conditions on the spectrum of A to satisfy (2) and to estimate
the rate of convergence in (2) in terms of the resolvent of A. Our main motivation is that (2)
often appears in applications to linear partial differential equations. Observe that the semi-
group property does not imply anymore that the rate of convergence in (2) is exponential, and
there are many practical examples where the decay is only logarithmic or polynomial (see e.g.
[15, 16, 17, 28, 6, 19, 26, 32, 9, 12]).

The following result shows that (2) may be characterized in terms of the intersection of σ(A)
with the imaginary axis iR.

Theorem 1. Let e−tA be a bounded semi-group on a Banach space B. The following properties are
equivalent:

(a) There exists k ≥ 1 such that (2) holds.
(b) For all k ≥ 1, (2) holds.
(c) iR ∩ σ(A) = ∅.

Definition 2. We will say that the bounded semi-group e−tA is semi-uniformly stable if one of
the equivalent properties of Theorem 1 hold.

A few remarks are in order.
The equivalence between (a) and (b) is elementary (see also the quantitative statement (4)

and (5) below). This equivalence and the fact that these properties imply (c) was observed in [3]
in the particular case where

∥∥e−tA(1 + A)−k
∥∥ ≤ C

(1+t)α , where α and C are positive constants.
The equivalence between the decay property (b) and the purely spectral property (c) is spe-

cific to semi-uniform stability. The sufficient condition of strong stability given by the Theorem
of Arendt, Batty, Lyubich and Vũ is not necessary, as shown by the example of the strongly
stable semigroup S(t) defined by S(t)f(x) = f(t + x) on L2(0,+∞). In this example A = − d

dx

and σ(A) = {Re z ≥ 0}. Thus strong stability of e−tA cannot be characterized solely in terms of
the spectrum of A. See also Example 8 for the case of uniform stability.

That (c) implies (a) (with k = 1) was implicit in [1] (see the argument leading to the inductive
statement on p.843 in the very special case when iR ∩ σ(A) = ∅). It was explicitly presented in
[4, pp.40,41]. In fact, it is shown that

lim
t→+∞

∥∥e−tAA−1
∥∥ = 0,

and (2) follows (for k = 1) since A(1 + A)−1 is a bounded operator. This proof has its roots
in a Tauberian theorem due to Ingham [13] and elementary expositions by Newman [24] and
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Korevaar [14]. That (c) implies (a) (and (b)) is the most important part of Theorem 1 in applica-
tions, as it reduces the proof of a stability property to a simple spectral criterion. Such spectral
criteria have also proved efficient in control theory [29, 7, 21, 27]. We shall give a quantitative
statement and proof of that implication. It seems to be a new result that (a) implies (c), and we
shall give a quantitative statement and proof of that as well. We first introduce some notation.

Let

(3) mk(t) = sup
s≥t

∥∥∥e−sA(1 + A)−k
∥∥∥ , k ∈ N, t ≥ 0.

It is easy to see that mk is bounded by the constant C̃ appearing in (1), non-increasing, and
continuous on [0,+∞). The property (2) is obviously equivalent to the fact that mk(t) tends to
0 at infinity.

By a straightforward interpolation argument, there is a constant C > 0 (depending only on
C̃ defined in (1)) such that

(4) m1(t) ≤ C (mk(t))
1/k , k ≥ 1, t ≥ 0.

This inequality has the following converse, given by a simple iteration argument,

(5) mk(t) ≤
(

m1

(
t

k

))k

, k ≥ 1, t ≥ 0.

In practical cases (for example if m1 is equivalent to a negative power of t or a negative power
of the logarithm of t),

(
m1

(
t
k

))k decreases with k: smoother trajectories tend to have a faster
decay to 0.

Observe that if (c) holds, the function τ 7→ ‖(A − iτ)−1‖ is continuous on R (here ‖ · ‖ is the
operator norm on B). Define the continuous positive increasing function

(6) M(ξ) = sup
−ξ≤τ≤ξ

‖(iτ + A)−1‖, ξ ≥ 0.

One may give bounds on the function M in terms of the functions mk. We give a result in
the case k = 1 without essential loss of generality (see (4) and (5)) and with a gain in simplicity.

Proposition 3 (Necessary condition for semi-uniform stability). Let e−tA be a bounded semi-group
on a Banach space B. Assume that

lim
t→+∞

m1(t) = 0.

Then iR∩ σ(A) = ∅, and there exist constants ξ0, C > 0 (depending only on m1 and the constant C̃ in
(1)), such that

∀ξ ≥ ξ0, M(ξ) ≤ 1 + Cm−1
1r

(
1

2(ξ + 1)

)
,

where m−1
1r is a right inverse of the function m1, which maps (0,m1(0)] onto [0,+∞).

Example 4. If m1(t) ≤ C exp(−ct) for some positive constants c, C (exponential stability) the
proposition shows that there exists a positive constant C ′ such that for large ξ, M(ξ) ≤ C ′| log ξ|.
If m1(t) ≤ C

tα , where α is positive (polynomial stability) we get the bound M(ξ) ≤ C ′ξ1/α.
Finally if m1(t) ≤ C

log t (logarithmic stability), then M(ξ) ≤ C ′ exp(C ′ξ). We will come back to
these special cases in Examples 6, 7 and 8.
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For a quantitative version of the implication (c)⇒(a) of Theorem 1, and with a view to prac-
tical applications, we would like to establish a converse of Proposition 3 such as

(7) ∃t0, C > 0, ∀t ≥ t0, m1(t) ≤
C

M−1(t/C)
,

where M−1 is the inverse function of M (assuming for simplicity that M is strictly increas-
ing). Partial results are already known in the case where M is polynomially or exponentially
bounded. We recall these results in the next two Theorems.

Theorem A (Lebeau, Burq). Assume that B is a Hilbert space. If M(ξ) ≤ C exp(Cξ) for some
constant C > 0, then

(8) ∀k ≥ 1, ∃Ck, mk(t) ≤
Ck

logk(2 + t)
.

In [15], Gilles Lebeau showed Theorem A with an additional log log factor in the right hand
side of (8). The exact bound (8) is obtained in [5, Th. 3], in a more general setting also adapted
to local energy-decay estimates. Theorem A has important applications in linear partial differ-
ential equations, where exponential bounds on the resolvent often appear as a consequence of
Carleman estimates (see e.g. [16]).

The previously known polynomial decay results are as follows:

Theorem B (Bátkai-Engel-Prüss-Schnaubelt, Liu-Rao). If M(ξ) ≤ C(1 + ξ)α for some constants
C,α > 0, then (see [3])

∀k ≥ 1, ∀ε > 0, ∃Ck,ε, mk(t) ≤
Ck,ε

t
k
α
−ε

.

If furthermore B is a Hilbert space, then (see [18]):

∀k ≥ 1, ∃Ck, mk(t) ≤
Ck log

k
α

+1(2 + t)

t
k
α

.

Thus if B is a Hilbert space, (7) holds if M grows exponentially. If M grows only polynomi-
ally, it holds up to a logarithmic correction. We will state a general result, unifying the points
of view of Theorems A and B and showing that the Hilbert space assumption is unnecessary.
We will denote

(9) Mlog(η) = M(η)
[
log(1 + M(η)) + log(1 + η)

]
,

which tends to infinity when η tends to infinity. Up to a logarithmic term, Mlog is of the same
order as M . Let M−1

log be the inverse of Mlog, which maps (T,+∞) onto (0,+∞), where T =
Mlog(0). Then we have the following Theorem.

Theorem 5 (Sufficient condition for semi-uniform stability). Let e−tA be a bounded semi-group on
a Banach space B such that iR ∩ σ(A) = ∅. Let M and Mlog be defined by (6) and (9). Let k ∈ N∗.
Then there are constants Ck, Tk, depending only on k, C̃ and M , such that :

(10) ∀t ≥ Tk,
∥∥∥e−tA(A + 1)−k

∥∥∥ ≤ Ck(
M−1

log

(
t

Ck

))k
.
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In other words, under the assumptions of Theorem 5,

(11) ∀t ≥ Tk, mk(t) ≤
Ck(

M−1
log

(
t

Ck

))k
.

This does not quite achieve (7) because of the logarithmic term, but the following examples
show that it includes Theorem A and Theorem B.

Example 6. If M(ξ) = βeαξ, α, β > 0, then M−1
log (t) ∼ 1

α log(t) as t tends to +∞. We recover the
theorem of G. Lebeau and N. Burq mentioned above. In this particular case, the logarithmic
factors in the definition of Mlog are not seen at first order. In the theorem of N. Burq, designed
to show a local energy decay result, multiplication by bounded operators was allowed. We
give a generalization of Theorem 5 in this spirit in Section 4 (see Corollary 11 and Proposition
12).

Example 7. If M(ξ) = β(1 + ξ)α, α, β > 0, then

M−1
log (t) ∼ Cα,β

(
t

log(t)

) 1
α

, t → +∞

This generalizes to Banach spaces the result of B. Rao and Z. Liu on Hilbert spaces, with a slight
improvement on the logarithmic loss.

Example 8. If M(ξ) is bounded we obtain

M−1
log (t) ∼ Cet, t → +∞,

and the norm ‖e−tAu0‖ decays exponentially whenever u0 ∈ D(A), but in contrast with the
uniform decay case, Theorem 5 does not imply a uniform bound with respect to ‖u0‖. This
result is already known, as it follows directly from a more general stability result in semi-
group theory (see e.g. [2, Thm 5.1.9]). In the Hilbert space case, it is not an optimal statement.
Indeed, by a theorem of Gearhart, Prüss and Greiner, uniform boundedness of the resolvent
on the imaginary axis is equivalent to uniform exponential decay of the semi-group (see [11,
V.1.11], [2, Thm 5.1.12]). However that is not the case in general Banach spaces, as shown by
the example of the semi-group S(t) defined by

S(t)f(x) = et/qf(xet), B = Lp(0,+∞) ∩ Lq(0,+∞), 1 < p < q < ∞.

(see [30, Example 1.4.4], [2, Example 5.2.2]).

Remark 9. As shown by Batkai, Engel, Prüss and Schnaubelt [3], the spectral theorem for normal
operators implies that (7) holds when B is a Hilbert space, the operator A is normal and M

grows polynomially. Thus, in this particular case, one may replace M−1
log by M−1 in Theorem

5. The necessity of the logarithmic correction in the general case, even if B is assumed to be a
Hilbert space, is to our knowledge completely open. As seen in Example 8, when M is constant
at infinity, the logarithmic factor is natural for a general Banach space, but the bound (11) is not
optimal for Hilbert space. We conjecture that the logarithmic correction may be dropped, or at
least replaced by a smaller rectification, in the case of Hilbert space, but cannot be forgotten in
general Banach spaces.
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Section 2 is devoted to the proof of Proposition 3. In section 3, we prove Theorem 5. Both
proofs are quite elementary. In particular, use of the method devised by Newman [24] and
Korevaar [14], as in [4], simplifies the proofs given in [3], [5], [15], [18]. In Section 4, we extend
Theorem 5 to general Laplace transforms, thereby generalizing results in [5] and [15] involving
cut-off operators.

2. NECESSARY CONDITION FOR STABILITY

In this section we show Proposition 3 (and thus the implication (b)⇒(c) of Theorem 1). Let

G(ξ) = m−1
1r

(
1

2(ξ + 1)

)
if ξ > 0 and

1
2(ξ + 1)

≤ m1(0),

G(ξ) = 0 if ξ > 0 and
1

2(ξ + 1)
> m1(0).

Under the assumptions of Proposition 3, we will show that iR ⊂ ρ(A) and

∀τ ∈ R, ‖(iτ −A)−1‖ ≤ 1 + 2C̃G(|τ |),

where C̃ is given by (1).
We denote by σr(A) the residual spectrum of A, which is the set of z ∈ C such that the range

of A − z is not dense in B. It is known that z ∈ σr(A) if and only if z is an eigenvalue of the
adjoint A∗. Let us first show:

σr(A) ∩ iR = ∅.
Indeed assume that iτ ∈ σr(A) for some τ ∈ R. Let φ be an eigenfunction of A∗ for the eigen-
value iτ . Let u0 ∈ B such that (φ, u0) 6= 0. If u(t) = e−tAu0

∀t > 0,
d

dt

[
eitτ (φ, u(t))

]
= eitτ (−A∗φ + iτφ, u(t)) = 0,

which contradicts the fact that e−tA is strongly stable.
Let u0 ∈ D(A), τ ∈ R and f0 = (A− iτ)u0. Let

v(t) = e−itτu0.

Then
∂tv + Av = e−itτ (A− iτ)u0 = e−itτf0, v(0) = u0.

By the Duhamel formula

v(t) = e−tAu0 +
∫ t

0
e(s−t)Ae−isτf0 ds.

By the boundedness of the semi-group and the definition of m1,

‖u0‖ = ‖v(t)‖ ≤ m1(t)‖(1 + A)u0‖+ C̃t‖f0‖ ≤ m1(t)
[
(|τ |+ 1)‖u0‖+ ‖f0‖

]
+ C̃t‖f0‖.

Apply the preceding inequality with t = G(|τ |). In particular

m1(t)(|τ |+ 1) ≤ 1
2
,

which yields

(12)
1
2
‖u0‖ ≤

(
1

2(|τ |+ 1)

)
‖f0‖+ C̃G(|τ |)‖f0‖ ≤

(
1
2

+ C̃G(|τ |)
)
‖f0‖.
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Recall that σ(A) is the union of σr(A) and σa(A), where the set σa(A) of approximate eigen-
values is the set of λ such that there exists a sequence {xn}n ∈ BN with ‖xn‖ = 1 and (A−λ)xn

tends to 0 (see e.g. [11, Lemma IV 1.9]). By (12), iτ /∈ σa(A), and, as we have already shown
that iτ /∈ σr(A) we get that iτ ∈ ρ(A). Furthermore, (12) also gives

(13)
∥∥(iτ −A)−1

∥∥ ≤ 1 + 2C̃G(|τ |),

which concludes the proof of Proposition 3. �

3. SUFFICIENT CONDITION FOR STABILITY

In this section we prove Theorem 5. We use the elementary method devised by Newman [24]
and Korevaar [14], exactly as in [4]. This involves a partial inversion of a Laplace transform by
means of a finite contour integral, but now we estimate the terms more precisely. We obtain the
desired result by optimizing the choice of a parameter R which is the radius of a semicircular
part of the contour.

By (5), it suffices to prove (11) for k = 1. Let t ≥ 0 and R > 0, and let γ be the contour
consisting of the right-hand half of the circle |z| = R and any path γ′ in {z ∈ ρ(−A) : Re z < 0}
from iR to −iR. By Cauchy’s Theorem,

e−tAA−1 =
1

2πi

∫
γ

(
1 +

z2

R2

)
(z + A)−1e−tA dz

z
.

We first show:

(14)
∥∥e−tAA−1

∥∥ ≤ 2C̃

R
+

1
2π

∥∥∥∥∫
γ′

(
1 +

z2

R2

)
(z + A)−1 etz

z
dz

∥∥∥∥ .

The proof is exactly as in [4, p.40]. We sketch it for the sake of completeness. If z = Reiθ,
−π/2 < θ < π/2, we have, by (1),∥∥(z + A)−1e−tA

∥∥ =
∥∥∥∥etz

∫ +∞

t
e−(z+A)s ds

∥∥∥∥ ≤ C̃

R cos θ
.

Noticing that
∣∣1 + z2/R2

∣∣ = 2| cos θ|, we get the bound

(15)

∥∥∥∥∥
∫
|z|=R
Re z>0

(
1 +

z2

R2

)
(z + A)−1e−tA dz

z

∥∥∥∥∥ ≤ 2πC̃

R
.

Next, define the analytic function of z

(16) ht(z) =
∫ t

0
e(t−s)ze−sAds = (z + A)−1etz − (z + A)−1e−tA.

Cauchy’s Theorem and similar estimate as for (15) yield

(17)
∥∥∥∥∫

γ′

(
1 +

z2

R2

)
ht(z)

dz

z

∥∥∥∥ =

∥∥∥∥∥
∫
|z|=R
Re z<0

(
1 +

z2

R2

)
ht(z)

dz

z

∥∥∥∥∥ ≤ 2πC̃

R
.

Together with (16) and (17), we get the estimate (14).
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By means of standard Neumann series, we may take γ′ to be the union of γ0, γ+ and γ−,
where

γ0(τ) = − 1
2M(|τ |)

+ iτ (−R ≤ τ ≤ R),

γ±(s) = s± iR (−(2M(R))−1 ≤ s < 0).

Although γ0 may not be piecewise smooth, it can be approximated by smooth paths and (14)
remains valid. Moreover, ∥∥(γ0(τ) + A)−1

∥∥ ≤ 2M(|τ |),∥∥(γ±(s) + A)−1
∥∥ ≤ 2M(R).

Now assume that R > 1. On γ±, |1 + z2/R2| ≤ C/R, so we can estimate the norms of the
integral in (14) over γ± by

C

∫ (2M(R))−1

0

1
R

M(R)
e−ts

R
ds ≤ CM(R)

R2t
,

where C is a constant depending only on M . On γ0, 1 + z2/R2 and 1/z are bounded indepen-
dently of R, and |etz| ≤ e−t/2M(R). The length of γ0 is at most 2(M(0) + R). Hence, we can
estimate the norm of the integral over γ0 by

CM(R)(1 + R)e−t/2M(R),

where again C depends only on M .
Thus we have the estimate

‖e−tAA−1‖ ≤ C

(
1
R

+
M(R)
R2t

+ M(R)(1 + R)e−t/2M(R)

)
≤ C

(
1
R

+
M(R)
R2t

+
(1 + M(R))2(1 + R)2

R
e−t/2M(R)

)
.

Here, C depends on C̃ as well as M . Given t > 4Mlog(1), choose R = M−1
log (t/4) > 1. Then

M(R)
R2t

=
1

4R2 log
(
(1 + M(R))(1 + R)

) ≤ C

R
,

(1 + M(R))2(1 + R)2e−t/2M(R) = 1.

So ∥∥e−tAA−1
∥∥ ≤ C

R
=

C

M−1
log (t/4)

.

Hence,

m1(t) ≤
C‖A(1 + A)−1‖

M−1
log (t/4)

.

�
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4. LAPLACE TRANSFORMS

The proof given in Section 3 uses the semi-group property of e−tA, or equivalently the prop-
erties of the resolvent of A, at just two points. One occurrence is where the resolvent is extended
into the left half-plane by means of the Neumann series, and the other is the deduction of the
case when k > 1 from the case when k = 1.

The result of Burq [5, Théorème 3] includes cut-off operators which destroy the semi-group
property. In this section, we shall give a version of Theorem 5 for Laplace transforms of
bounded functions, and decay results in the spirit of [5] (see Corollary 11 and Proposition 12).

We will have to assume that the Laplace transform extends to a suitable region with suitable
bounds. Then the argument of Section 3 for k = 1 needs no significant changes. However
further estimates are needed for the higher-order cases.

Let f : [0,∞) → B be a bounded measurable function with Laplace transform f̂ defined on
the right half-plane in C. Let M : [0,∞) → (0,∞) be a continuous increasing function. We
assume throughout this section that f̂ has a holomorphic extension to the region{

z ∈ C : Re z > − 1
M(| Im z|)

}
such that ∥∥∥f̂(z)

∥∥∥ ≤ M(| Im z|)
throughout that region. Let F0 = f and

Fk(t) =
1

(k − 1)!

∫ t

0
(t− s)k−1f(s) ds, t ≥ 0, k ≥ 1.

Note that

Fk(t) =
∫ t

0
Fk−1(s) ds, F̂k(z) =

f̂(z)
zk

.

Theorem 10. Let k ∈ N∗. Then there are constants Ck, Tk, depending only on k, ‖f‖∞ and M , such
that

(18) ∀t ≥ Tk,

∥∥∥∥∥∥Fk(t)−
k−1∑
j=0

tj

j!
f̂ (k−1−j)(0)

∥∥∥∥∥∥ ≤ Ck(
M−1

log

(
t

Ck

))k
.

Proof. The proof will be by induction on k. For k = 1, the proof is very similar to Theorem 5.
Let

gt(z) =
∫ t

0
e−zsf(s) ds,

so that F1(t) = gt(0)− f̂(0). Let R > 1 and γ′ be as in the proof of Theorem 5. Then

F1(t) =
1

2πi

∫
|z|=R
Re z>0

(
1 +

z2

R2

) (
gt(z)− f̂(z)

)
ezt dz

z
(19)

+
1

2πi

∫
|z|=R
Re z<0

(
1 +

z2

R2

)
gt(z)ezt dz

z
− 1

2πi

∫
γ′

(
1 +

z2

R2

)
f̂(z)ezt dz

z
.

Now, similarly to Section 2 or as in [2, pp.276,277] (the estimation of I1(t) and I4(t)) but ignoring
terms involving η or ε, the norms of each of the first two terms can be estimated by ‖f‖∞/R;
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in fact, the first term can be estimated by sups≥t ‖f(s)‖/R. The norm of the third term can be
estimated exactly as in the proof of Theorem 5 and the rest of that proof is unchanged.

Now suppose that (18) holds for k = 1, . . . , n. For simplicity of presentation, assume first
that

(20) f̂ (j)(0) = 0, j = 0, 1, . . . , n.

Then F̂n(z) = f̂(z)/zn extends holomorphically to the same region as f̂ , with the same bounds
(up to a constant multiple). In particular, (19) holds with f replaced by Fn, F1 replaced by Fn+1,
and gt(z) =

∫ t
0 e−zsFn(s) ds. For t > Tn, the first term in the resulting expression for Fn+1(t) is

estimated by
sups≥t ‖Fn(s)‖

R
≤ Cn

RM−1
log

(
t

Cn

)n ,

by the inductive hypothesis. By repeated integration by parts,

eztgt(z) =
∫ t

0
ez(t−s)Fn(s) ds

= −Fn(t)
z

+
1
z

∫ t

0
ez(t−s)Fn−1(s) ds

= −
n∑

j=1

Fj(t)
zn+1−j

+
1
zn

∫ t

0
ez(t−s)f(s) ds.

By the inductive hypothesis and a simple estimate for the final integral, when z = Reiθ and
t > max(T1, . . . , Tn),∥∥eztgt(z)

∥∥ ≤ n∑
j=1

Cj

Rn+1−j
(
M−1

log

(
t

Cj

))j
+

‖f‖∞
Rn+1| cos θ|

.

As in [2, p.277] (the estimation of I4(t)), it follows that the second term in the expression for
Fn+1(t) can be estimated by

n∑
j=1

Cj

Rn+1−j
(
M−1

log

(
t

Cj

))j
+
‖f‖∞
Rn+1

.

Finally the third term can be estimated as for f but using the estimate ‖F̂n(z)‖ ≤ M(R)/Rn on
γ±. We conclude that

‖Fn+1(t)‖ ≤
Cn

RM−1
log

(
t

Cn

)n +
n∑

j=1

Cj

Rn+1−j
(
M−1

log

(
t

Cj

))j
+
‖f‖∞
Rn+1

+ C
M(R)
Rn+2t

+ C
(1 + M(R))2(1 + R)2

R
e−t/2M(R),

for some C. Let Cn+1 = max(C1, . . . , Cn, 2(n + 2)). For sufficiently large t, we may choose
R = M−1

log (t/Cn+1). After increasing Cn+1 if necessary, we obtain (18) for k = n + 1, under the
assumptions (20) on f .
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For a general f , let h : [0,∞) → B be a measurable function of compact support such that

ĥ(j)(0) = f̂ (j)(0), j = 0, 1, . . . , n.

Applying the previous special case to f − h gives (18). This completes the proof by induction.
�

We deduce from Theorem 10 the following generalization of Theorem 5.

Corollary 11. Let e−tA be a bounded semi-group on a Banach space B and let T1 and T2 be bounded
operators on B. Let M : [0,∞) → (0,∞) be continuous and increasing. Suppose that T1(z + A)−1T2

has a holomorphic extension G to the region {z ∈ C : Re z > −1/M(| Im z|)} and suppose that
‖G(z)‖ ≤ M(| Im z|) throughout the region. Then for each k ≥ 1 there exists Ck such that

(21)
∥∥∥T1e

−tA(1 + A)−kT2

∥∥∥ ≤ Ck(
M−1

log

(
t

Ck

))k

for all sufficiently large t.

Proof. For simplicity, we will give the proof only for k = 1. The general case follows in a similar
way from Theorem 10, but one needs more complicated forms of the resolvent identity. We
remark that if A is invertible, a version of (21), with (1+A)−k replaced by A−k, can be obtained
more directly from Theorem 10 by taking f(t) = T1e

−tAT2x where x ∈ X with ‖x‖ = 1.
For such x, let

f(t) =
d

dt

(
T1e

−tA(1 + A)−1T2x
)

= T1e
−tA

(
(1 + A)−1 − 1

)
T2x.

For Re z > 0 and z 6= 1, the resolvent identity gives

f̂(z) = T1

(
(z + A)−1(1 + A)−1 − (z + A)−1

)
T2x

=
z

1− z
G(z)x− 1

1− z
T1(1 + A)−1T2x.

This formula provides a holomorphic extension of f̂ to the same region as G satisfying ‖f̂(z)‖ ≤
cM(| Im z|) throughout the region, where c is independent of x. Moreover∫ t

0
f(s) ds = T1e

−tA(1 + A)−1T2x− T1(1 + A)−1T2x = T1e
−tA(1 + A)−1T2x + f̂(0).

Thus (21) follows from Theorem 10. �

Let us give a typical example satisfying the assumptions of Corollary 11. Consider the semi-
group associated to the linear wave equation outside a compact obstacle of the Euclidian space
RN , N ≥ 2, with Dirichlet boundary conditions, and assume that T1 and T2 are multiplications
by cut-off functions. When the dimension N is odd, the assumptions of Corollary 11 are satis-
fied with M(R) = CeCR for some C > 0 (see [5]) and, under a non-trapping assumption on the
obstacle, with a constant function M (see the classical works [22, 23] and references therein, as
well as [31] for more general geometries).

If the dimension N is even, the holomorphic extension of the resolvent associated to the
preceding example admits a singularity at z = 0, and the assumptions of Corollary 11 are no
longer satisfied. The proofs of Theorem 10 and Corollary 11 adapt readily to this case, but it is
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difficult to write a nice general result for all k. We conclude this work by giving a statement in
the case k = 1, which includes the preceding semi-group for even dimension and generalizes [5,
Théorème 3], in the case k = 1, to non-logarithmic decay and general Banach spaces. The proof
uses a straightforward adjustment of the statement and proof of the case k = 1 in Theorem 10
and we omit it.

Consider as before a function M : [0,∞) → (0,∞) which is continuous and increasing. Let
µ : R → [0,∞) be a continuous function which admits only a finite number of zeros, and such
that

∃τ0 > 0, |τ | ≥ τ0 =⇒ µ(τ) =
1

M(|τ |)
.

Proposition 12. Let e−tA be a bounded semi-group on a Banach space B and let T1 and T2 be bounded
operators on B. Suppose that T1(z + A)−1T2 has a holomorphic extension G to the region {z ∈ C :
Re z > −µ(| Im z|)} and suppose that ‖G(z)‖ ≤ M(| Im z|) throughout the region. Then there exists
C > 0 such that ∥∥T1e

−tA(1 + A)−1T2

∥∥ ≤ C

M−1
log

(
t
C

) +
∫ +τ0

−τ0

M(|τ |)e−tµ(τ)dτ.

for all sufficiently large t.
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