Mathématiques pour Ingénieur

L. El Alaoui

email: elalaoui@math.univ-paris13.fr

https://www.math.univ-paris13.fr/ elalaoui/PageMPI/MPI.html

bureau : D318

Institut Galilée - Université Paris 13

Septembre 2016 - Janvier 2017

Déroulement

- Enseignements
 - ▶ 17 séances de cours magistraux de 1h30,
 - 24 séances de travaux dirigés de 1h30,
- Contrôle continu (interrogations en amphi et en td)
- Deux partiels :
 - ▶ lundi 24 octobre 2016,
 - ▶ lundi 16 janvier 2017.
- Note minimale: 09/20!
- Présence obligatoire en Cours et Tds.

Plan du cours

Rappels

- 1. Suites, Séries, Développement de Taylor
- 2. Fonctions de plusieurs variables, calcul d'extrema

2. Approximation de fonctions

- 2.1 Interpolation polynomiale
- 2.2 Interpolation par splines

3. Résolution de systèmes linéaires

- 3.1 Conditionnement
- 3.2 Décomposition Cholesky, LU

4. Résolution numérique d'équations non linéaires

- 4.1 Méthode de la dichotomie
- 4.2 Méthode de point fixe
- 4.3 Méthode de Newton

5. Intégration et Équations différentielles

- 5.1 Méthodes d'approximation d'une intégrale
- 5.2 Méthode de résolution approchés d'une équation différentielle

Références bibliographiques

• Analyse :

- F. Monna et G. Monna, Suites et séries de fonctions Exercices corrigés avec rappels de cours, Broché.
- J-J. Colin, J-M. Morvan et R. Morvan, Fonctions usuelles: Exercices corrigés avec rappels de cours, Broché.
- ▶ J-M. Monier, Cours de mathématiques Analyse PCSI-PTSI Cours et exercices corrigés,
- www.bibmath.fr (exercices corrigés)
- les livres de l'auteur J-M. Morvan http://www.amazon.fr/Jean-Marie-Morvan/e/B004N21TGU et plus généralement dans la collection cepadues (www.cepadues.com)

Analyse numérique :

- A. Fortin, Analyse numérique pour ingénieurs, Broché.
- ► F. Filbet, Analyse numérique algorithme et étude mathématique. Cours et exercices corrigés, Dunod.
- Pour aller plus loin . . .
 - ▶ W. Rudin, *Principes d'analyse mathématique : cours et exercices*, Dunod.
 - ▶ M. Lefebvre, *Equations différentielles*, Collection Paramètres .
 - ▶ Allaire G. et Kaber S.M., Algèbre linéaire numérique : Cours et exercices, Ellipses.
 - ▶ Demailly J-P., *Analyse numérique et équations différentielles*, Presses Universitaires de Grenoble.
 - Quarteroni A., Sacco R., Saleri F., Méthodes numériques pour le calcul scientifique : programmes en MATLAB, Springer.

1. Rappels

1.1 Suites réelles

Où trouve-t-on des suites?

- Approximation des nombres réels :
 - Approcher des réels tels que $\sqrt{2}$, π ou de nombres définis comme solution d'une équation ($\mathrm{e}^{\mathrm{x}}=\mathrm{x}-3$). Le but est alors de trouver les "meilleures" suites de réels, c'est-à dire celles qui convergent le plus vite vers ces nombres ...
- Description du comportement de phénomènes dont l'état, à un moment donné (mois, année), est représenté par un nombre réel.
 - "Un homme met un couple de lapins dans un lieu isolé de tous les côtés par un mur. Combien de couples obtient-on en un an si chaque couple engendre tous les mois un nouveau couple à compter du troisième mois de son existence? "(Liber abaci, ouvrage de Leonardo Fibonacci écrit en 1202)

Définition 1

Une suite de nombre réels est une application de $\mathbb N$ dans $\mathbb R$,

$$(u_n): \mathbb{N} \longrightarrow \mathbb{R}$$

 $n \longrightarrow u_n.$

- suite arithmétique de raison $a: u_0 \in \mathbb{R}, \forall n \in \mathbb{N}, u_{n+1} = u_n + a$ avec $a, r \in \mathbb{R}$,
- suite géométrique de raison $r: u_0 \in \mathbb{R}, \forall n \in \mathbb{N}, u_{n+1} = r u_n \text{ avec } a \in \mathbb{R},$
- suite puissance : $u_n = n^{\alpha}$ avec $n \ge 1$ et $\alpha \in \mathbb{R}$,

D'une suite donnée on peut prendre dans l'ordre certains de ses termes, on dit alors qu'on en extrait une sous-suite.

Définition 2

Soit $\Phi: \mathbb{N} \longrightarrow \mathbb{N}$ une application strictement croissante. On dit que (v_n) est une suite extraite (ou une sous-suite) de (u_n) si pour tout $n \in \mathbb{N}$, $v_n = u_{\Phi(n)}$.

EXEMPLE: $\Phi(n) = 2n, v_n = u_{2n}; \Phi(n) = 2^n, v_n = u_{2n}.$

Définition 3

i) Une suite (u_n) est majorée si

$$\exists M \in \mathbb{R}, \forall n \geq 0, \quad u_n \leq M.$$

ii) Une suite (u_n) est minorée si

$$\exists m \in \mathbb{R}, \forall n \geq 0, \quad u_n \geq m.$$

iii) Une suite (u_n) est bornée si elle est majorée et minorée, i.e.

$$\exists M \geq 0, \forall n \geq 0, \quad |u_n| \leq M.$$

Définition 4

i) Une suite (u_n) est croissante à partir d'un certain rang si

$$\exists N \in \mathbb{N}, \ \forall n \geq N, \quad u_{n+1} \geq u_n.$$

ii) Une suite (u_n) est décroissante à partir d'un certain rang si

$$\exists N \in \mathbb{N}, \ \forall n \geq N, \quad u_{n+1} \leq u_n.$$

iii) Une suite (u_n) est stationnaire si à partir d'un certain rang elle est constante.

$$\exists N \in \mathbb{N}, \forall n > N, \quad u_n = u_N.$$

- iv) Une suite est (strictement) monotone si elle est (strictement) croissante ou (strictement) décroissante.
- v) Une suite (u_n) est périodique à partir d'un certain rang si

$$\exists N \in \mathbb{N}, \exists p \in \mathbb{N}^*, \forall n > N, \quad u_n = u_{n+p}.$$

EXEMPLE.

- $u_n = E(\frac{4}{n+1})$. La suite (u_n) est constante à partir du rang $n_0 = 4$.
- La suite des décimales de $\frac{1}{90}$ est constante à partir du rang $n_0 = 2$.
- $u_n = |n-5|$. La suite (u_n) est croissante à partir du rang $n_0 = 5$.
- La suite des décimales de $\frac{53}{2475}$ est périodique, de période p=2 à partir du rang $n_0=3$.

Les opérations (addition, multiplication par un scalaire, multiplication, comparaison) sur les réels s'étendent aux suites en des opérations terme à terme.

On dit que la suite (u_n) converge vers un réel ℓ (sa limite) si tout intervalle ouvert contenant ℓ , contient aussi tous les u_n pour n assez grand. Autrement dit, à partir d'un certain rang u_n est proche de ℓ .

Définition 5

On dit que (u_n) converge vers $\ell \in \mathbb{R}$ si

$$\forall \epsilon > 0, \ \exists N(\epsilon), \ \forall n \geq N(\epsilon), \ |u_n - \ell| < \epsilon.$$

On note $u_n \to \ell$ ou $\lim_{n \to +\infty} u_n = \ell$ ou $\lim_n u_n = \ell$.

Le réel ℓ s'appelle limite de la suite.

EXEMPLE.
$$u_n = 1 + \frac{\sin(n)}{n}$$
.

La suite (u_n) converge vers $\ell=1$:

$$|u_n-\ell|\leq \left|\frac{\sin(n)}{n}\right|\leq \frac{1}{n}.$$

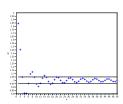


FIGURE: Les 50 premiers termes de la suite (u_n) .

Définition 6

La suite (u_n) tend vers $+\infty$ si

$$\forall A > 0, \ \exists n_0 \in \mathbb{N}, \ \forall n \geq n_0, \quad u_n > A.$$

La suite (u_n) tend vers $-\infty$ si

$$\forall A > 0, \ \exists n_0 \in \mathbb{N}, \ \forall n \geq n_0, \quad u_n < -A.$$

On note
$$\lim_{n\to +\infty}u_n=+\infty$$
 ou $u_{n\longrightarrow +\infty}$ (resp. $\lim_{n\to +\infty}u_n=-\infty$ ou $u_{n\longrightarrow -\infty}$)

EXEMPLE.

- Suite arithmétique : $u_n = u_0 + an$.
 - Si a > 0, (u_n) tend vers $+\infty$.
- Suite géométrique : $u_n = u_0 r^n$.
 - Si $u_0 = 0$, (u_n) est constante.
 - Si $r \le -1$, et $u_0 \ne 0$, (u_n) ne converge pas.
- Si -1 < r < 1, (u_n) tend vers 0
- Si r = 1, (u_n) est constante.

ightharpoonup Si a=0, (u_n) est

constante.

Si r > 1 et $u_0 > 0$, (u_n) tend vers $+\infty$.

▶ Si a < 0, (u_n) tend vers

 $-\infty$.

Si r > 1 et $u_0 < 0$, (u_n) tend vers $-\infty$.

- Suite de Riemann $u_n = n^{\alpha}$.
 - Si $\alpha > 0$, (u_n) tend vers $+\infty$.
- Si $\alpha = 0$, (u_n) est constante (tend vers 1).

• Si α < 0, (u_n) tend vers 0.

Proposition 1

- Si (u_n) est une suite convergente, alors sa limite est unique.
 - Toute suite convergente est bornée.
 - Une suite majorée et croissante est convergente.
- Une suite minorée et décroissante est convergente.
- Une suite croissante non majorée tend vers $+\infty$.

Propriétés

Soient (u_n) et (v_n) deux suites convergentes de limite respective ℓ et ℓ' .

i)
$$\forall \lambda, \mu \in \mathbb{R}$$
, $\lim_{n} (\lambda u_n + \mu v_n) = \lambda \ell + \mu \ell'$,

ii)
$$\lim_{n} (u_n v_n) = \ell \ell'$$
,

iii) si pour tout
$$n, u_n \neq 0$$
 et $x \neq 0, z_n = \frac{1}{u_n}$ alors $\lim_n z_n = \frac{1}{\ell}$,

iv)
$$\lim_{n} |u_n| = |\ell|$$
,

v) si $\ell \neq 0$, u_n est du signe de ℓ à partir d'un certain rang,

POINT FIXE

Théorème 1

Soient (u_n) une suite convergente d'éléments d'un intervalle $\mathcal I$ de $\mathbb R$ dont la limite ℓ appartient à $\mathcal I$, et ϕ une fonction continue en ℓ . Alors la suite $(\phi(u_n))$ est convergente et a pour limite $\phi(\ell)$.

On déduit de ce théorème que si une suite vérifiant la relation de récurrence $u_{n+1}=\phi(u_n)$ est convergente et a pour limite ℓ et si est ϕ est continue en ℓ , on a alors : $\ell=\phi(\ell)$.

Définition 7

Un tel point ℓ est dit point fixe de ϕ .

Remarque.

- Si la fonction continue n'a pas de point fixe alors une suite, qui vérifie la relation $u_{n+1} = \phi(u_n)$, ne peut avoir de limite;
- \bullet en revanche si ϕ a un point fixe cela n'entraı̂ne pas que la suite admette ce point comme limite.
- Un point fixe, de coordonnées (ℓ,ℓ) , est le point d'intersection du graphe de ϕ et de la première bissectrice.

Comparaison de suites

Proposition 2

Soient (u_n) et (v_n) deux suites de réels convergentes.

- Si pour tout $n \in \mathbb{N}$, $u_n \le v_n$, alors : $\lim_n u_n \le \lim_n v_n$.
- Soit v_n tendant vers 0. Si pour tout $n \in \mathbb{N}$, $|u_n| \leq |v_n|$, alors (u_n) tend vers 0.

Corollaire 1

Soient (u_n) , (v_n) et (w_n) trois suites de réels telles que (u_n) et (w_n) convergent vers la même limite ℓ , et pour tout $n \in \mathbb{N}$, $u_n \le v_n \le w_n$. Alors (v_n) converge vers ℓ .

EXEMPLE.
$$u_n = \frac{n + (-1)^n}{n + 2}$$
, $\lim_n u_n = 1$.

Proposition 3

Soient (u_n) et (v_n) deux suites de réels telles que pour tout $n \in N$, $u_n \le v_n$.

- Si u_n tend vers $+\infty$ alors v_n tend vers $+\infty$.
- Si v_n tend vers $-\infty$ alors u_n tend vers $-\infty$.

Définition 8

Soient (u_n) et (v_n) deux suites de réels.

• On dit que la suite (u_n) est dominée par la suite (v_n) si :

$$\exists M \in \mathbb{R}, \ \forall n \in \mathbb{N}, \ |u_n| \leq M|v_n|.$$

On écrit $u_n = \mathcal{O}(v_n)$, qui se lit " u_n est un grand \mathcal{O} de v_n ".

• On dit que la suite (u_n) est négligeable devant la suite (v_n) si :

$$\forall \varepsilon > 0, \exists n_0, \forall n > n_0, |u_n| < \varepsilon |vn|.$$

On écrit $u_n = o(v_n)$, qui se lit " u_n est un petit o de v_n ".

• On dit que la suite (u_n) est équivalente à la suite (v_n) si :

$$\forall \varepsilon > 0, \ \exists n_0, \ \forall n \geq n_0, \ |u_n - v_n| \leq \varepsilon |v_n|.$$

On écrit $u_n \sim v_n$, qui se lit " u_n est équivalent à v_n ".

Proposition 4

Soient (u_n) et (v_n) deux suites de réels et on suppose que les v_n sont tous non nuls.

- La suite (u_n) est dominée par (v_n) si et seulement si la suite $(\frac{u_n}{u_n})$ est bornée.
- La suite (u_n) est négligeable devant (v_n) si la suite $(\frac{u_n}{v_n})$ converge vers 0.
- Les suites (u_n) et (v_n) sont dites équivalentes si la suite $(\frac{u_n}{v_n})$ tend vers 1.

EXEMPLE.
$$\sqrt{4n^2+1} = \mathcal{O}(n)$$
, $\sqrt{4n^2+1} = o(n^2)$, $\sqrt{4n^2+1} \sim 2n$.

Proposition 5

Soient $(u_n), (v_n), (u'_n), (v'_n)$ des suites de réels.

- i) $u_n \sim v_n$ est une relation d'équivalence dans l'ensemble des suites réelles.
- ii) Si $u_n \sim v_n$ et v_n est convergente, alors u_n est convergente et $\lim_n u_n = \lim_n v_n$.
- iii) Si $u_n \sim v_n$ et v_n est ne converge pas, alors u_n est ne converge pas.
- iv) Si $u_n \sim v_n$, alors $u_n v_n = o(u_n) = o(v_n)$.
- v) Si $u_n \sim v_n$ et $u'_n \sim v'_n$, alors $u_n u'_n \sim v_n v'_n$ et $\frac{u_n}{u'_n} \sim \frac{v_n}{v'_n}$ si $u'_n \neq 0$ et $v'_n \neq 0$.
- vi) Si $u_n = o(v_n)$ alors $u_n + v_n \sim z_n$.

Attention! En général, $u_n \sim u_n'$ et $v_n \sim v_n'$ n'implique pas $u_n + v_n \sim u_n' + v_n'$.

Exemple.
$$u_n = \frac{\sqrt{n^2 + n + 1}}{\sqrt[3]{8n^3 + n^2}}, \quad \lim_n u_n = \frac{1}{2}.$$

 $u_n = n + (-1)^n$, $v_n = -n + (-1)^n$, mais $u_n + v_n$ n'est pas équivalent à 0!

VITESSE DE CONVERGENCE

Définition 9

Soit (u_n) une suite de réels convergeant vers un réel ℓ . Si la suite $(\frac{|u_{n+1}-\ell|}{|u_n-\ell|})$ est convergente de limite λ , on dit que la convergence de la suite (u_n) vers ℓ est :

- lente, lorsque $\lambda = 1$,
- géométrique de rapport λ , lorsque $\lambda \in]0,1[$,
- rapide, lorsque $\lambda = 0$.

Le réel λ , lorsque qu'il existe, est appelé coefficient de convergence de la suite.

REMARQUE. Si la suite $(\frac{|u_{n+1}-\ell|}{u_n-\ell})$ converge, sa limite λ est nécessairement dans [0,1].

EXEMPLE. $u_n = \frac{1}{n^b}$, b > 0. La suite (u_n) converge lentement.

 $u_n = a^n$, 0 < a < 1. La suite (u_n) converge géométriquement de rapport a.

1.2 SÉRIES NUMÉRIQUES

Paradoxe de Zenon d'Elée : Achille ne rattrape jamais la tortue après laquelle il court!
 Supposons qu'Achille et la tortue courrent le long d'une ligne droite, Achille avançant à 10m.s⁻¹, la tortue à 1m.s⁻¹ et la tortue partant avec 100m d'avance.
 Le temps (en seconde) nécessaire est :

$$10+1+\frac{1}{10}+\frac{1}{100}+\frac{1}{1000}+\cdots$$

Il s'agit d'une somme comportant une infinité de termes ... qui vaut un nombre fini!

 les séries réelles permettent de construire des nombres comme e qui ne sont ni rationnels ni même algébriques et d'en calculer des valeurs approchées.
 Les séries de fonctions conduisent à définir de nouvelles fonctions. Les séries entières et les séries de Fourier, en particulier.

Définition 10

Soit (u_n) une suite de nombres réels. On associe à cette suite la suite (S_n) définie par

$$S_n = \sum_{k=0}^n u_k.$$

La suite (S_n) s'appelle la série de terme général u_n et S_n est appelée la somme partielle d'ordre n de la série.

On notera simplement $(\sum u_n)$ cette suite.

Définition 11

- La série $(\sum u_n)$ converge si la suite (S_n) converge et diverge sinon. Si la série converge alors $s = \lim_n S_n$ est appelée la somme de la série et on note $s = \sum_{n=0}^{+\infty} u_n$.
- Soit $(\sum u_n)$ une série convergente de somme s. On appelle le reste d'ordre n de la série $(\sum u_n)$, $R_n = s S_n$.

Remarque : La suite peut-être définie pour $n \ge 1$, auquel cas on utilisera le même vocabulaire.

Définition 12

La série de terme général $u_n = x^n$ est appelée série géométrique de raison x.

Proposition 6

- Si $|x| \ge 1$, la série géométrique $\sum x^n$ diverge.
- Si |x| < 1, la série géométrique $\sum x^n$ converge et sa somme vaut $\frac{1}{1-x}$.

Pour tout
$$x \in]-1,1[, \sum_{n=0}^{+\infty} x^n = \frac{1}{1-x}.$$

Proposition 7 (Linéarité)

Soient (u_n) et (v_n) deux suites réelles telles que les séries $\sum u_n$ et $\sum v_n$ sont convergentes.

Alors la série $\sum (u_n + v_n)$ est convergente et

$$\sum (u_n + v_n) = \sum u_n + \sum v_n.$$

Théorème 2 (Critère de Cauchy.)

La série $(\sum u_n)$ est convergente si et seulement si elle vérifie le critère de Cauchy

$$\forall \epsilon > 0, \ \exists N \in \mathbb{N}, \ \forall m \geq n \geq N, \quad \left| \sum_{k=n}^{m} u_k \right| < \epsilon.$$

Corollaire 2

Si $(\sum u_n)$ converge alors $\lim_n u_n = 0$.

Remarque: La réciproque est fausse.

Définition 13

Si le terme général u_n ne tend pas vers 0 on dit que la série $(\sum u_n)$ diverge grossièrement.

Théorème 3 (de comparaison.)

Soient $(\sum u_n)$ et $(\sum v_n)$ deux séries.

- i) Si à partir d'un certain rang, $|u_n| \le v_n$ et si la série $(\sum v_n)$ est convergente, alors la série $(\sum u_n)$ est convergente.
- ii) Si à partir d'un certain rang, $0 \le v_n \le u_n$ et si la série $(\sum v_n)$ est divergente, alors la série $(\sum u_n)$ est divergente.

Proposition 8

- Soient $(\sum u_n)$ et $(\sum v_n)$ deux séries de terme général **positif**. Alors si $v_n = \mathcal{O}(u_n)$ et si $(\sum u_n)$ converge alors $(\sum v_n)$ converge.
- En particulier, si $u_n \sim v_n$ les séries $(\sum u_n)$ et $(\sum v_n)$ sont de même nature.

Théorème 4 (Règle de Cauchy.)

Soit $(\sum u_n)$ une série de terme général u_n positif. S'il existe l < 1 tel qu'à partir d'un certain rang $\sqrt[n]{u_n} \le l$ alors la série $(\sum u_n)$ converge.

- En particulier si $\lim_{n} \sqrt[n]{u_n} = I$ alors
 - ullet si I < 1 la série converge,
 - si l>1 la série diverge grossièrement,
 - si l = 1, le critère ne permet pas de conclure.

Théorème 5 (Règle de d'Alembert.)

Soit $(\sum u_n)$ une série de terme général u_n positif. S'il existe

- l < 1 tel qu'à partir d'un certain rang $\frac{u_{n+1}}{u_n} \le l$ alors $(\sum u_n)$ converge.
- $l \ge 1$ tel qu'à partir d'un certain rang $\frac{u_{n+1}}{u_n} \ge l$ alors $(\sum u_n)$ diverge.

En particulier, si $\lim_{n} \frac{u_{n+1}}{u_n} = I$ et

- ullet si l<1, alors $(\sum u_n)$ converge,
- si l>1, alors $(\sum u_n)$ diverge,
- si l=1, le critère ne permet pas de conclure.

Théorème 6 (Règle d'Abel.)

Si $u_n = \alpha_n v_n$ est le terme général d'une série tel que :

- $\exists M \in \mathbb{R}, \ \forall n \in \mathbb{N}, \ |\sum_{k=0}^{n} \alpha_k| \leq M,$
- si la suite (v_n) est positive décroissante,
- si $\lim_{n} v_n = 0$,

alors la série $(\sum \alpha_n v_n)$ converge.

Corollaire 3 (Critère des séries alternées.)

Soit (v_n) une suite décroissante vers 0, alors la série $(\sum (-1)^n v_n)$ converge.

Définition 14

- La série $(\sum u_n)$ est absolument convergente si la série $(\sum |u_n|)$ est convergente.
- Une série convergente qui ne converge pas absolument est dite semi-convergente.

EXEMPLE: Les séries de terme général $\frac{(-1)^n}{n^2}$ et $\frac{\cos n}{n\sqrt{n}}$ sont absolument convergentes.

Proposition 9 (Séries de Riemann et de Bertrand.)

- La série, dite de Riemann, $(\sum \frac{1}{n^p})$ converge si et seulement si p > 1.
- La série, dite de Bertrand, $(\sum \frac{1}{n(\ln n)^p})$ converge si et seulement si p > 1.

Définition 15 (Produit de deux séries)

Soient $(\sum u_n)$ et $(\sum v_n)$ deux séries. On appelle **série produit** la série de terme général $c_n = \sum_{k=0}^n u_b v_{n-k}$ avec $n \ge 0$.

Théorème 7

Si $(\sum u_n)$ et $(\sum v_n)$ sont deux séries convergentes de somme respective A et B et si au moins l'une des deux séries est absolument convergente alors la série produit $(\sum c_n)$ converge vers C = AB.

Si les deux séries sont absolument convergentes, alors la série $(\sum c_n)$ est absolument convergente.

1.3 Séries entières

Le domaine d'application des séries entière est très vaste :

- Calcul numérique d'intégrales,
- Calcul approché de valeurs numériques de certaines fonctions (exponentielle, logarithme, ...)
- Résolution de certaines équations différentielles,
-

Définition 16

Une série entière (complexe ou réelle) est une série dont le terme général est de la forme $a_n z^n$.

 $a_0, a_1, \cdots a_n, \cdots$ (complexes ou réels) sont appelés coefficients de la série et z est une variable complex ou réelle.

La convergence d'une série entière dépend de la variable z.

Définition 17

Soit $\sum a_n z^n$ une série entière complexe ou réelle. On appelle rayon de convergence de la série entière, la quantité $R \in \mathbb{R}^+ \cup \{+\infty\}$ telle que

- si |z| < R alors $(\sum a_n z^n)$ converge absolument,
- si |x| > R alors $(\sum a_n x^n)$ diverge.

Si R > 0, l'ensemble ouvert $D = \{z \in \mathbb{C}, |z| < R\}, (\{x \in \mathbb{R}, |x| < R\})$ s'appelle le disque de convergence (intervalle ouvert de convergence).

Théorème 8

Soit $(\sum a_n x^n)$ est une série entière.

- S'il existe $\lambda = \lim_{n} \sqrt[n]{a_n}$ alors $R = \frac{1}{\lambda}$.
- S'il existe $\lambda = \lim_{n} |\frac{a_{n+1}}{a_n}|$ alors $R = \frac{1}{\lambda}$.

DÉVELOPPEMENT EN SÉRIE ENTIÈRE D'UNE FONCTION

Définition 18

Soient $\mathcal{I} \subset \mathbb{R}$, $f: \mathcal{I} \to \mathbb{R}$ et x_0 dans \mathcal{I} . On dit que f est développable en série entière en x_0 s'il existe une série entière $\sum a_n x_n$ de rayon de convergence R > 0 et un voisinage de x_0 , $\mathcal{V}(x_0)$ tels que

$$\forall x \in \mathcal{I} \cap \mathcal{V}(x_0), \quad f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n.$$

Proposition 10

Une fonction f définie au voisinage de $x_0 \in \mathbb{R}$ est développable en série entière en x_0 si, et seulement si, la fonction $w \to f(x_0 + w)$ est développable en série entière à l'origine.

Autrement dit, tout problème de développement en série entière se ramène à un problème de développement en série entière à l'origine.

DÉRIVATION ET INTÉGRATION TERME À TERME

Proposition 11

Soit $\sum a_n(x-x_0)^n$ une série entière de rayon de convergence R>0. Alors la fonction

$$f(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + a_3(x - x_0)^3 + \dots = \sum_{n=0}^{\infty} a_n(x - x_0)^n,$$

est dérivable sur l'intervalle $]x_0 - R, x_0 + R[$ et

i)
$$f'(x) = a_1 + 2a_2(x - x_0) + 3a_3(x - x_0)^2 + \dots = \sum_{n=1}^{\infty} na_n(x - x_0)^{n-1}$$
,

ii)
$$\int f(x) dx = C + a_0(x - x_0) + a_1 \frac{(x - x_0)^2}{2} + a_2 \frac{(x - x_0)^3}{3} \cdots = C + \sum_{n=0}^{\infty} a_n \frac{(x - x_0)^{n+1}}{n+1}.$$

Le rayon de convergence des séries définies en i) et ii) est R.

Proposition 12

Si f est une fonction développable en série entière en x_0 , i.e.

$$f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n, \qquad |x - x_0| < R,$$

alors

- i) f est de classe C^{∞} au voisinage de x_0 ,
- ii) les coefficients sont donnés par

$$a_n=\frac{f^{(n)}(x_0)}{n!}.$$

Ce développement est unique et est appelé série de Taylor de f en x_0 .

Remarque. Attention! Il existe des fonctions de classe C^{∞} au voisinage de x_0 qui ne sont pas développables en série entière en x_0 .

Proposition 13

Si une fonction f est développable en série entière en x_0 , alors il en est de même de toutes ses dérivées et de toutes ses primitives.

Définition 19

Soit f une fonction définie sur un intervalle ouvert $\mathcal I$ contenant un point a, dérivable n-1 fois sur $\mathcal I$, et dont la dérivée n-ième en a existe. On appelle polynôme de Taylor d'ordre n en a de f, le polynôme :

$$P_n(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \cdots + \frac{f^{(n)}(a)}{n!}(x-a)^n.$$

On appelle reste de Taylor d'ordre n en a de f, la fonction R_n qui à $x \in \mathcal{I}$ associe :

$$R_n(x) = f(x) - P_n(x).$$

Proposition 14 (Inégalité de Taylor)

Soit f une fonction de classe \mathcal{C}^{n+1} sur un intervalle \mathcal{I} , telle que $|f^{(n+1)}(x)| \leq M$ pour $|x-a| \leq \delta$. Alors le reste de Taylor d'ordre n de f en a satisfait

$$|R_n(x)| \le \frac{M}{(n+1)!} |x-a|^{n+1}, \quad \text{pour } |x-a| \le \delta.$$

Proposition 15 (Taylor Lagrange)

Soit f une fonction de classe \mathcal{C}^{n-1} sur [a,b], dont la dérivée (n-1)ième est dérivable. Il existe $c\in]a,b[$ tel que le reste de Taylor d'ordre n de f en a satisfait

$$R_n(c) = (b-a)^n \frac{f^{(n)}(c)}{n!}$$

Proposition 16 (Taylor avec reste intégral)

Soit $\mathcal I$ un intervalle ouvert contenant 0. Soit f une fonction de classe $\mathcal C^{n+1}$ sur $\mathcal I$. Alors le reste de Taylor d'ordre n de f en a satisfait

$$R_n(x) = \int_0^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt.$$

DÉVELOPPEMENTS LIMITÉS (DL)

Les DL sont un outil permettant de :

- calculer des limites.
- étudier localement une courbe.

Définition 20

Soient \mathcal{I} un intervalle ouvert, a un point de \mathcal{I} . On dit que f admet un développement limité d'ordre n en a lorsqu'il existe un polynôme P_n , de degré inf'erieur ou égal à n, tel que le reste soit négligeable devant $(x-a)^n$, i.e :

$$R_n(x) = f(x) - P_n(x) = o((x-a)^n)$$
, quand $x \to a$.

Proposition 17

Soient $\mathcal I$ un intervalle ouvert de $\mathbb R$, a un point de $\mathcal I$. Soit f une fonction définie sur $\mathcal I$. Soit g la fonction qui à h associe g(h)=f(a+h). La fonction f admet un développement limité d'ordre n en a, si et seulement si g admet un développement limité d'ordre n en a.

$$f(x) = P_n(x) + o((x-a)^n) \iff g(h) = f(a+h) = P_n(a+h) + o(h^n).$$

Proposition 18

Un développement limité, s'il existe, est unique

Théorème 9 (Taylor-Young)

Soient $\mathcal I$ un intervalle ouvert contenant x_0 . Soit f une fonction dérivable n-1 fois sur $\mathcal I$, et dont la dérivée n-ième en x_0 existe. Alors,

$$R_n(x) = o((x - x_0)^n)$$
, quand $x \to x_0$.

Proposition 19

• La fonction f admet le développement limité à l'ordre 0 en x_0 :

$$f(x)=a_0+o(1),$$

si et seulement si f est continue en x_0 et $f(x_0) = a_0$.

ullet La fonction f admet le développement limité à l'ordre 1 en x_0 :

$$f(x) = a_0 + a_1(x - x_0) + o((x - x_0)),$$

si et seulement si f est dérivable en x_0 et $f(x_0) = a_0$, $f'(x_0) = a_1$.

Pour tous les ordres supérieurs, il n'y a pas d'équivalence de cette forme. Par exemple $f(x) = x^3 \cos(1/x)$ n'admet pas de dérivées seconde en 0.

Proposition 20 (Développement limités des fonctions usuelles)

$$\exp(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + o(x^n),$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^{n-1} \frac{x^n}{n} + o(x^n),$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + o(x^{2n}),$$

$$\sin x = x - \frac{x^3}{2!} + \frac{x^5}{4!} + \dots + (-1)^n \frac{x^{2n+1}}{4!} + o(x^2)$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+1}),$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+1}),$$

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!} x^2 + \dots + \frac{\alpha(\alpha-1) \cdots (\alpha-(n+1))}{n!} x^n + o(x^n), \alpha \in \mathbb{R}^*.$$

Proposition 21 (Opérations sur les développement limités)

Soient f,g deux fonctions définies au voisinage d'un point x. Si f et g admettent chacune un développement limité d'ordre n voisinage de x_0 :

$$f(x) = a_0 + a_1(x - x_0) + \dots + a_n(x - x_0)^n + o((x - x_0)^n),$$

$$g(x) = b_0 + b_1(x - x_0) + \dots + b_n + (x - x_0)^n + o((x - x_0)^n).$$

Alors λf , f+g, et fg admettent des développement limités du même ordre qui s'écrivent

$$\lambda f(x) = (\lambda a_0) + (\lambda a_1)(x - x_0) + \dots + (\lambda a_n)(x - x_0)^n + o((x - x_0)^n),$$

$$(f + g)(x) = (a_0 + b_0) + (a_1 + b_1)(x - x_0) + \dots + (a_n + b_n)(x - x_0)^n + o((x - x_0)^n)$$

$$(fg)(x) = (a_0 b_0) + (a_0 b_1 + a_1 b_0)(x - x_0) + \dots + (a_0 b_n + a_1 b_{n-1} + \dots + a_n b_0)(x - x_0)^n + o((x - x_0)^n).$$

Remarque. La partie polynomiale du DL de la fonction f g s'obtient en ne gardant que les termes de degré inférieur ou égal à n dans le produit des partie polynomiale des DL de f et g.

Proposition 22 (Composition des développement limités)

Soient $f: \mathcal{I} \longrightarrow \mathcal{J}$ et $g: \mathcal{J} \longrightarrow \mathbb{R}$ deux fonctions. Supposons que f admet un développement limité d'ordre p au voisinage du point $x_0 \in \mathcal{I}$. Si g admet un DL d'ordre p au voisinage de $y_0 = f(x_0)$. Alors $g \circ f$ admet un DL d'ordre p au voisnage de x_0 . On écrit le DL de f au voisinage de x comme suit

$$f(x) = f(x_0) + (x - x_0)P(x - x_0) + o((x - x_0)^p),$$

avec P un polynôme de degré p-1, et on écrit le DL de g au voisinage de y comme suit

$$g(y_0) = Q((y - y_0)) + o((y - y_0)^p),$$

avec Q un polynôme de degré p. On a

$$g(f(x_0)) = Tr_p\{Q((x-x_0)P((x-x_0)))\} + o(x-x_0)^p,$$

où l'opérateur de troncature Tr_p consiste à ne conserver que les termes de degré inférieurs à p du polynôme.

Théorème 10 (Intégration et dérivation terme à terme d'un DL)

Soit $f: \mathcal{I} \longrightarrow \mathbb{R}$ une fonction dérivable.

• Si sa dérivée f' admet un DL d'ordre p au voisinage de $x_0 \in \mathcal{I}$:

$$f'(x) = c_0 + c_1(x - x_0) + \cdots + c_p(x - x_0)^p + o((x - x_0)^p),$$

alors f admet un DL d'ordre p+1 au voisinage de $x_0 \in \mathcal{I}$ qui s'écrit

$$f(x) = f(x_0) + c_0(x - x_0) + c_1 \frac{(x - x_0)^2}{2} + \cdots + c_p \frac{(x - x_0)^{p+1}}{p+1} + o((x - x_0)^{p+1}).$$

• Si f admet un développement limité d'ordre n au voisinage de x_0 et si f' admet un un développement limité d'ordre n-1 au voisinage de x_0 alors la partie polynomiale de ce dernier s'obtient en dérivant celle du développement limité de f.

Proposition 23 (position de la courbe par rapport à sa tangente en un point)

Soit $f:I \longrightarrow \mathbb{R}$ admettant un DL en $a:f(x)=c_0+c_1(x-a)+c_k(x-a)^k+o((x-a)^k)$ où k est le plus petit entier ≥ 2 tel que le coefficient de x^k soit non nul. Alors l'équation de la tangente à la courbe de f en a est :

$$y=c_0+c_1(x-a),$$

et la position de la courbe par rapport à la tangente pour $\frac{x \text{ proche de } a}{x}$ est donnée par le signe f(x) - y, c'est-à-dire le signe de $c_k(x - a)^k$.

Définition 21 (DL en l'infini)

Soit f une fonction définie sur un intervalle $I =]x_0, +\infty[$. On dit que f admet un DL en $+\infty$ à l'ordre n s'il existe des réels c_0, c_1, \cdots, c_n tels que

$$f(x) = c_0 + \frac{c_1}{x} + \cdots + \frac{c_n}{x^n} + o(\frac{1}{x^n}).$$

Proposition 24 (Position de la courbe par rapport à une asymptote)

On suppose que f admet un DL en $+\infty$ (ou en $-\infty$) : $f(x) = c_0 + \frac{c_1}{x} + \frac{c_k}{x^k} + o(\frac{1}{x^k})$ où k est le plus petit entier ≥ 2 tel que le coefficient de $\frac{1}{x^k}$ soit non nul. Alors, $\lim_{x \to +\infty} f(x) - (c_0x + c_1) = 0$ (resp. $x \to -\infty$). La droite $y = c_0x + c_1$ est une asymptote à la courbe de f en $+\infty$ (ou $-\infty$) et la position de la courbe par rapport à l'asymptote est donnée par le signe de f(x) - y, c'est-à-dire le signe de f(x) - y