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Abstract

Shallow water equations are a useful analogue
of the fully compressible Euler equations for
atmospheric model development

Linear properties (propagating and stationary
modes) play an important physical role in the
behaviour of the atmosphere

Using the Atmospheric Dynamical Core
Testbed (ADCoT, described below), the linear
properties of two finite-difference schemes
(TRiSK: Ringler, Thuburn, Klemp &
Skamarock 2010 and HR95: Heikes & Randall
1995) on the f-sphere are compared to those
of the continuous equations

ADCOT: Design & Implementation

Horizontal meshes represented using MOAB
mesh library

Currently supported meshes: Perfect planar
square and hexagonal; geodesic (tweaked)
spherical meshes (working is ongoing to add
cubed-sphere and additional types of geodesic
meshes)

Figure: Sample geodesic grid

Variables (scalar, vector, vector component)
placed arbitrarily on mesh elements

Operators defined as sparse matrices (linear)
or algebraic combinations of vector operators
and (sparse) matrix multiplication (non-linear)

~∇ · u→ D~u

~∇(
u2

2
+ gh)→ G(K~u2 + g~h)

Uses MOAB, PETSc and SLEPc to provide
grid management, linear/eigenvalue solvers
and I/O; main code written in Fortran 95

Code generation using Cheetah enables fast
prototyping and flexibility

Analysis packages are written in
Python/Fortran 95 using the NFFT, PyNGL,
Numpy, Scipy and Matplotlib libraries

Adams-Bashford and Runge-Kutta explicit
time stepping (implicit and semi-implicit time
stepping is planned as well)

TRiSK and HR95 horizontal discretizations
(more to come!)

Intended primarily for single moment
discretizations

Linear Shallow Water Equations on an f-sphere

Momentum Form
∂~u

∂t
= −fk̂ × ~u− g~∇h

∂h

∂t
= −H(~∇ · u)

Vorticity-Divergence Form
∂ζ

∂t
= −fδ

∂δ

∂t
= fζ − g~∇2h

∂h

∂t
= −Hδ

Propagating Modes (Inertia-Gravity Waves)(
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Results: Propagating Modes

Dispersion relationship calculated as
d~x
dt

= L~x→ iω~x = A~x (eigenvalue
problem)

Spherical harmonic transforms (NFFT
package) are used to determine which spatial
wavenumbers each eigenvector/eigenvalue pair
is associated with

Geodesic grid with ne edges, ni faces and nv
vertices; nig inertia-gravity modes and nstat
stationary modes (geostrophic + spurious)

Vlevel=1 (42 faces) geodesic grid with
f = 0.0001s−1, g = 9.81ms−1,
H = 56334m (A) or H = 140m (B),
a = 6371220m
λ
d
≈ 2.0 (A) or λ

d
≈ 0.1 (B)

Both TRiSK (C-grid) and HR95 (Z-Grid)
investigated

Figure: HR95 Results: Case A, red circles are
theoretical, black crosses are numerical

Figure: TRiSK Results: Case A, red circles are
theoretical, black crosses are numerical

Results: Propagating Modes

Figure: HR95 Results: Case B

Figure: TRiSK Results: Case B

Both grids show good agreement for
lower-frequency modes

HR95 does an excellent job when Rossby
radius is poorly resolved; TRiSK has issues

Geodesic grid means that high frequency
eigenvectors do not resemble higher-frequency
spherical harmonics

Mode numbers are as expected:

Stationary (TRiSK) nv
Stationary (HR95) ni

Inertia-Gravity (TRiSK) 2ni − 2
Inertia-Gravity (HR95) 2ni

Results: Discrete Operator Null Space Dimension

Operator null space calculated as
0 = L~x→ 0 = A~x (SVD problem)

Null spaces are connected to stationary modes

Divergence (TRiSK) 1
Gradient (TRiSK) 1

Vector Reconstruction (TRiSK) ne - nig
Laplacian (HR95) 1

Conclusions

ADCOT provides a useful framework for
inter-comparison of various numerical schemes
for the nonlinear shallow water equations

Two very different schemes (TRiSK and
HR95) can be analysed under the same code
framework

Initial results indicate the f-sphere dispersion
relationships on geodesic grids for TRiSK and
HR95 are similar in structure and character to
analytic dispersion relationships for the f-plane
perfect hexagonal grid
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