Extension of the 1981 Arakawa and Lamb Scheme to Arbitrary Grids

Chris Eldred and David Randall Department of Atmospheric Science Colorado State University Dec 15th, 2014

AL81 Scheme- Desirable Properties

Desirable Properties

- Steady geostrophic modes
- In the second second
- Second Second
- Mass, PV, total energy and potential enstrophy conservation
- O PV advection is consistent with mass advection
- Fully explicit (no global solve)
- Good wave dipersion properties if $\frac{\lambda}{d} > 1$
- So spurious stationary modes or extra branches of dispersion relationship

Note: AL81 is discrete exterior calculus based scheme (Thuburn et. al 2012), also Hamiltonian (Salmon 2004)

AL81 Scheme- Limitations and Extensions

Shortcomings

- Restricted to logically square, orthogonal grids
- 2 Poor wave dispersion properties if $\frac{\lambda}{d} << 1$
- Multilevel versions can suffer from Hollingsworth instability
- 2nd order (can get quasi-4th order on uniform grids)

TRiSK: Ringler, Skamarok, Klemp, Thuburn, Cotter, Dubos

- Discrete Exterior Calculus based
- 2 General, non-orthogonal polygonal grids
- Choose between total energy and potential enstrophy conservation
- Spurious wave dispersion branches on non-quadrilateral meshes

Generalized C Grid Discretization: TRiSK

- Sextends AL81 to arbitrary, non-orthogonal polygonal meshes
- Must choose between total energy and potential enstrophy conservation

General non-orthogonal primal-dual polygonal mesh

Generalized C Grid Discretization: Hamiltonian-DEC

- Discrete variables are $m_i = \int h dA$ (discrete primal 2-form) and $u_e = \int \vec{u} \cdot \vec{dl}$ (discrete dual 1-form)
- C grid staggering $(m_i \text{ at cell centers}, u_e \text{ at edges})$
- General formulation is:

$$\vec{x} = (m_i, u_e)$$

$$\mathbb{J} = \begin{pmatrix} 0 & D_2 \\ \bar{D}_1 & \mathbf{Q} \end{pmatrix}$$

$$q_v = \frac{\bar{D}_2 u_e + f_v}{m_v} = \frac{\zeta_v + f}{m_v} = \frac{\eta_v}{m_v}$$

$$m_v = \mathbf{R}m_i$$

$$\mathcal{H} = \frac{1}{2}g(m_i, m_i)_{\mathbf{I}} + \frac{1}{2}(C_e, u_e)_{\mathbf{H}}$$

$$m_e = \phi \mathbf{I}m_i \quad C_e = m_e u_e$$

$$\frac{\delta \mathcal{H}}{\delta \vec{x}} = \begin{pmatrix} \mathbf{I}\Phi_i \\ \mathbf{H}C_e \end{pmatrix}$$

$$\Phi_i = gm_i + K_i \quad K_i = \phi^T \frac{u_e \mathbf{H}u_e}{2}$$

Poisson Bracket Form

$$\frac{d\mathcal{A}}{dt} = \{\mathcal{A}, \mathcal{H}\}_{Q} + \{\mathcal{A}, \mathcal{H}\}_{R}$$
$$\mathcal{H} = \frac{1}{2}g(m_{i}, m_{i})_{I} + \frac{1}{2}(F_{e}, u_{e})_{H}$$
$$\frac{\delta\mathcal{H}}{\delta\vec{x}} = \begin{pmatrix} \mathbf{I}\Phi_{i} \\ \mathbf{H}F_{e} \end{pmatrix}$$
$$\{\mathcal{A}, \mathcal{B}\}_{Q} = \sum_{e} \frac{\delta\mathcal{A}}{\delta u_{e}} \mathbf{Q} \frac{\delta\mathcal{B}}{\delta u_{e}} \qquad \text{Diag}$$
$$\{\mathcal{A}, \mathcal{B}\}_{R} = \sum_{i} \frac{\delta\mathcal{A}}{\delta m_{i}} D_{2} \frac{\delta\mathcal{B}}{\delta u_{e}} + \sum_{e} \frac{\delta\mathcal{A}}{\delta u_{e}} \bar{D}_{1} \frac{\delta\mathcal{B}}{\delta m_{i}}$$

Diagram of grid staggering for generalized C grid

э

Requirements on Q

• PV Consistency:

$$\{\mathcal{A},\mathcal{B}\}_Q \rightarrow_{q_v=c} c * \{\mathcal{A},\mathcal{B}\}_W$$

• Total Energy Conserving:

$$\{\mathcal{A},\mathcal{B}\}_Q = -\{\mathcal{B},\mathcal{A}\}_Q$$

• Potential Enstrophy Conserving :

$$\{\mathcal{A}, \mathcal{Z}\}_{Q} + \{\mathcal{A}, \mathcal{Z}\}_{R} = 0 \quad \forall \mathcal{A}$$
$$\mathcal{Z}_{\mathcal{C}} = \frac{1}{2} (\zeta_{v}, q_{v})_{J} \qquad \frac{\delta \mathcal{Z}_{\mathcal{C}}}{\delta \vec{x}} = \begin{pmatrix} -\mathbf{R}^{T} \frac{q_{v}^{2}}{2} \\ D_{1} q_{v} \end{pmatrix}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

General Form of **Q**

Following Salmon 2004, set

$$\{\mathcal{A},\mathcal{B}\}_Q = \sum_i \left(\sum_{(e,e')\in EP(i)} \sum_{v\in VC(i)} q_v \alpha_{e,e',v} \frac{\delta(\mathcal{A},\mathcal{B})}{\delta(e,e')} \right)$$

Note that

$$\{\mathcal{A},\mathcal{B}\}_Q = -\{\mathcal{B},\mathcal{A}\}_Q$$

by construction since $\frac{\delta(\mathcal{A},\mathcal{B})}{\delta(e,e')} = -\frac{\delta(\mathcal{B},\mathcal{A})}{\delta(e,e')}$. Additional requirements on $\{\mathcal{A},\mathcal{B}\}_Q$ lead to a system of equations for $\alpha_{e,e',v}$.

Potential Enstrophy Conservation

Chain rule yields

$$\{m_i, \mathcal{Z}_{\mathcal{C}}\}_Q + \{m_i, \mathcal{Z}\}_R = 0 \qquad \forall m_i$$
$$\{u_e, \mathcal{Z}_{\mathcal{C}}\}_Q + \{u_e, \mathcal{Z}\}_R = 0 \qquad \forall u_e$$

Plug in $\mathcal{Z}_{\mathcal{C}}$ to get

$$D_2 D_1 q_v = 0 \qquad \forall q_v$$

and

$$-\bar{D_1}\mathbf{R}^T \frac{q_v^2}{2} + \mathbf{Q}D_1q_v = 0 \qquad \forall q_v$$

Latter leads to an overdetermined system of linear systems (solved via least-squares).

Solution Procedure

Can rewrite last equation as

$$\mathbf{A}\vec{\alpha}=\vec{b}$$

where **A** is a rectangular matrix that comes from $\mathbf{Q}D_1$, $\vec{\alpha}$ is the vector of $\alpha_{e,e',v}$'s and \vec{b} comes from $\bar{D}_1\mathbf{R}^T$.

② Enough free parameters in solution of $\mathbf{A}\vec{\alpha} = \vec{b}$ that original equations can be split into:

$$\mathbf{A}_i \vec{\alpha}_i = \vec{b}_i$$

which applies for each cell, independently!

3

$$\{\mathcal{A},\mathcal{B}\}_Q \rightarrow_{q_v=c} c * \{\mathcal{A},\mathcal{B}\}_W$$

happens "automatically" for all grids tested (uniform square, uniform hex and geodesic).

Summary

Summary

- Combined Salmon 2004 (Hamiltonian) and Thuburn, Cotter and Dubos 2012 (DEC) approaches to develop an extension of Arakawa and Lamb 1981 to arbitrary polygonal grids
- Preserves all desirable properties of AL81 (however has extra wave modes on non-quadrilateral meshes)

Q Variants

- $\mathbf{Q} = \mathbf{Q}_{\mathbf{e}} \mathbf{W}$ (Potential Enstrophy Conserving)
- $\mathbf{Q} = \frac{1}{2}\mathbf{Q}_{e}\mathbf{W} + \frac{1}{2}\mathbf{W}\mathbf{Q}_{e}$ (Total Energy Conserving)
- **Q** = complicated (Total Energy and Potential Enstrophy Conserving)

•
$$\mathbf{Q}_{\mathbf{e}} = \phi q_{\mathbf{v}} = \sum_{\mathbf{v} \in VE(\mathbf{e})} \frac{q_{\mathbf{v}}}{2}$$

Description of Model Configuration

Model Settings

- 3rd Order Adams-Bashford Timestepping, 90s time step, run for 50 days
- G6 Geodesic Grid = 40962 cells (120km nominal resolution)
- $\nu \vec{\nabla}^2 \vec{v}$ dissipation added to momentum equation $(\nu = 1.0 \times 10^5 m^2 s^{-1})$ stable without

Flow over an Isolated Mountain (Williamson Test Case 5)

Potential Vorticity at Day 50, Enstrophy Conserving

Potential Vorticity at Day 50, Energy Conserving

ヨー つへつ

Galewsky et. al (Unstable Jet)

Vorticity at Day 6, Enstrophy Conserving

Vorticity at Day 6, Energy Conserving

Conservation Properties (Galewsky Test Case)

These results are WITHOUT any added dissipation

A > 4

Conclusions and Future Work

Conclusions

- AL81 has been extended to arbitrary grids
- Scheme offers comparable performance to existing schemes (preliminary results)

Future Work

- Larger meshes- V7 (160K) and V8 (640K)
- 2 Detailed evaluation of scheme
- Omparison to Z-grid scheme (Salmon 2007), other schemes
- Extension to non-orthogonal cubed sphere grid, possibly Weller diamond grid and Healpix grid