Extension of the 1981 Arakawa and Lamb Scheme to Arbitrary Grids

Chris Eldred and David Randall Department of Atmospheric Science Colorado State University February 24th, 2015

Introduction

Chris Eldred and David Randall Berkeley 2015 Presentation

э

< 一型

Key Papers

Arakawa and Lamb 1981

A Potential Enstrophy and Energy Conserving Scheme for the Shallow Water Equations

AKIO ARAKAWA AND VIVIAN R. LAMB¹

Salmon 2004

Poisson-Bracket Approach to the Construction of Energy- and Potential-Enstrophy-Conserving Algorithms for the Shallow-Water Equations

RICK SALMON

Thuburn, Cotter and Dubos 2012

A FRAMEWORK FOR MIMETIC DISCRETIZATION OF THE ROTATING SHALLOW-WATER EQUATIONS ON ARBITRARY POLYGONAL GRIDS*

J. THUBURN[†] AND C. J. COTTER[‡]

< ロ > < 同 > < 回 > < 回 >

Broad Research Overview: Dynamical Cores

- Develop discrete models of the atmosphere
- ② Dynamical core: deals with "resolved processes"
- O Parameterizations: deal with "unresolved processes"
- Model: dynamical core + parameterizations

Key Principles of Numerical Modeling

- In the solving arbitrary PDEs- physical system
- O No analytic solutions
- $\textcircled{O} Differential equations \rightarrow algebraic equations$
- O algebraic solutions have the same properties as the differential solutions?

Philosophy of Dynamical Core Design

Models should respect underlying physics

- Energetics
- PV dynamics
- 3 Wave dynamics
- Onserved quantities- energy, potential enstrophy
- Mimetic properties

$$\vec{\nabla}\times\vec{\nabla}\phi=\mathbf{0}$$

Shallow Water Equations

~ .

Vector Invariant Shallow Water Equations

$$\frac{\partial h}{\partial t} + \vec{\nabla} \cdot (h\vec{u}) = 0$$

$$\frac{\partial \vec{u}}{\partial t} + q\hat{k} \times (h\vec{u}) + \vec{\nabla}\Phi = 0$$

$$\mathbb{J} = \begin{pmatrix} 0 & -\vec{\nabla} \cdot \\ -\vec{\nabla} & -q\hat{k} \times \end{pmatrix}$$

$$\mathcal{H} = \frac{1}{2}g(h,h) + \frac{1}{2}(\vec{F},\vec{u})$$

$$\frac{\partial \vec{x}}{\partial t} = \mathbb{J}\frac{\delta \mathcal{H}}{\delta \vec{x}}$$

$$\frac{\delta \mathcal{H}}{\delta \vec{x}} = \begin{pmatrix} \Phi \\ h\vec{u} \end{pmatrix}$$

- - ◆ 同 ▶ - ◆ 目 ▶

Shallow Water Equations: (Subset of) Properties

Mimetic

No Spurious Vorticity Production:

$$\vec{\nabla} \times \vec{\nabla} \phi = \mathbf{0}$$

Pressure Gradient is Energy Conserving:

$$(\vec{\nabla})^* = -\vec{\nabla} \cdot$$

Conserved Quantities

Total Energy
$$\int_{\Omega} \frac{gh^2}{2} + \frac{h|\vec{u}|^2}{2}$$

Potential Enstrophy $\int_{\Omega} h \frac{q^2}{2}$

Chris Eldred and David Randall Berkeley 2015 Presentation

- 4 同 2 4 日 2 4 日 2

Arakawa and Lamb 1981 Scheme: Desirable Properties

(A Subset of) Desirable Properties

- No spurious vorticity production (curl-free gradient)
- Energy-conserving pressure gradient force (divergence and gradient are adjoints)
- Total energy and potential enstrophy conservation

Arakawa and Lamb 1981 Scheme: Limitations

(A Subset of) AL81 Shortcomings

Restricted to logically square, orthogonal grids

TRiSK: Ringler, Skamarok, Klemp, Thuburn, Cotter, Dubos

- General, non-orthogonal polygonal grids
- Choose between total energy and potential enstrophy conservation

Logically square, orthogonal grid

General, non-orthogonal grid

Chris Eldred and David Randall

Berkeley 2015 Presentation

Recap: What am I trying to accomplish?

- How can Arakawa and Lamb 1981 be extended to arbitrary, non-orthogonal polygonal grids?
- In a way that preserves all of its desirable properties, and does not add new limitations?

AL81 on arbitrary grids

Extension of AL81 to Arbitrary Grids

Chris Eldred and David Randall Berkeley 2015 Presentation

Mimetic Methods (Discrete Exterior Calculus)

Mimetic Operators

$$ec{
abla} imesec{
abla}\phi=0 \Longleftrightarrow ar{D_2}ar{D_1}=0 \ (ec{
abla})^*=-ec{
abla}\cdot \Longleftrightarrow D_2=-ar{D_1}^T$$

(Discrete) Exterior Derivative

Primal-Dual Grid

< A > < 3

Conservation Laws (Hamiltonian Mechanics)

Hamiltonian (Energy)

$$\mathbb{J}^{\mathcal{T}}=-\mathbb{J}$$

$\ensuremath{\mathcal{H}}$ is positive definite

Casimirs (Potential Enstrophy)

$$\mathbb{J}\frac{\delta \mathcal{Z}}{\delta \vec{x}} = 0$$

Discrete Conservation

Enforce these conditions in discrete case \rightarrow conservation!

Recap: Conservative, Mimetic Methods

Conservative, Mimetic Methods

 Use mimetic operators to build a discrete (quasi-)Hamiltonian system

Onifies two important lines of research

Generalized C Grid Discretization: Hamiltonian-DEC

- Discrete variables are $m_i = \int h dA$ and $u_e = \int \vec{u} \cdot \vec{dl}$
- C grid staggering (*m_i* at cell centers, *u_e* at edges)

Q operator is the remaining hurdle

General Form of **Q**

Diagram of Q operator stencil

Discrete Conservation

Energy

$$\mathbb{J}^{\mathsf{T}} = -\mathbb{J} \longrightarrow \mathbf{Q} = -\mathbf{Q}^{\mathsf{T}} \longrightarrow \alpha_{e,e',v} = -\alpha_{e',e,v}$$

Potential Enstrophy

$$\mathbb{J}\frac{\delta \mathcal{Z}}{\delta \vec{x}} = 0 \longrightarrow \text{ linear system of equations} \longrightarrow \mathbf{A}\vec{\alpha} = \vec{b}$$

Also want $\mathbf{Q} \rightarrow \mathbf{W}$ when $q_v = \text{const}$ (steady geostrophic modes)

< □ > < 同 > < 回 >

э

Solving $\mathbf{A}\vec{\alpha}=\vec{b}$

Issue: System is too large

- Geodesic grid: 90 coefficients per cell, all coefficients are interdependent \rightarrow not feasible for realistic grids
- Cubed sphere grid is similar (24 coefficients per cell)

Solution: Subystem Splitting

$$\mathbf{A}\vec{lpha} = \vec{b} \longrightarrow \sum_{i} \mathbf{A}_{i}\vec{lpha}_{i} = \vec{b}_{i}$$

Split into independent subsystems for each cell!

System has been solved for various planar and spherical grids

Recap: What have I accomplished?

What has been done?

- Arakawa and Lamb 1981 extended to arbitrary grids via new **Q**
- Coefficients can be precomputed (efficiently)

Test Case Results

Chris Eldred and David Randall Berkeley 2015 Presentation

Variants of **Q** Operator

Total Energy

$$\mathbf{Q}F_e = rac{1}{2}q_e\mathbf{W}F_e + rac{1}{2}\mathbf{W}q_eF_e$$

Works for ANY choice of q_e (APVM, CLUST, etc.)

Potential Enstrophy

$$\mathbf{Q}F_{\mathrm{e}}=q_{\mathrm{e}}\mathbf{W}F_{\mathrm{e}}$$

Requires that q_e is arithmetic mean

Total Energy and Potential Enstrophy

$$\mathbf{Q}F_e = Q(q_v,F_e)$$

Chris Eldred and David Randall Berkeley 2015 Presentation

Grids

Grids

- Cubed Sphere: 6x384x384, 880K cells (25km resolution)
- Geodesic: G8, 640K cells (30km resolution)

< 一型

Operators

Operators

$$\mathbf{R} = \sum_{v \in VC(i)} \frac{A_{iv}}{A_i}$$

$$\mathbf{\Phi} = \frac{A_{ie}}{A_e} + \frac{A_{je}}{A_e}$$

$$\mathbf{I} = \frac{1}{A_i}$$
$$\mathbf{J} = \frac{1}{A_v}$$

$$\mathbf{H} = \frac{le}{de}$$

 ${\bf H}$ different for cubed-sphere

Time Stepping

- Adams-Bashford 3rd Order (15s cubed-sphere, 22.5s geodesic)
- 10 simulated days, output every 6 hours

Dissipation

- $\vec{\nabla}^2 \vec{u}$ specified in Galewsky et. al added to that test case
- Schemes stable without it

Galewsky et. al (Unstable Jet)- Geodesic (Tweaked)

Galewsky et. al (Unstable Jet)- Cubed Sphere (Thuburn)

Order of Accuracy- Laplacian on Primal

< 同 ▶

Order of Accuracy- Laplacian on Dual

Computed for $\psi = \cos(\theta) \sin(\lambda)$

P.

Order of Accuracy- \mathbf{Q} (also \mathbf{W})

 L_2 Error

L_{∞} Error

Order of Accuracy- Zonal Jet (Williamson Test Case 2)

Height errors

▲ 同 ▶ → 三 ▶

Conclusions

Conclusions

Chris Eldred and David Randall Berkeley 2015 Presentation

Summary and Conclusions

Conclusions

- Preserves all desirable properties of AL81

Future Work

- Consistent W (and Q)
- Anticipated Potential Vorticity + other dissipation options
- **③** Cubed sphere accuracy- Hodge stars, grid optimization
- In Effects of extra Rossby modes on geodesic grid?
- Somparison to Z-grid scheme (Salmon 2007)