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Introduction

Key Papers

Arakawa and Lamb 1981

A Potential Enstrophy and Energy Conserving Scheme
for the Shallow Water Equations

Axio ARAKAWA AND VIVIAN R. LaAMB!

Salmon 2004

Poisson-Bracket Approach to the Construction of Energy- and Potential-Enstrophy-
Conserving Algorithms for the Shallow-Water Equations

RIicK SaLmon

Thuburn, Cotter and Dubos 2012

A FREAMEWORK FOR MIMETIC DISCRETIZATION OF THE
ROTATING SHALLOW-WATER EQUATIONS ON ARBITRARY
POLYGONAL GRIDS®

J. THUBURNT anp C. J. COTTER?
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Introduction

Broad Research Overview: Dynamical Cores

© Develop discrete models of the atmosphere
@ Dynamical core: deals with "resolved processes”
© Parameterizations: deal with "unresolved processes”

@ Model: dynamical core + parameterizations

Pl e

RESOLVED . UNRESOLVED

SCALES ERUMGATION SCALES

Chris Eldred and David Randall Berkeley 2015 Presentation




Introduction

Key Principles of Numerical Modeling

@ Not solving arbitrary PDEs- physical system
@ No analytic solutions
© Differential equations — algebraic equations

© Do algebraic solutions have the same properties as the
differential solutions?
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Introduction

Philosophy of Dynamical Core Design

© Models should respect underlying physics
@ Energetics
® PV dynamics
©® Wave dynamics
O Conserved quantities- energy, potential enstrophy
@ Mimetic properties
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Introduction

Shallow Water Equations

Vector Invariant Shallow Water Equations
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Introduction

Shallow Water Equations: (Subset of) Properties

No Spurious Vorticity Production:

-

VxVep=0

Pressure Gradient is Energy Conserving:

=

(V) =V

Conserved Quantities

=2
Total Energy |, %”2 + %

2

Potential Enstrophy |, h%
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Introduction

Arakawa and Lamb 1981 Scheme: Desirable Properties

(A Subset of) Desirable Properties

@ No spurious vorticity production (curl-free gradient)

@ Energy-conserving pressure gradient force (divergence and
gradient are adjoints)

© Total energy and potential enstrophy conservation

Mimetic Conservation
- T
DyDy = 0 J=-J
_ 52
T _ _ i
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Introduction

Arakawa and Lamb 1981 Scheme: Limitations

(A Subset of) AL81 Shortcomings
© Restricted to logically square, orthogonal grids

TRiSK: Ringler, Skamarok, Klemp, Thuburn, Cotter, Dubos

© General, non-orthogonal polygonal grids

© Choose between total energy and potential enstrophy
conservation

Logically square, orthogonal grid General, non-orthogonal grid
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Introduction

Recap: What am | trying to accomplish?

@ How can Arakawa and Lamb
1981 be extended to
arbitrary, non-orthogonal
polygonal grids?

Cubed Sphere

@ In a way that preserves all of lcosahedralkhexagons
its desirable properties, and

does not add new
limitations?
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Extension of AL81 to Arbitrary Grids

AL81 on arbitrary grids

Extension of AL81 to Arbitrary
Grids
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Extension of AL81 to Arbitrary Grids

Mimetic Methods (Discrete Exterior Calculus)

Mimetic Operators

<L

X6¢=0<:>52D_1=0

(V) = -V D, = D"

% @ &

(Discrete) Exterior Derivative Primal-Dual Grid
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Extension of AL81 to Arbitrary Grids

Conservation Laws (Hamiltonian Mechanics)

Hamiltonian (Energy
JT=-1

‘H is positive definite

Casimirs (Potential Enstrophy)

0Z
JE—O

Discrete Conservation
Enforce these conditions in discrete case — conservation!
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Extension of AL81 to Arbitrary Grids

Recap: Conservative, Mimetic Methods

Mimetic Properties

Conservation Laws

‘H is positive definite
J=-I7

0Z
JE—O

(Discrete) Exterior Derivative

Conservative, Mimetic Methods

@ Use mimetic operators to build a discrete (quasi-)Hamiltonian
system

@ Unifies two important lines of research
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Extension of AL81 to Arbitrary Grids

Generalized C Grid Discretization: Hamiltonian-DEC

o Discrete variables are m; = [ hdA and ue = [ /- dl

o C grid staggering (m; at cell centers, v, at edges)

X = (mi, ue)
-4 %) o

1 1
H= Eg(mi, mi) + E(Ce’ Ue)n
1 H _ ('4’;) B (IK,- +g|m,->
2= 5(Cv )y 6% F. HC,
>) 2
g, = M _ Stfe  Douetfy 02 _(-RT%
omy my Rm; OX Digq,

Q operator is the remaining hurdle
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Extension of AL81 to Arbitrary Grids

General Form of Q

Following Salmon 2004, set

QF. = Z Z qvae,e’,vFe’

e’€ECP(e) veVC(i)

What are ag e, 's?

Diagram of Q operator stencil
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Extension of AL81 to Arbitrary Grids

Discrete Conservation

JT =-J—Q= _QT — Qeel,y — —Olel ey
Potential Enstrophy
0Z , . s
JF =0 — linear system of equations — Ad = b
X

Also want Q — W when g, = const (steady geostrophic modes)
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Extension of AL81 to Arbitrary Grids

Solving A@ = b

Issue: System is too large

@ Geodesic grid: 90 coefficients per cell, all coefficients are
interdependent — not feasible for realistic grids

@ Cubed sphere grid is similar (24 coefficients per cell)

Solution: Subystem Splitting

Ad=b— > Ad;=b

1

Split into independent subsystems for each cell!

System has been solved for various planar and spherical grids
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Extension of AL81 to Arbitrary Grids

Recap: What have | accomplished?

What has been done?
@ Arakawa and Lamb 1981 extended to arbitrary grids via new Q

o Coefficients can be precomputed (efficiently)

C4 - 6x24x24 - thuburn Primal G4 - tweaked Primal
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Results

Test Results

Test Case Results
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Results

Variants of Q Operator

Total Energy
1 1
QFe = quWFe 4 queFe
Works for ANY choice of g. (APVM, CLUST, etc.)

Potential Enstrophy

QFe = q.WF,

Requires that g is arithmetic mean

Total Energy and Potential Enstrophy

QF. = Q(qw Fe)
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Results

Operators

Time Stepping
@ Adams-Bashford 3rd Order
(15s cubed-sphere, 22.5s

geodesic)
@ 10 simulated days, output
1 every 6 hours
l=—
Aj T
1 Dissipation
J= A, o V27 specified in Galewsky
et. al added to that test
H= 2 case
de

@ Schemes stable without it

H different for cubed-sphere
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Results

Galewsky et. al (Unstable Jet)- Geodesic (Tweaked)

Absolute Vorticity at Day 6, Doubly Conservative
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Results

Galewsky et. al (Unstable Jet)- Cubed Sphere (Thuburn)

Absolute Vorticity at Day 6, Doubly Conservative
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Results

Order of Accuracy- Laplacian on Primal

L> Error
10°
101 -
10?
107
10*
— geo-tweaked
— geo-spring0.8
105} — geo-springl.1
— geo-cvt N
.
— s N
10°
10! 10? 10° 10* 10° 10° 107

Computed for ¢ = cos(8) sin(\)
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Results

Order of Accuracy- Laplacian on Dual

L, Error Lo Error
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Results

Order of Accuracy- Q (also W)

L Error Loo Error
10" 10°
107
10?
102
10?
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10 N
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S geo-spring0.8 M —— geo-spring0.8 N
10 — geo-springl.1l \\ 105L| — geo-springl.1
— geo-cvt —  geo-cvt
- s - Cs
10° 10°
10* 10? 10° 10° 10° 10° 107 10* 10? 10° 10° 10° 10° 107

Computed for ¢ = q = cos(0) sin(\)
error = geD1vbe — Q(qv, D1tv)
W errors are very similar

Chris Eldred and David Randall Berkeley 2015 Presentation



Results

Order of Accuracy- Zonal Jet (Williamson Test Case 2)

L, Error Lo Error
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Conclusions

Conclusions

Conclusions
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Conclusions

Summary and Conclusions

Conclusions

@ Hamiltonian + Discrete Exterior Calculus — AL81 on
arbitrary polygonal grids

@ Preserves all desirable properties of AL81

O Consistent W (and Q)
@ Anticipated Potential Vorticity + other dissipation options

© Cubed sphere accuracy- Hodge stars, grid optimization

@ Effects of extra Rossby modes on geodesic grid?

© Comparison to Z-grid scheme (Salmon 2007)

Chris Eldred and David Randall Berkeley 2015 Presentation



	Introduction
	Extension of AL81 to Arbitrary Grids
	Results
	Conclusions

