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History of Structure-Preserving Schemes for Atmospheric
Models

The Beginning: Arakawa and Lamb 1981, Sadourney 1975

Mimetic Finite Differences: Ringler et. al 2010; Thuburn et.
al 2012, 2014, many others

Mimetic Finite Elements: Cotter et. al 2012,201; McRae et.
al 2014, many others

Hamiltonian: Salmon 2004,2005,2007; Sommer+Nevir 2009;
Gassmann 2008,2013; Dubos et. al 2015; Tort et. al 2015,
many others

Fundamentally, structure-preserving schemes can be viewed as
a combination of a mimetic discretization method plus a
hamiltonian formulation
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What is structure-preservation?

1 Discrete deRham cohomology (mimetic discretization)

~∇× ~∇ = 0

~∇ · ~∇× = 0

2 Quasi-Hamiltonian system (conserves total energy, and
possibly other invariants)

dH
dt

= 0

dC
dt

= 0

C. Eldred, T. Dubos and E. Kritsikis CANUM Presentation



Introduction
Dynamico

Mimetic Galerkin Discretization
Hamiltonian Formulation

General Formulation for Mimetic Discretizations:
Primal-Dual Double deRham Complex

δ = ∗d∗

∇2 = dδ + δd

~∇ · ~∇× = 0 = ~∇× ~∇

∫
Ω
dW =

∫
dΩ

W

dd = 0 = δδ
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Non-Canonical Hamiltonian Dynamics

Poisson Brackets

Evolution of an arbitrary functional F = F [~x ] is governed by:

dF
dt

= {δF
δ~x
,
δH
δ~x
} (1)

with Poisson bracket {, } antisymmetric (also satisfies Jacobi):

{δF
δ~x
,
δG
δ~x
} = −{δG

δ~x
,
δF
δ~x
} (2)

Also have Casimirs C that satisfy:

{δF
δ~x
,
δC
δ~x
} = 0 ∀F (3)

Neatly encapsulates conservation properties (H and C).
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Dynamico

1 Primal-Dual: Mimetic finite
differences (based on TRiSK
scheme): C grid horizontal,
Lorenz vertical

2 Icosahedral grid

3 Hydrostatic primitive
equations: Lagrangian and
mass-based vertical
coordinates

4 Conserves mass, energy and
entropy

5 See Dubos et. al 2015 for
more information
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Issues in Dynamico

Operator Accuracy

L2 for W L∞ for W

Spurious Branches of Dispersion Relationship

Hexagonal grid means 3:1 ratio of wind to mass dofs (should be
2:1) → spurious branch of Rossby waves with unphysical behaviour
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How do we fix them?

1 Fix spurious branches:
Quadrilateral (cubed-sphere)
grid, correct 2:1 ratio of dofs

2 Fix accuracy: Use Primal
approach (mimetic Galerkin
methods)

3 Keep the same equations
and Hamiltonian structure

4 Keep the same mimetic and
conservation properties
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Mimetic Galerkin Discretization

δ = ∗d∗

∇2 = dδ + δd

~∇ · ~∇× = 0 = ~∇× ~∇

∫
Ω
dW =

∫
dΩ

W

dd = 0 = δδ
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General Approach to Mimetic Galerkin Spaces

Mimetic Spaces

Select 1D Spaces A and B such that : A
d
dx−→ B (4)

Use tensor products to extend to n-dimensions

Works for ANY set of spaces A and B that satisfy this
property (mimetic finite elements use Pn and PDG ,n−1)

Mimetic spectral element, Mimetic isogeometric methods
(B-splines) all fall under this framework

Our (different) choices of A and B are guided by linear mode
properties and coupling to physics/tracer transport

See Hiemstra et. al 2014 (and references therein)
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P2 − P1,DG Dispersion Relationship

A = H1 Space

B = L2 Space

Inertia-Gravity Wave Dispersion
Relationship (1D)

Multiple dofs per element → breaks translational invariance →
spectral gaps
We have developed an alternative: mimetic Galerkin differences
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Mimetic Galerkin Differences: Basis

A = H1 Space B = L2 Space

Single degree of freedom per geometric entity (physics coupling)
Higher order by larger stencils (less local)
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Mimetic Galerkin Differences- Dispersion

Inertia-Gravity Wave Dispersion Relationship (1D)
Spectral gap is gone

Can show that dispersion relation is O(2n) where n is the order
More details in a forthcoming paper
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Overview of 3D Spaces

W0 W1 W2 W3

W0
~∇−→W1

~∇×−−→W2
~∇·−→W3

W0 = A⊗A⊗A = H1 = Continuous Galerkin
W1 = (B ⊗A⊗A)î + . . . = H(curl) = Nedelec
W2 = (A⊗ B ⊗ B)î + . . . = H(div) = Raviart-Thomas
W3 = B ⊗ B ⊗ B = L2 = Discontinuous Galerkin
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Grid Staggering for HPE

W0

ψ,Θ
Differential
Geometry

W1
~ζ

W2

~v ,~u,W ,Θ
CP Grid

W3

µ,Θ,δ,χ
L Grid

Follows from differential geometry and Tonti diagram
Galerkin Version of a C Grid

Question: Where should Θ live?
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Poisson Brackets (Lagrangian Vertical Coordinate)

Poisson Brackets

From Dubos and Tort 2014, evolution of F [~x ] = F [µ, ~v ,Θ, z ] is

dF
dt

= {δF
δ~x
,
δH
δ~x
}SW + {δF

δ~x
,
δH
δ~x
}Θ + 〈δF

δz

∂z

∂t
〉 (5)

{δF
δ~x
,
δH
δ~x
}SW = 〈δH

δ~v
· ~∇δF

δµ
− δH
δ~v
· ~∇δF

δµ
〉+〈

~∇× ~v
µ
· (δF
δ~v
× δH
δ~v

)〉

(6)

{δF
δ~x
,
δH
δ~x
}Θ = 〈θ(

δH
δ~v
· ~∇δF

δΘ
− δH
δ~v
· ~∇δF

δΘ
)〉 (7)

where µ is the pseudo-density, ~v = ~u − ~R is the absolute
(covariant) velocity, Θ = θµ is the mass-weighted potential
temperature and z is the height.
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Equations of Motion: Lagrangian Vertical Coordinate

Equations of Motion

Choose F =
∫
µ̂ ( or

∫
v̂/
∫

Θ̂/
∫
ẑ) to get:∫

µ̂

(
∂µ

∂t
+ ~∇ · (δH

δ~v
)

)
= 0 (8)

∫
Θ̂

(
∂Θ

∂t
+ ~∇ · (θ δH

δ~v
)

)
= 0 (9)∫

v̂

(
∂~v

∂t
+
ζv
µ
× δH
δ~v

+ θ~∇(
δH
δΘ

) + ~∇(
δH
δµ

)

)
= 0 (10)∫

ẑ
δH
δz

=

∫
ẑ

(
gµ+

∂p

∂η

)
= 0 (11)

Note that these are ALL 2D except for hydrostatic balance (11)
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Hamiltonian (Lagrangian Vertical Coordinate)

Hamiltonian and Functional Derivatives

H = H[µ, ~v ,Θ, z ] =

∫
µ(
~u · ~u

2
+ U(

1

µ

∂z

∂η
,

Θ

µ
) + gz) (12)∫

v̂
δH
δ~v

=

∫
v̂ (µ~u) (13)∫

µ̂
δH
δµ

=

∫
µ̂

(
~u · ~u

2
+ gz

)
(14)∫

Θ̂
δH
δΘ

=

∫
Θ̂
∂U

∂θ
=

∫
Θ̂π (15)∫

ẑ
δH
δz

==

∫
ẑ

(
gµ+

∂p

∂η

)
(16)
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Conservation

Energy

Arises purely from anti-symmetry of the brackets PLUS
δH
δz = 0

Mimetic Galerkin methods automatically ensure an
anti-symmetric bracket

Works for ANY choice of H
Something similar can be done with a mass-based vertical
coordinate, although it is slightly more complicated

Mass and Entropy

These are Casimirs

Can show that this discretization also conserves them
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Remaining Issues and Questions

Hydrostatic Balance

1 Dynamico: Column-wise direct solution

2 Can this also be done with Galerkin approach?

Grid Staggering: Placement of Θ

1 Dynamico: Lorenz staggering (Θ and µ are collocated)

2 Galerkin Equivalent: µ,Θ ∈W3 (Admits a spurious
computational mode in the vertical)

3 Charney-Phillips: Θ ∈W2,vert (Avoids computational mode,
more difficult to obtain conservation, complicates formulation)

4 Differential Geometry: Θ is a 0-form → Θ ∈W0 (Excessive
horizontal averaging → computational mode/poor dispersion
properties?)
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Summary and Conclusions
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Summary and Conclusions

Summary

1 There is a general, effective procedure for devising numerical
schemes that mimic important characteristics of the real
atmosphere

2 Combine mimetic discretizations with a Hamiltonian
formulation

Future Work

1 Computational efficiency: preconditioning, assembly, etc.

2 Mass-based vertical coordinate

3 Non-hydrostatic equations

4 Subgrid Turbulence, Moisture, Tracers, Physics Coupling
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