Accelerated High-order finite element Assembly (A-HA!)

Chris Eldred, Manel Tayachi, Thomas Dubos, Evaggelos Kritsikis and Fabrice Voitus

August 25th, 2016

université PARIS 13

Introduction

(Incomplete) List of Desirable Model Properties

Non-Canonical Hamiltonian Dynamics

Evolution of an arbitrary functional $\mathcal{F}=\mathcal{F}[\vec{x}]$ is governed by:

$$
\begin{equation*}
\frac{d \mathcal{F}}{d t}=\left\{\frac{\delta \mathcal{F}}{\delta \vec{x}}, \frac{\delta \mathcal{H}}{\delta \vec{x}}\right\} \tag{1}
\end{equation*}
$$

with Poisson bracket $\{$,$\} antisymmetric (also satisfies Jacobi):$

$$
\begin{equation*}
\left\{\frac{\delta \mathcal{F}}{\delta \vec{x}}, \frac{\delta \mathcal{G}}{\delta \vec{x}}\right\}=-\left\{\frac{\delta \mathcal{G}}{\delta \vec{x}}, \frac{\delta \mathcal{F}}{\delta \vec{x}}\right\} \tag{2}
\end{equation*}
$$

Also have Casimirs \mathcal{C} that satisfy:

$$
\begin{equation*}
\left\{\frac{\delta \mathcal{F}}{\delta \vec{x}}, \frac{\delta \mathcal{C}}{\delta \vec{x}}\right\}=0 \quad \forall \mathcal{F} \tag{3}
\end{equation*}
$$

Neatly encapsulates conservation properties (\mathcal{H} and \mathcal{C}).

General Formulation for Mimetic Discretizations: Primal deRham Complex

$$
\begin{gathered}
\delta=* d * \\
\nabla^{2}=d \delta+\delta d \\
\vec{\nabla} \cdot \vec{\nabla} \times=0=\vec{\nabla} \times \vec{\nabla} \\
d d=0=\delta \delta
\end{gathered}
$$

\mathbb{W}_{0}

\mathbb{W}_{1}

\mathbb{W}_{2}

\mathbb{W}_{3}

General Approach to Mimetic Galerkin Spaces

Mimetic Spaces

$$
\text { Select 1D Spaces } \mathcal{A} \text { and } \mathcal{B} \text { such that : } \mathcal{A} \xrightarrow{\frac{d}{d x}} \mathcal{B}
$$

- Use tensor products to extend to n-dimensions
- Works for ANY set of spaces \mathcal{A} and \mathcal{B} that satisfy this property (mimetic finite elements use P_{n} and $P_{D G, n-1}$)
- Mimetic spectral element, Mimetic isogeometric methods (B-splines) all fall under this framework
- We are also exploring (not shown) alternative choices of \mathcal{A} and \mathcal{B} which are guided by linear mode properties and coupling to physics/tracer transport
- See Hiemstra et. al 2014 (and references therein)

Overview of 3D Spaces

\mathbb{W}_{0}

\mathbb{W}_{1}

\mathbb{W}_{2}

\mathbb{W}_{3}

$$
\mathbb{W}_{0} \xrightarrow{\vec{\nabla}} \mathbb{W}_{1} \xrightarrow{\vec{\nabla} \times} \mathbb{W}_{2} \xrightarrow{\vec{\nabla} \cdot} \mathbb{W}_{3}
$$

$$
\mathbb{W}_{0}=\mathcal{A} \otimes \mathcal{A} \otimes \mathcal{A}=H_{1}=\text { Continuous Galerkin }
$$

$$
\mathbb{W}_{1}=(\mathcal{B} \otimes \mathcal{A} \otimes \mathcal{A}) \hat{i}+\ldots=H(\text { curl })=\text { Nedelec }
$$

$$
\mathbb{W}_{2}=(\mathcal{A} \otimes \mathcal{B} \otimes \mathcal{B}) \hat{i}+\ldots=H(\text { div })=\text { Raviart-Thomas }
$$

$$
\mathbb{W}_{3}=\mathcal{B} \otimes \mathcal{B} \otimes \mathcal{B}=L_{2}=\text { Discontinuous Galerkin }
$$

Assembly and Operator Action

 Algorithms and Results
Standard Assembly Algorithm

Consider mass matrix using H^{1} elements:

$$
\int_{\Omega} u(x, y, z) v(x, y, z) d \Omega
$$

On each element:

- Loop over u
- Loop over v
- Loop over quadrature points
- Compute $\hat{u}_{n, q} \hat{v}_{m, q} w_{q}|J|_{q}$

With $u=v=P^{n}$, in 3D, and Gaussian quadrature, costs $\mathbf{O}\left(\mathrm{n}^{9}\right)(\mathrm{n}$ is the order of the finite element space)
Can we do better?

Tensor Product Assembly Algorithm

Recognize that

$$
u(x, y, z)=u^{x}(x) u^{y}(y) u^{z}(z)
$$

(and similarly for v). Therefore the integral from before can be factored as

$$
\int_{x} u^{x}(x) v^{x}(x) \int_{y} u^{y}(y) v^{y}(y) \int_{z} u^{z}(z) v^{z}(z) d \Omega
$$

This is sum-factorization
With $u=v=P^{n}$, in 3D, and Gaussian quadrature, costs $\mathrm{O}\left(\mathrm{n}^{7}\right)$

Results (Weighted Mass Matrix for H^{1})

Assembly

Operator Action

$$
\int \phi u v \text { where } u, v \in H^{1} \text { and } \phi \in L_{2}
$$

13824 dofs, single process, on laptop

Results (Weighted Laplacian for H^{1})

Assembly

Operator Action

$$
\int \phi \vec{\nabla} u \cdot \vec{\nabla} v \text { where } u, v, \phi \in H^{1}
$$

13824 dofs, single process, on laptop

Strong Scaling Results (Operator Action)

H^{1} Weighted Mass

H^{1} Weighted Laplacian

Ranges from 110592 dofs per process to 9216 dofs per process
Tests done on a SINGLE node with 26 -core Westmere processors

Timing Breakdowns for Operator Action (Tensor Product Only)

H^{1} Weighted Mass

H^{1} Weighted Laplacian

Ranges from 110592 dofs per process to 9216 dofs per process Tests done on a SINGLE node with 26 -core Westmere processors

Conclusions

Summary

Conclusions

- Structure preserving numerical schemes can be derived from the combination of a Mimetic Discretization Method and a Hamiltonian Formulation
- Exploiting tensor product structure (sum factorization) is key to good performance
- For finite elements, the superior choice appears to be operator action rather than assembly, ASSUMING effective preconditioners can be found

Next Steps

- Look at ways to improve strong scaling (reduced communication, overlapping computation and communication)
- "Matrix-free" preconditioners- geometric multigrid (h+p), low order matrices

Extra Slides

Future Work

Further Possible Performance Enhancements

- Overlap of communication and computation
- PyOP2 style redundant computation (no off-process matrix entry creation, similarly for operator action)
- Vectorization across elements
- Optimized tensor contraction routines
- Specialized matrix data structures + matrix-free products for structured grid tensor product finite elements (reduced data movement, increased vectorization potential)
- Specialized vector data structure and insertion/extraction routines (reduced data movement, increased vectorization potential)
- Shared memory features through MPI-3 (windows, neighborhood collectives)

Strong Scaling Results (Assembly)

H^{1} Weighted Mass

H^{1} Weighted Laplacian

Ranges from 110592 dofs per process to 9216 dofs per process
Tests done on a SINGLE node with 26 -core Westmere processors

Timing Breakdowns for Assembly (Tensor Product Only)

H^{1} Weighted Mass

H^{1} Weighted Laplacian

Ranges from 110592 dofs per process to 9216 dofs per process Tests done on a SINGLE node with 26 -core Westmere processors

Results (Mass Matrix for H(div))

Assembly

Operator Action

$$
\int \vec{u} \cdot \vec{v} \text { where } u, v \in H(\operatorname{div})
$$

Duality Results (algorithm from Kirby 2014)

Assembly

Operator Action

$$
\int \phi u v \text { where } u, v \in H^{1} \text { and } \phi \in L_{2}
$$

$P_{2}-P_{1, D G}$ Dispersion Relationship

$$
\mathcal{A}=H_{1} \text { Space (1D) }
$$

$\mathcal{B}=L_{2}$ Space (1D)

Inertia-Gravity Wave Dispersion Relationship (1D)

Multiple dofs per element \rightarrow breaks translational invariance \rightarrow spectral gaps
We have developed an alternative: mimetic Galerkin differences

Mimetic Galerkin Differences: Basis

$\mathcal{A}=H_{1}$ Space (1D)

$\mathcal{B}=L_{2}$ Space (1D)

Single degree of freedom per geometric entity (physics coupling) Higher order by larger stencils (less local)
3rd Order Elements

Mimetic Galerkin Differences- Dispersion

Inertia-Gravity Wave Dispersion Relationship (1D) for 3rd Order Elements
Spectral gap is gone
Can show that dispersion relation is $O(2 n)$ where n is the order More details in a forthcoming paper

MGD Results (Weighted Mass Matrix for H^{1})

Assembly

Operator Action

$$
\int \phi u v \text { where } u, v \in H^{1} \text { and } \phi \in L_{2}
$$

MGD Enhancements

How do we speed up MGD?

- MGD is structurally identical to IGA in terms of basis function support: Use ideas from that literature!
- Lookup tables- requires isoparametric geometry and coefficients/fields, tables get very large at high order
- Reduced/optimal quadrature rules: finite element based assembly uses too many quadrature points, reduce them (this is the source of p^{d} slowdown)
- Weighted row based assembly and operator action: based on reduced quadrature, assembly/action becomes truly independent per row so simpler parallelization

