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Introduction
Who am 17

@ PhD Student in Atmospheric Science at Colorado State
University

@ Work for Dave Randall at Center for Multiscale Modelling of
Atmospheric Processes (CMMAP)

© Did undergraduate work at Carnegie Mellon University
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Introduction

Broad Research Overview: What are dynamical cores?

@ Develop discrete models of the atmosphere (dynamical cores)
© Dynamical core: deals with "resolved processes”
© Parameterizations: deals with " unresolved processes”

@ Model: dynamical core + parameterizations

Which is the model, and which is reality? (from Miura et. al 2007)
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Philosophy of Dynamical Core Development

@ Model development is a series of choices: equation sets,
predicted variables, numerical methods, many others

© Numerical model: Continuous equations — algebraic
equations

© Are solutions between these two the same?
© — "Mimetic" methods, conservation properties

© Need to use "expertise” to develop models

OA [ OA_ AT A AL - AL,

ot | ox At nx 0
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Introduction
Conservation Laws

© Equations of fluid dynamics come from conservation laws:
mass, momentum, energy, etc.

@ Conserved quantities provide a powerful constraint on the
dynamics

© Different types of conserved quantities: integral quantities
(total energy,...), parcel quantities (mass, potential
vorticity,...)

© Conservation laws are FUNDAMENTAL to atmospheric
dynamics — Discretization should preserve (an
analogue) of them
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Introduction
A Simple Example, part 1

1-D Advection

Consider 1-D advection of A:

oa oA _
ot Ox

This system conserves (with period B.C.’s)

/ Adx

Q

/ A2 dx
Q

(among other things)
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Introduction
A Simple Example, part 2

1-D Advection, Discretized

Now consider 2 different spatial discretizations of this system:

0A;  Ai—Ai1
ot + Ax =0
and 0A A A
WAy + i+1 — Ai—1 -0

ot 2Ax

Both will conserve ), A; (discrete analogue of [, Adx)
Both are consistent

What about conservation of Y, A? (discrete analogue of
Jo A%dx)? (Let's assume Ax = 1 for convenience)
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Introduction

A Simple Example, part 3

QZ;@:ZQAZ:ZA,.QA,.:ZA,(A,_A,._I);AO
ot =" —~ ot " —~ 0t ,_

. 2
Doesn't conserve ) ; Az

QZ/@:ZQA?:ZA,.QA;:ZA,-(A,.H_A,-_I)
ot - ! - ot ' - ot ’_

=> AA1— ) AA_1=0

2
Conserves ) . Az
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Introduction
A Simple Example, part 4

Not so fast...

@ Second discretization can be unstable with certain time
stepping schemes

@ Only first discretization is monotonic and sign-preserving
© Tradeoffs...

© Real models must make choices like this all the time
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Introduction
What do | do?

@ How can we develop
numerical methods that
conserve discrete analogues
of important physical
quantities: mass, potential
vorticity, total energy,
potential enstrophy?

© What other mimetic
properties should our

models have? Shallow water simulation from
' Ringler et. al 2010
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Introduction
Specifically?

@ How can we do these things (conservation, other mimetic
properties) on arbitrary, non-orthogonal polygonal grids?

®

Planar Grids

3

Icosahedral-hexagons Cubed Sphere
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Introduction

Conservation Laws: Non Canonical Hamiltonian Structure

© Equations of atmospheric dynamics have a special structure
@ Numerical models should reflect this structure

© Non-canonical infinite dimensional Hamiltonian mechanics:

O = q]]éi;[ J - symplectic operator
ot 0X H - Hamiltonian functional
Jéz —0 Z - Casimir functional
0X F - arbitrary functional
dF  O0H _OF (,) - inner product
dt _(ﬁ’Jﬁ) X - set of variables
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Introduction
Conservation Properties

Hamiltonian (Energy)

Requires only the anti-symmetry of J and the positive definiteness
of (,) (and therefore H). Fluid dynamical systems: H is total
energy.

Casimirs (Mass, Potential Vorticity, Potential Enstrophy)

Functionals Z such that
0Z
Ji

will be conserved. Some important examples are the mass,
potential vorticity and potential enstrophy.
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Introduction
Shallow Water Equations

Vector Invariant Shallow Water Equations

Z = [ dQhC(q) Shallow water simulation from
Q Ringler et. al 2010

v
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Introduction
Generalized C Grid Discretization

o Discrete variables are m; = [ hdA (discrete primal 2-form)
and ue = [ @ - dl (discrete dual 1-form)
o C grid staggering (m; at cell centers, ue at edges)

@ General formulation is:

X = (mj, ue)

0 Dy
J=145
(5. 2)
1 1
H = Sg(mi,mi)i + S (Fe, te)n

2 2 , ‘

2—7_{, = (:f;_.’) Non-orthogonal primal-dual C

x ¢ grid (from Dubos 2012)
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Introduction
Discrete Energy Conservation

Requires two things:
© J is anti-symmetric: D2T =Dy, and Q = Q7
@ 7 is positive definite: | and H are symmetric positive definite

This gives semi-discrete energy conservation (fully discrete is a

different matter).

Planar Grids

Icosahedral-hexagons Cubed Sphere

Chris Eldred CMMAP Student Collogium Presentation



Introduction
Summary

© General discrete framework can conserve mass, potential
vorticity, total energy and potential enstrophy on
general, non-orthogonal polygonal meshes

@ Framework cleanly splits topological (Dl,Dz, etc.) and
metrical (I,H,etc.) aspects; can change one component
without changing others

© Getting total energy and potential enstrophy conservation
together is tricky (having only one is "easy")

© Hamiltonian/DEC framework also has useful mimetic
properties (linear stability, no spurious vorticity production,
etc.)
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Introduction

Mass and Potential Vorticity Conservation

Mass Conservation

Local and global conservation by form alone (" flux form”,
independent of how F. is formulated)

Potential Vorticity Conservation

om,q,

D-,QHF. =
ot + 2Q e 0

Local and global conservation by form alone (" flux form”,
independent of how Q is formulated)
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Introduction
Discrete Potential Enstrophy

1

Ze= (.3 ")y
- (o) - ()
oKX D_gTqv ~\ Dig, o Discrete vorticity is
Gv = Daue
o Mass-weighted potential
vorticity

myqy =G+ =ny
e m, = Rm;; R maps primal
2-forms to dual 2-forms

Construction of R from Thuburn
et. al 2009
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Introduction
Discrete Potential Enstrophy Conservation

Operator Requirements

Casimir conservation requires (1) is automatic (D>D; = 0)
. . _ T
52 (2) is tricky- depends on R
Jﬁ =0 @ TRiSK and Arakawa and
_ _ Lamb 1981 schemes both
which gives construct Q such that (2) is
satisfied
D2 quv =0 (1)
@ Only Arakawa and Lamb
_ qu 1981 also has Q = QT
—DiR 5T QDigy =0 (2) (energy conservation)

e Form of (2) gives hope that Arakawa and Lamb 1981 scheme
can be extended to non-orthogonal, arbitrary polygonal
meshes

Chris Eldred CMMAP Student Collogium Presentation



	Introduction

