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Introduction

Who am I?

1 PhD Student in Atmospheric Science at Colorado State
University

2 Work for Dave Randall at Center for Multiscale Modelling of
Atmospheric Processes (CMMAP)

3 Did undergraduate work at Carnegie Mellon University

Chris Eldred CMMAP Student Colloqium Presentation



Introduction

Broad Research Overview: What are dynamical cores?

1 Develop discrete models of the atmosphere (dynamical cores)

2 Dynamical core: deals with ”resolved processes”

3 Parameterizations: deals with ”unresolved processes”

4 Model: dynamical core + parameterizations

Which is the model, and which is reality? (from Miura et. al 2007)
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Philosophy of Dynamical Core Development

1 Model development is a series of choices: equation sets,
predicted variables, numerical methods, many others

2 Numerical model: Continuous equations → algebraic
equations

3 Are solutions between these two the same?

4 → ”Mimetic” methods, conservation properties

5 Need to use ”expertise” to develop models

∂A

∂t
+
∂A

∂x
= 0⇒

An+1
i − An

i

∆t
+

An
i+1 − An

i−1

2∆x
= 0
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Conservation Laws

1 Equations of fluid dynamics come from conservation laws:
mass, momentum, energy, etc.

2 Conserved quantities provide a powerful constraint on the
dynamics

3 Different types of conserved quantities: integral quantities
(total energy,...), parcel quantities (mass, potential
vorticity,...)

4 Conservation laws are FUNDAMENTAL to atmospheric
dynamics → Discretization should preserve (an
analogue) of them
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A Simple Example, part 1

1-D Advection

Consider 1-D advection of A:

∂A

∂t
+
∂A

∂x
= 0

This system conserves (with period B.C.’s)∫
Ω
Adx

and ∫
Ω
A2dx

(among other things)
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A Simple Example, part 2

1-D Advection, Discretized

Now consider 2 different spatial discretizations of this system:

∂Ai

∂t
+

Ai − Ai−1

∆x
= 0

and
∂Ai

∂t
+

Ai+1 − Ai−1

2∆x
= 0

Both will conserve
∑

i Ai (discrete analogue of
∫

Ω Adx)
Both are consistent
What about conservation of

∑
i A

2
i (discrete analogue of∫

Ω A2dx)? (Let’s assume ∆x = 1 for convenience)
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A Simple Example, part 3

First Discretization

∂

∂t

∑
i

A2
i =

∑
i

∂

∂t
A2
i =

∑
i

Ai
∂

∂t
Ai =

∑
i

Ai (Ai − Ai−1) 6= 0

Doesn’t conserve
∑

i A
2
i

Second Discretization

∂

∂t

∑
i

A2
i =

∑
i

∂

∂t
A2
i =

∑
i

Ai
∂

∂t
Ai =

∑
i

Ai (Ai+1 − Ai−1)

=
∑
i

AiAi+1 −
∑
i

AiAi−1 = 0

Conserves
∑

i A
2
i
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A Simple Example, part 4

Not so fast...

1 Second discretization can be unstable with certain time
stepping schemes

2 Only first discretization is monotonic and sign-preserving

3 Tradeoffs...

4 Real models must make choices like this all the time
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What do I do?

1 How can we develop
numerical methods that
conserve discrete analogues
of important physical
quantities: mass, potential
vorticity, total energy,
potential enstrophy?

2 What other mimetic
properties should our
models have?

Shallow water simulation from
Ringler et. al 2010
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Specifically?

1 How can we do these things (conservation, other mimetic
properties) on arbitrary, non-orthogonal polygonal grids?

Planar Grids
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Conservation Laws: Non Canonical Hamiltonian Structure

1 Equations of atmospheric dynamics have a special structure

2 Numerical models should reflect this structure

3 Non-canonical infinite dimensional Hamiltonian mechanics:

∂~x

∂t
= J

δH
δ~x

J
δZ
δ~x

= 0

dF
dt

= −(
δH
δ~x
, J
δF
δ~x

)

J - symplectic operator
H - Hamiltonian functional
Z - Casimir functional
F - arbitrary functional
(, ) - inner product
~x - set of variables
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Conservation Properties

Hamiltonian (Energy)

Requires only the anti-symmetry of J and the positive definiteness
of (, ) (and therefore H). Fluid dynamical systems: H is total
energy.

Casimirs (Mass, Potential Vorticity, Potential Enstrophy)

Functionals Z such that

J
δZ
δ~x

= 0

will be conserved. Some important examples are the mass,
potential vorticity and potential enstrophy.
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Shallow Water Equations

Vector Invariant Shallow Water Equations

~x = (h, ~u)

J =

(
0 ~∇·
~∇ qk̂×

)

H =
1

2
g(h, h) +

1

2
(~F , ~u)

δH
δ~x

=

(
Φ
~F

)
=

(
gh + K
h~u

)
Z =

∫
Ω
dΩhC (q) Shallow water simulation from

Ringler et. al 2010
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Generalized C Grid Discretization

Discrete variables are mi =
∫
hdA (discrete primal 2-form)

and ue =
∫
~u · ~dl (discrete dual 1-form)

C grid staggering (mi at cell centers, ue at edges)

General formulation is:

~x = (mi , ue)

J =

(
0 D2

D̄1 Q

)
H =

1

2
g(mi ,mi )I +

1

2
(Fe , ue)H

δH
δ~x

=

(
IΦi

HFe

)
Non-orthogonal primal-dual C

grid (from Dubos 2012)
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Discrete Energy Conservation

Requires two things:

1 J is anti-symmetric: DT
2 = −D̄1, and Q = QT

2 H is positive definite: I and H are symmetric positive definite

This gives semi-discrete energy conservation (fully discrete is a
different matter).

Planar Grids
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Summary

1 General discrete framework can conserve mass, potential
vorticity, total energy and potential enstrophy on
general, non-orthogonal polygonal meshes

2 Framework cleanly splits topological (D̄1,D2, etc.) and
metrical (I,H,etc.) aspects; can change one component
without changing others

3 Getting total energy and potential enstrophy conservation
together is tricky (having only one is ”easy”)

4 Hamiltonian/DEC framework also has useful mimetic
properties (linear stability, no spurious vorticity production,
etc.)
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Mass and Potential Vorticity Conservation

Mass Conservation

∂mi

∂t
+ D2HFe = 0

Local and global conservation by form alone (”flux form”,
independent of how Fe is formulated)

Potential Vorticity Conservation

∂mvqv
∂t

+ D̄2QHFe = 0

Local and global conservation by form alone (”flux form”,
independent of how Q is formulated)
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Discrete Potential Enstrophy

ZC =
1

2
(ηv , J

−1qv )J

δZC
δ~x

=

(
−RT q2

v
2

D̄2
T
qv

)
=

(
−RT q2

v
2

D1qv

)

Construction of R from Thuburn
et. al 2009

Discrete vorticity is
ζv = D̄2ue

Mass-weighted potential
vorticity
mvqv = ζv + f = ηv

mv = Rmi ; R maps primal
2-forms to dual 2-forms
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Discrete Potential Enstrophy Conservation

Conservation

Casimir conservation requires

J
δZC
δ~x

= 0

which gives

D2D1qv = 0 (1)

−D̄1RT q2
v

2
+ QD1qv = 0 (2)

Operator Requirements

(1) is automatic (D2D1 = 0)
(2) is tricky- depends on RT

TRiSK and Arakawa and
Lamb 1981 schemes both
construct Q such that (2) is
satisfied

Only Arakawa and Lamb
1981 also has Q = QT

(energy conservation)

Form of (2) gives hope that Arakawa and Lamb 1981 scheme
can be extended to non-orthogonal, arbitrary polygonal
meshes
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