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Introduction

1 Shallow water equations are adiabatic, inviscid→ Hamiltonian

2 Would like discretizations to inherit (some) of the Hamiltonian
structure→ conservation laws

3 Wide variety of grids under consideration, schemes should be flexible

Planar Grids

Spherical Grids

4 Generalized Hamiltonian/DEC approach offers this flexibility (builds on
work of Salmon, Cotter, Thuburn, Ringler, Dubos, many others)

Non-Canonical Hamiltonian Dynamics

1 Start with non-canonical Hamiltonian dynamics (essentially all invsicid,
adiabatic fluid systems are of this form)
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J - symplectic operator
H - Hamiltonian functional
Z - Casimir functional
F - arbitrary functional
(, ) - inner product
~x - set of variables

Conclusion

1 General discrete framework can conserve mass, potential vorticity,
total energy and potential enstrophy on general,
non-orthogonal polygonal meshes

2 Framework cleanly splits topological (D̄1,D2, etc.) and metrical
(I,H,etc.) aspects; can change one component without changing
others

3 Getting total energy and potential enstrophy conservation together is
tricky for vector-invariant formulation (having only one is ”easy”)

4 Hamiltonian/DEC framework also has useful mimetic properties (linear
stability, no spurious vorticity production, etc.)

Vector-Invariant Continuous
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Vorticity-Divergence Continuous

1 Variables
~x = (h, ζ, δ)

2 Symplectic Operator
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3 Hamiltonian and Helmholtz Decomposition
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Vector-Invariant Discrete (C-Grid)

1 Discrete Variables

~x = (mi, ue)

ζv = D̄2ue
mvqv = ζv + f = ηv where

mv = Rmi
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Construction of R from Thuburn et. al
2009

Non-orthogonal primal-dual C grid

Vorticity-Divergence Discrete (Z-Grid)

1 Discrete Variables

~x = (mi, ζi, δi)

miqi = ζi
2 Symplectic Operator

J =
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3 Hamiltonian
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Z grid Distribution of Variables
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