

Introduction

- **1** Shallow water equations are adiabatic, inviscid \rightarrow Hamiltonian 2 Would like discretizations to inherit (some) of the Hamiltonian structure \rightarrow conservation laws
- Wide variety of grids under consideration, schemes should be float

Icosahedral-hexagons

Spherical Grids

Cubed Sphere

Generalized Hamiltonian/DEC approach offers this flexibility (below) work of Salmon, Cotter, Thuburn, Ringler, Dubos, many others

Non-Canonical Hamiltonian Dynamics

Start with non-canonical Hamiltonian dynamics (essentially all adiabatic fluid systems are of this form)

- \mathbb{J} symplectic operator
- ${\cal H}$ Hamiltonian functional
- \mathcal{Z} Casimir functional
- ${\mathcal F}$ arbitrary functional
- (,) inner product
- $ec{x}$ set of variables

Conclusion

- **1** General discrete framework can conserve mass, potential vor total energy and potential enstrophy on general, non-orthogonal polygonal meshes
- **2** Framework cleanly splits **topological** $(ar{D}_1, D_2,$ etc.) and **met** (I,H,etc.) aspects; can change one component without changing others
- Getting total energy and potential enstrophy conservation toget tricky for vector-invariant formulation (having only one is "easy
- Hamiltonian/DEC framework also has useful mimetic properties stability, no spurious vorticity production, etc.)

Structure Preserving Discretizations of the Shallow Water Equations

Chris Eldred and David Randall

Department of Atmospheric Science, Colorado State University August 6th, 2014

$$\begin{aligned} \frac{\sqrt{\operatorname{Vector-Invariant Continuous}}{\operatorname{Invariables}} & \vec{x} = (h, \vec{u}) \\ hq = \zeta \\ & \text{Symplectic Operator} \\ \vec{z} = \begin{pmatrix} 0 & \vec{\nabla} \\ & q\hat{k} \\ \end{pmatrix} \\ & \text{Hamiltonian} \\ & \mathcal{H} = \frac{1}{2}(gh, h) + \frac{1}{2}(h\vec{u}, \vec{u}) \\ & \frac{\delta \mathcal{H}}{\delta \vec{x}} = \begin{pmatrix} \Phi \\ h\vec{u} \\ \end{pmatrix} \\ & \text{Potential Enstrophy (Casimir)} \\ & \mathcal{Z}_{C} = \frac{1}{2}(\zeta, q) \\ & \frac{\delta \mathcal{Z}_{C}}{\delta \vec{x}} = \begin{pmatrix} -\frac{q^{2}}{2} \\ & -\frac{q^{2}}{2} \\ \end{pmatrix} \\ & \text{Invsicid,} \\ & \text{Vorticity-Divergence Continuous} \\ & \text{Variables} \\ & \vec{x} = (h, \zeta, \delta) \\ & \text{Invariables} \\ & \vec{x} = (h, \zeta, \delta) \\ & \text{Invariables} \\ & \text{Invariables} \\ & \vec{x} = (h, \zeta, \delta) \\ & \text{Invariables} \\ & \text{I$$

Vector-Invariant Discrete (C-Grid)

Discrete Variables

$$\vec{x} = (m_i, u_e)$$

$$\zeta_v = \bar{D}_2 u_e$$

$$m_v q_v = \zeta_v + f = \eta_v \text{ where}$$

$$m_v = Rm_i$$
Symplectic Operator

$$J = \begin{pmatrix} 0 & D_2 \\ \bar{D}_1 & Q \end{pmatrix}$$
Hamiltonian

$$\mathcal{H} = \frac{1}{2}g(m_i, m_i)_I + \frac{1}{2}(F_e, u_e)$$

$$\frac{\delta \mathcal{H}}{\delta \vec{x}} = \begin{pmatrix} I\Phi_i \\ HF_e \end{pmatrix}$$
Potential Enstrophy (Casimir)

$$\mathcal{Z}_{\mathcal{C}} = \frac{1}{2}(\eta_v, J^{-1}q_v)_J$$

$$\frac{\delta \mathcal{Z}_{\mathcal{C}}}{\delta \vec{x}} = \begin{pmatrix} -R^T \frac{q_v^2}{2} \\ \bar{D}_2^T q_v \end{pmatrix} = \begin{pmatrix} -R^T \frac{q_v}{2} \\ D_1 q_v \end{pmatrix}$$

vorticity-Divergence Discrete (Z-Grid)

1 Discrete Variables

$$ec{x} = (m_i, \zeta_i, \delta_i)$$
 $m_i q_i = \zeta_i$

2 Symplectic Operator

$$\mathbb{J} = egin{pmatrix} 0 & 0 & \mathrm{L} \ 0 & -\mathrm{J}_\zeta(q_i,ullet) & \mathrm{FD}(q_i) \ -\mathrm{L}-\mathrm{FD}(q_i,ullet) & -\mathrm{J}_\delta(q_i) \end{pmatrix}$$

3 Hamiltonian

$$rac{\delta \mathcal{H}}{\delta ec x} = egin{pmatrix} \Phi_i \ -\psi_i \ -\chi_i \end{pmatrix}$$

Potential Enstrophy (Casimir)

$$egin{aligned} \mathcal{Z}_{\mathcal{C}} &= \sum_i m_i rac{q_i^2}{2} \ \delta \mathcal{Z}_{\mathcal{C}} &= egin{pmatrix} -rac{q_i^2}{2} \ q_i \ 0 \end{pmatrix} \end{aligned}$$

