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1. AL81 is original paper of scheme
2. S04 provided a very useful framework for the development of

schemes
3. TRISK papers extended scheme in different direction
4. This work is largely about a merger of these two approaches
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Broad Research Overview: Dynamical Cores

1 Develop discrete models of the atmosphere

2 Dynamical core: deals with ”resolved processes”

3 Parameterizations: deal with ”unresolved processes”

4 Model: dynamical core + parameterizations
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Key Principles of Numerical Modeling

1 Not solving arbitrary PDEs- physical system

2 No analytic solutions

3 Differential equations → algebraic equations

4 Do algebraic solutions have the same properties as the
differential solutions?
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1. Convergence: Algebraic equations -¿ differential equations when
dx,dt-¿0

2. Consistent: Solutions of algebraic equations approach solutions of
differential equations as dx,dt-¿0

3. Ex. forward in time, centered in space for advection: convergent but
not consistent

4. But convergence and consistently can still be wrong: ex. mean state
of BVE equations using different discretizations
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Philosophy of Dynamical Core Design

1 Models should respect underlying physics
1 Energetics
2 PV dynamics
3 Wave dynamics
4 Conserved quantities- energy, potential enstrophy
5 Mimetic properties

~∇× ~∇φ = 0
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1. Energetics: conservation, conversion
2. PV dynamics: balanced flow, invertibility, etc.
3. Wave dynamics: IG, Rossby, Kelvin, etc.
4. Mass, momentum, PV, tracer conservation, etc.
5. Mimetic properties have a both physical interpretation and a

mathematical one
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Shallow Water Equations

Vector Invariant Shallow Water Equations

∂h

∂t
+ ~∇ · (h~u) = 0

∂~u

∂t
+ qk̂ × (h~u) + ~∇Φ = 0

~x = (h, ~u)

∂~x

∂t
= J

δH
δ~x

J =

(
0 −~∇·
−~∇ −qk̂×

)

H =
1

2
g(h, h) +

1

2
(~F , ~u)

δH
δ~x

=

(
Φ
h~u

)
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1. Discretize J and H- independent!
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Shallow Water Equations: (Subset of) Properties

Mimetic

No Spurious Vorticity Production:

~∇× ~∇φ = 0

Pressure Gradient is Energy Conserving:

(~∇)∗ = −~∇·

Conserved Quantities

Total Energy
∫

Ω
gh2

2 + h|~u|2
2

Potential Enstrophy
∫

Ω h q2

2
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1. Both physical and mathematical interpretation of mimetic properties
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Arakawa and Lamb 1981 Scheme: Desirable Properties

(A Subset of) Desirable Properties

1 No spurious vorticity production (curl-free gradient)

2 Energy-conserving pressure gradient force (divergence and
gradient are adjoints)

3 Total energy and potential enstrophy conservation
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1. First two are mimetic properties
2. Last one can be done using Hamiltonian methods
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Arakawa and Lamb 1981 Scheme: Limitations

(A Subset of) AL81 Shortcomings

1 Restricted to logically square, orthogonal grids

TRiSK: Ringler, Skamarok, Klemp, Thuburn, Cotter, Dubos

1 General, non-orthogonal polygonal grids

2 Choose between total energy and potential enstrophy
conservation

Logically square, orthogonal grid General, non-orthogonal grid
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Recap: What am I trying to accomplish?

1 How can Arakawa and Lamb
1981 be extended to on
arbitrary, non-orthogonal
polygonal grids?
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Mimetic Methods (Discrete Exterior Calculus)

Mimetic Operators

~∇× ~∇φ = 0⇐⇒ D̄2D̄1 = 0

(~∇)∗ = −~∇· ⇐⇒ D2 = −D̄1
T

(Discrete) Exterior Derivative Primal-Dual Grid
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1. De-Rham cohomology
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Conservation Laws (Hamiltonian Mechanics)

Hamiltonian (Energy)

JT = −J

H is positive definite

Casimirs (Potential Enstrophy)

J
δZ
δ~x

= 0

Discrete Conservation

Enforce these conditions in discrete case → conservation!
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1. J and H are indep
2. Tricky to do both at the same time- this is my contribution
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Recap: Conservative, Mimetic Methods

Conservation Laws

1 Hamiltonian Mechanics

2 Salmon, Dubos, Gassmann,
Sommer, Nevir, others

Mimetic Properties

1 Discrete Exterior Calculus

2 Thuburn, Cotter, others

Conservative, Mimetic Methods

1 Use mimetic operators to build a discrete (quasi-)Hamiltonian
system

2 Unifies two important lines of research
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Generalized C Grid Discretization: Hamiltonian-DEC

Discrete variables are mi =
∫
hdA and ue =

∫
~u · ~dl

C grid staggering (mi at cell centers, ue at edges)

General formulation is:

~x = (mi , ue)

J =

(
0 D2

D̄1 Q

)
H =

1

2
g(mi ,mi )I +

1

2
(Ce , ue)H

Q operator is the remaining hurdle
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General Form of Q

Following Salmon 2004, set

QFe =
∑

e′∈ECP(e)

∑
v∈VC(i)

qvαe,e′,vFe′

What are αe,e′,v ’s?

Diagram of Q operator (from Bill
Skamarock)
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1. This form is identical to AL81 and S04 (for given stencil)
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Discrete Conservation

Energy

JT = −J −→ Q = −QT −→ αe,e′,v = −αe′,e,v

Potential Enstrophy

J
δZ
δ~x

= 0 −→ linear system of equations −→ A~α = ~b

Planar Grids

Chris Eldred and David Randall CMMAP 2015 Presentation



Introduction
Extension of AL81 to Arbitrary Grids

Results
Conclusions

Solving A~α = ~b

Issue: System is too large

Geodesic grid: O(100) coefficients per cell, all coefficients are
interdependent → not feasible for realistic grids

Solution: Subystem Splitting

A~α = ~b −→
∑
i

Ai~αi = ~bi

Split into independent subsystems for each cell!

System has been solved for various planar and geodesic grids
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1. A is a rectangular matrix of integers (0,1,-1)
2. Underdetermined system- free parameters
3. ~α are the coefficients
4. ~b is known (function of grid geometry)



Introduction
Extension of AL81 to Arbitrary Grids

Results
Conclusions

Recap: What have I accomplished?

Arakawa and Lamb 1981 extended to arbitrary grids

Coefficients can be precomputed (efficiently)

Planar Grids
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Flow over an Isolated Mountain (Williamson Test Case 5)
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Galewsky et. al (Unstable Jet)
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Conservation Properties (Galewsky Test Case)

These results are WITHOUT any added dissipation
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Summary and Conclusions

Conclusions

1 Combined Salmon 2004 (Hamiltonian) and Thuburn, Cotter
and Dubos 2012 (Mimetic/Discrete Exterior Calculus)
approaches to develop an extension of Arakawa and Lamb
1981 to arbitrary polygonal grids

2 Preserves all desirable properties of AL81

Future Work

1 Detailed evaluation of scheme

2 Comparison to Z-grid scheme (Salmon 2007)

3 Test approach on other grids (cubed sphere)
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