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Abstract

Shallow water equations are a useful analogue
of the fully compressible Euler equations for
atmospheric model development

Linear properties (propagating and stationary
modes) play an important physical role in the
behaviour of the atmosphere

Using the Atmospheric Dynamical COre
Testbed (ADCOT) built on top of Morphe,
the linear properties of two finite-difference
schemes (TRiSK: Ringler, Thuburn, Klemp &
Skamarock 2010 and HR95: Heikes & Randall
1995) are compared to those of the
continuous equations

ADCOT: Design & Implementation

Horizontal meshes represented as sets of
relationships between elements

Figure: An example of a mesh type representable in ADCOT

Perfect planar square, hexagonal and
triangular meshes are currently implemented
(more to come, especially geodesic and
cubed-sphere)

Figure: Supported planar meshes in ADCOT

Variables (scalar, vector, array, vector
component) placed arbitrarily on mesh
elements

Operators defined as sparse matrices (linear)
or algebraic combinations of vector and sparse
matrix operations (non-linear)

~∇ · u→ D~u

~∇(KE + gh)→ G(Ku2
e + g~h)

Compile and run-time polymorphism provide
flexibility

Models are written in Fortran 90 using
Cheetah for compile time polymorphism; code
is heavily shared between linear and non-linear
models

Uses PETSc and SLEPc to provide grid
management, linear/eigenvalue solvers and
I/O

Analysis packages are written in Python using
the Numpy, Scipy and Matplotlib libraries

Adams-Bashford and Runge-Kutta explicit
time stepping

TRiSK and HR95 horizontal discretizations
(more to come!)

Linear Shallow Water Equations on an f-plane

Momentum Form Linear Shallow Water
Equations

∂~u

∂t
= −fk̂ × ~u+ g~∇h

∂h

∂t
= −H(~∇ · u)

Vorticity-Divergence Form Linear Shallow
Water Equations

∂ζ

∂t
= −fδ

∂δ

∂t
= fζ − g~∇2h

∂h

∂t
= −Hδ

Propagating Modes (Inertia-Gravity Waves)(
σ

f

)2

= 1 + λ2(k2 + l2)

Results: Numerical Dispersion Relationships
(Propagating Modes)

Dispersion relationship calculated as
d~x
dt

= L~x→ iω~x = A~x (eigenvalue
problem)

Fourier transforms are used to determine
which spatial wavenumbers each
eigenvector/eigenvalue pair is associated with

Well resolved Rossby radii (λ
d
= 2.0) and

poorly resolved Rossby radii (λ
d
= 0.1) tested

Both TRiSK (C-grid) and HR95 (Z-Grid)
perfect planar square and hexagonal meshes
investigated (only hexagonal grid results
shown; for a 15x15 mesh)

Dispersion relations are mapped to the
Brillouin zone associated with a perfect planar
hexagonal mesh

Results are identical to theoretical dispersion
relations (within numerical bounds)

Figure: C-Grid dispersion relations for λ
d
= 2.0 (top)

and λ
d
= 0.1 (bottom) where ω = σ
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Results: Propagating Modes

Figure: Z-Grid dispersion relations for λ
d
= 2.0 (top) and

λ
d
= 0.1 (bottom) where ω = σ

f

Figure: Continuous dispersion relations for λ
d
= 2.0 (top)

and λ
d
= 0.1 (bottom) where ω = σ
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Conclusions

ADCOT provides a useful framework for
inter-comparison of various numerical schemes
for the nonlinear shallow water equations

Two very different schemes (TRiSK and
HR95) can be implemented under the same
code framework; previous results for these
scheme are reproduced
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