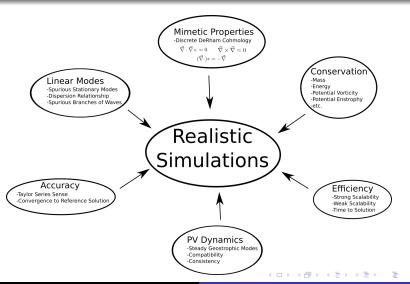
Higher-order Structure-Preserving Finite Elements for Atmospheric Dynamical Cores

Chris Eldred, Thomas Dubos and Evaggelos Kritsikis University of Paris 13

June 24th, 2016

Introduction

(Incomplete) List of Desirable Model Properties



Incomplete History of Structure-Preserving Schemes for Atmospheric Models

- The Beginning: Arakawa and Lamb 1981, Sadourney 1975
- Mimetic Finite Differences: Ringler et. al 2010; Thuburn et. al 2012, 2014, many others
- Mimetic Finite Elements: Cotter et. al 2012,2013; McRae et. al 2014, Thuburn + Cotter 2015, many others
- Hamiltonian Methods: Salmon 2004,2005,2007;
 Sommer+Nevir 2009; Gassmann 2008,2013; Dubos et. al 2015; Tort et. al 2015, many others

What is structure-preservation?

• Mimetic Discretization: curl-free pressure gradients, discrete product rules, discrete deRham cohomology, etc.

$$\vec{\nabla} \times \vec{\nabla} = 0$$

$$\vec{\nabla} \cdot \vec{\nabla} \times = 0$$

$$(\vec{\nabla} \cdot)^* = -\vec{\nabla}$$

Quasi-Hamiltonian system: conserves mass, total energy and possibly other invariants

$$\frac{d\mathcal{H}}{dt} = 0$$

$$\frac{dC}{dt} = 0$$

Mimetic Discretizations

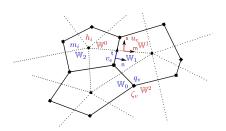
General Formulation for Mimetic Discretizations: Primal-Dual Double deRham Complex (Staggered Grids)



$$\delta = *d*$$

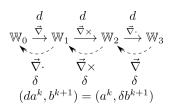
$$\nabla^2 = d\delta + \delta d$$

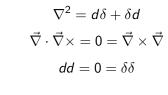
$$\vec{\nabla} \cdot \vec{\nabla} \times = 0 = \vec{\nabla} \times \vec{\nabla}$$



$$\int_{\Omega} dW = \int_{d\Omega} W$$
$$dd = 0 = \delta \delta$$

General Formulation for Mimetic Discretizations: Primal deRham Complex





 $\delta = *d*$

Hamiltonian

Non-Canonical Hamiltonian Dynamics

Evolution of an arbitrary functional $\mathcal{F} = \mathcal{F}[\vec{x}]$ is governed by:

$$\frac{d\mathcal{F}}{dt} = \left\{ \frac{\delta \mathcal{F}}{\delta \vec{x}}, \frac{\delta \mathcal{H}}{\delta \vec{x}} \right\} \tag{1}$$

with Poisson bracket $\{,\}$ antisymmetric (also satisfies Jacobi):

$$\{\frac{\delta \mathcal{F}}{\delta \vec{x}}, \frac{\delta \mathcal{G}}{\delta \vec{x}}\} = -\{\frac{\delta \mathcal{G}}{\delta \vec{x}}, \frac{\delta \mathcal{F}}{\delta \vec{x}}\}$$
 (2)

Also have Casimirs C that satisfy:

$$\left\{\frac{\delta \mathcal{F}}{\delta \vec{x}}, \frac{\delta \mathcal{C}}{\delta \vec{x}}\right\} = 0 \quad \forall \mathcal{F}$$
 (3)

Neatly encapsulates conservation properties (\mathcal{H} and \mathcal{C}).

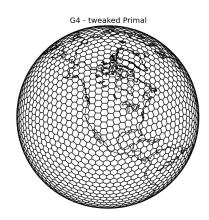
Recap: Mimetic + Hamiltonian = Structure-Preserving

- Fundamentally, structure-preserving schemes can be viewed as a combination of a mimetic discretization method plus a hamiltonian formulation
- Example: TRiSK Scheme (Primal-Dual ie Staggered Grid):

$$\frac{\partial \mathcal{F}}{\partial t} = \left(\frac{\delta \mathcal{A}}{m_i}, D_2 \frac{\delta \mathcal{B}}{u_e}\right)_{\mathbf{I}} + \left(\frac{\delta \mathcal{A}}{u_e}, \bar{D_1} \frac{\delta \mathcal{B}}{m_i}\right)_{\mathbf{H}} + \left(\frac{\delta \mathcal{A}}{u_e}, \mathbf{Q} \frac{\delta \mathcal{B}}{u_e}\right)_{\mathbf{H}}$$

- D_2 , $\bar{D_1}$ and \mathbf{Q} are mimetic operators (\mathbf{Q} is a little complicated)
- $(,)_{I},(,)_{J},(,)_{H}$ are inner products (induced by Hodge stars)
- Scheme conserves mass, energy, potential vorticity; has curl-free pressure gradients, steady geostrophic modes, etc.

Dynamico



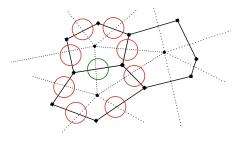
- Primal-Dual: Mimetic finite differences (based on TRiSK scheme): C grid horizontal, L orenz vertical
- Icosahedral grid
- Hydrostatic primitive equations: Lagrangian and mass-based vertical coordinates
- Conserves mass, energy and entropy
- See Dubos et. al 2015 for more information

Reconstruction Operator (W) in TRiSK

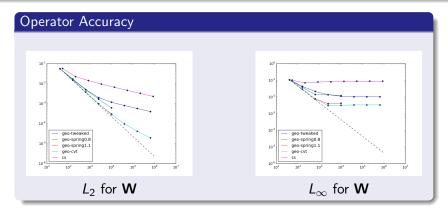
$$\mathbf{W} = \sum_{e' \in ECP(e)} W_{e,e'}$$
 $\mathbf{W} = -\mathbf{W}^T$
 $-\mathbf{R}D_2 = \bar{D}_2\mathbf{W}$

Given normal fluxes, reconstruct tangential fluxes

Satisfying: Steady geostrophic modes AND energy conservation AND accuracy



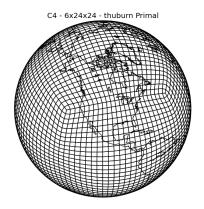
Issues with TRiSK



Spurious Branches of Dispersion Relationship

Hexagonal grid means 3:1 ratio of wind to mass dofs (should be 2:1) \rightarrow spurious branch of Rossby waves with unphysical behaviour

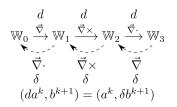
How do we fix them?

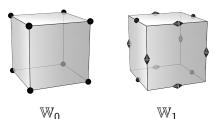


- Fix spurious branches:
 Quadrilateral (cubed-sphere)
 grid, correct 2:1 ratio of dofs
- Fix accuracy: Use Primal approach (mimetic Galerkin methods)
- Seep the same equations and Hamiltonian structure
- Keep the same mimetic and conservation properties

Mimetic Galerkin Discretization

Mimetic Galerkin Discretization





$$\delta = *d*$$

$$\nabla^2 = d\delta + \delta d$$

$$\vec{\nabla} \cdot \vec{\nabla} \times = 0 = \vec{\nabla} \times \vec{\nabla}$$

$$dd = 0 = \delta \delta$$

 \mathbb{W}_2

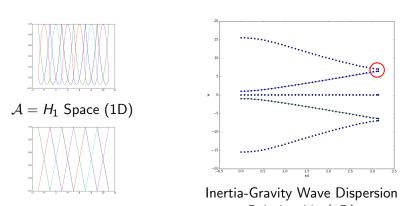
General Approach to Mimetic Galerkin Spaces

Mimetic Spaces

Select 1D Spaces
$$\mathcal{A}$$
 and \mathcal{B} such that $: \mathcal{A} \xrightarrow{\frac{d}{dx}} \mathcal{B}$ (4)

- Use tensor products to extend to n-dimensions
- Works for ANY set of spaces A and B that satisfy this property (mimetic finite elements use P_n and $P_{DG,n-1}$)
- Mimetic spectral element, Mimetic isogeometric methods (B-splines) all fall under this framework
- Our (different) choices of A and B are guided by linear mode properties and coupling to physics/tracer transport
- See Hiemstra et. al 2014 (and references therein)

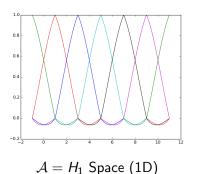
$P_2 - P_{1,DG}$ Dispersion Relationship

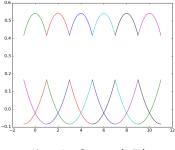


 $\mathcal{B}=L_2$ Space (1D) Relationship (1D) Multiple dofs per element o breaks translational invariance o spectral gaps

We have developed an alternative: mimetic Galerkin differences

Mimetic Galerkin Differences: Basis

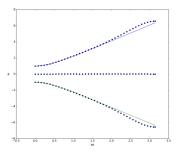




 $\mathcal{B} = L_2 \text{ Space (1D)}$

Single degree of freedom per geometric entity (physics coupling)
Higher order by larger stencils (less local)
3rd Order Elements

Mimetic Galerkin Differences- Dispersion



Inertia-Gravity Wave Dispersion Relationship (1D) for 3rd Order Elements

Spectral gap is gone

Can show that dispersion relation is O(2n) where n is the order More details in a forthcoming paper

Overview of 3D Spaces

$$\mathbb{W}_0 \xrightarrow{\vec{\nabla}} \mathbb{W}_1 \xrightarrow{\vec{\nabla} \times} \mathbb{W}_2 \xrightarrow{\vec{\nabla} \cdot} \mathbb{W}_3$$

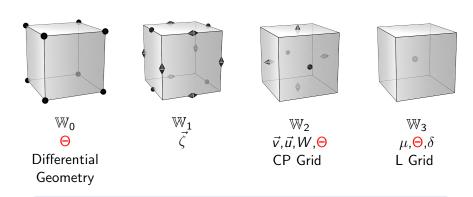
$$\mathbb{W}_0 = \mathcal{A} \otimes \mathcal{A} \otimes \mathcal{A} = \mathcal{H}_1 = \mathsf{Continuous} \; \mathsf{Galerkin}$$

$$\mathbb{W}_1 = (\mathcal{B} \otimes \mathcal{A} \otimes \mathcal{A})\hat{i} + \ldots = H(curl) = \mathsf{Nedelec}$$

$$\mathbb{W}_2 = (\mathcal{A} \otimes \mathcal{B} \otimes \mathcal{B})\hat{i} + \ldots = H(div) = \mathsf{Raviart-Thomas}$$

$$\mathbb{W}_3 = \mathcal{B} \otimes \mathcal{B} \otimes \mathcal{B} = \mathcal{L}_2 = \mathsf{Discontinuous}$$
 Galerkin

Grid Staggering for HPE



Follows from differential geometry and Tonti diagram
Galerkin Version of a C Grid
Question: Where should ⊖ live?

Hamiltonian Formulation

Poisson Brackets (Lagrangian Vertical Coordinate)

Poisson Brackets

From Dubos and Tort 2014, evolution of $\mathcal{F}[\vec{x}] = \mathcal{F}[\mu, \vec{v}, \Theta, z]$ is

$$\frac{d\mathcal{F}}{dt} = \left\{ \frac{\delta \mathcal{F}}{\delta \vec{x}}, \frac{\delta \mathcal{H}}{\delta \vec{x}} \right\}_{SW} + \left\{ \frac{\delta \mathcal{F}}{\delta \vec{x}}, \frac{\delta \mathcal{H}}{\delta \vec{x}} \right\}_{\Theta} + \left\langle \frac{\delta \mathcal{F}}{\delta z} \frac{\partial z}{\partial t} \right\rangle$$
 (5)

$$\{\frac{\delta \mathcal{F}}{\delta \vec{x}}, \frac{\delta \mathcal{H}}{\delta \vec{x}}\}_{SW} = \langle \frac{\delta \mathcal{H}}{\delta \vec{v}} \cdot \vec{\nabla} \frac{\delta \mathcal{F}}{\delta \mu} - \frac{\delta \mathcal{H}}{\delta \vec{v}} \cdot \vec{\nabla} \frac{\delta \mathcal{F}}{\delta \mu} \rangle + \langle \frac{\vec{\nabla} \times \vec{v}}{\mu} \cdot (\frac{\delta \mathcal{F}}{\delta \vec{v}} \times \frac{\delta \mathcal{H}}{\delta \vec{v}}) \rangle$$
(6)

$$\{\frac{\delta \mathcal{F}}{\delta \vec{x}}, \frac{\delta \mathcal{H}}{\delta \vec{x}}\}_{\Theta} = \langle \theta(\frac{\delta \mathcal{H}}{\delta \vec{v}} \cdot \vec{\nabla} \frac{\delta \mathcal{F}}{\delta \Theta} - \frac{\delta \mathcal{H}}{\delta \vec{v}} \cdot \vec{\nabla} \frac{\delta \mathcal{F}}{\delta \Theta}) \rangle \tag{7}$$

where μ is the pseudo-density, $\vec{v} = \vec{u} - \vec{R}$ is the absolute (covariant) velocity, $\Theta = \mu\theta$ is the mass-weighted potential temperature and z is the height.

Equations of Motion: Lagrangian Vertical Coordinate

Equations of Motion

Choose $\mathcal{F} = \int \hat{\mu}$ (or $\int \hat{v}/\int \hat{\Theta}/\int \hat{z}$) to get:

$$\int \hat{\mu} \left(\frac{\partial \mu}{\partial t} + \vec{\nabla} \cdot \left(\frac{\delta \mathcal{H}}{\delta \vec{v}} \right) \right) = 0 \tag{8}$$

$$\int \hat{\Theta} \left(\frac{\partial \Theta}{\partial t} + \vec{\nabla} \cdot (\theta \frac{\delta \mathcal{H}}{\delta \vec{v}}) \right) = 0$$
 (9)

$$\int \hat{v} \left(\frac{\partial \vec{v}}{\partial t} + \frac{\zeta_{\nu}}{\mu} \times \frac{\delta \mathcal{H}}{\delta \vec{v}} + \theta \vec{\nabla} \left(\frac{\delta \mathcal{H}}{\delta \Theta} \right) + \vec{\nabla} \left(\frac{\delta \mathcal{H}}{\delta \mu} \right) \right) = 0$$
 (10)

$$\int \hat{z} \frac{\delta \mathcal{H}}{\delta z} = \int \hat{z} \left(g \mu + \frac{\partial p}{\partial \eta} \right) = 0 \tag{11}$$

Note that these are ALL 2D except for hydrostatic balance (11)

Hamiltonian (Lagrangian Vertical Coordinate)

Hamiltonian and Functional Derivatives

$$\mathcal{H} = \mathcal{H}[\mu, \vec{\mathbf{v}}, \Theta, z] = \int \mu(\frac{\vec{\mathbf{u}} \cdot \vec{\mathbf{u}}}{2} + U(\frac{1}{\mu} \frac{\partial z}{\partial \eta}, \frac{\Theta}{\mu}) + gz)$$
(12)

$$\int \hat{\mathbf{v}} \frac{\delta \mathcal{H}}{\delta \vec{\mathbf{v}}} = \int \hat{\mathbf{v}} \left(\mu \vec{\mathbf{u}} \right) \tag{13}$$

$$\int \hat{\mu} \frac{\delta \mathcal{H}}{\delta \mu} = \int \hat{\mu} \left(\frac{\vec{\mathbf{u}} \cdot \vec{\mathbf{u}}}{2} + \mathbf{gz} \right) \tag{14}$$

$$\int \hat{\Theta} \frac{\delta \mathcal{H}}{\delta \Theta} = \int \hat{\Theta} \frac{\partial U}{\partial \theta} = \int \hat{\Theta} \pi \tag{15}$$

$$\int \hat{z} \frac{\delta \mathcal{H}}{\delta z} = \int \hat{z} \left(g \mu + \frac{\partial p}{\partial \eta} \right) \tag{16}$$

Conservation

Energy

- Arises purely from anti-symmetry of the brackets PLUS $\frac{\delta \mathcal{H}}{\delta z} = 0$
- Mimetic Galerkin methods automatically ensure an anti-symmetric bracket
- Works for ANY choice of H
- Something similar can be done with a mass-based vertical coordinate, although it is slightly more complicated

Mass, Potential Vorticity and Entropy

- These are Casimirs
- Can show that this discretization also conserves them

Remaining Issues and Questions

Hydrostatic Balance

- 2 Can this also be done with Galerkin approach?

Grid Staggering: Placement of Θ

- **1** Dynamico: Lorenz staggering (Θ and μ are collocated)
- ② Galerkin Equivalent: $\mu, \Theta \in \mathbb{W}_3$ (Admits a spurious computational mode in the vertical)
- **3** Charney-Phillips: $\Theta \in \mathbb{W}_{2,vert}$ (Avoids computational mode, complicates formulation)
- **③** Differential Geometry: Θ is a 0-form $\to \Theta \in \mathbb{W}_0$ (Excessive horizontal averaging \to computational mode/poor dispersion properties?)

Summary and Conclusions

Summary and Conclusions

Summary

- There is a general, effective procedure for devising mimetic, conservative numerical schemes:
- Mimetic discretizations + Hamiltonian formulation

Future Work

- Computational efficiency: preconditioning/solvers, matrix assembly
- Mass-based vertical coordinate
- Nonhydrostatic equations
- Past Inivscid, Adiabatic Dry Dynamics: Subgrid Turbulence, Moisture, Tracers, Physics Coupling

