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(Incomplete) List of Desirable Model Properties
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Incomplete History of Structure-Preserving Schemes for
Atmospheric Models

The Beginning: Arakawa and Lamb 1981, Sadourney 1975

Mimetic Finite Differences: Ringler et. al 2010; Thuburn
et. al 2012, 2014, many others

Mimetic Finite Elements: Cotter et. al 2012,2013; McRae
et. al 2014, Thuburn + Cotter 2015, many others

Hamiltonian Methods: Salmon 2004,2005,2007;
Sommer+Nevir 2009; Gassmann 2008,2013; Dubos et. al
2015; Tort et. al 2015, many others
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What is structure-preservation?

1 Mimetic Discretization: curl-free pressure gradients, discrete
product rules, discrete deRham cohomology, etc.

~∇× ~∇ = 0

~∇ · ~∇× = 0
(~∇·)∗ = −~∇

2 Quasi-Hamiltonian system: conserves mass, total energy
and possibly other invariants

dH
dt

= 0

dC
dt

= 0
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General Formulation for Mimetic Discretizations:
Primal-Dual Double deRham Complex (Staggered Grids)

δ = ∗d∗

∇2 = dδ + δd

~∇ · ~∇× = 0 = ~∇× ~∇

∫
Ω
dW =

∫
dΩ

W

dd = 0 = δδ
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General Formulation for Mimetic Discretizations: Primal
deRham Complex

δ = ∗d∗

∇2 = dδ + δd

~∇ · ~∇× = 0 = ~∇× ~∇

dd = 0 = δδ

W0 W1 W2 W3
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Hamiltonian
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Non-Canonical Hamiltonian Dynamics

Evolution of an arbitrary functional F = F [~x ] is governed by:

dF
dt

= {δF
δ~x
,
δH
δ~x
} (1)

with Poisson bracket {, } antisymmetric (also satisfies Jacobi):

{δF
δ~x
,
δG
δ~x
} = −{δG

δ~x
,
δF
δ~x
} (2)

Also have Casimirs C that satisfy:

{δF
δ~x
,
δC
δ~x
} = 0 ∀F (3)

Neatly encapsulates conservation properties (H and C).
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Recap: Mimetic + Hamiltonian = Structure-Preserving

Fundamentally, structure-preserving schemes can be viewed as
a combination of a mimetic discretization method plus a
hamiltonian formulation

Example: TRiSK Scheme (Primal-Dual ie Staggered Grid):

∂F
∂t

=

(
δA
mi
,D2

δB
ue

)
I

+

(
δA
ue
, D̄1

δB
mi

)
H

+

(
δA
ue
,Q

δB
ue

)
H

D2, D̄1 and Q are mimetic operators (Q is a little
complicated)

(, )I,(, )J,(, )H are inner products (induced by Hodge stars)

Scheme conserves mass, energy, potential vorticity; has
curl-free pressure gradients, steady geostrophic modes, etc.
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Dynamico

1 Primal-Dual: Mimetic finite
differences (based on TRiSK
scheme): C grid horizontal,
Lorenz vertical

2 Icosahedral grid

3 Hydrostatic primitive
equations: Lagrangian and
mass-based vertical
coordinates

4 Conserves mass, energy and
entropy

5 See Dubos et. al 2015 for
more information
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Reconstruction Operator (W) in TRiSK

W =
∑

e′∈ECP(e)

We,e′

W = −WT

−RD2 = D̄2W

Given normal fluxes, reconstruct
tangential fluxes
Satisfying: Steady geostrophic
modes AND energy conservation
AND accuracy
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Issues with TRiSK

Operator Accuracy

L2 for W L∞ for W

Spurious Branches of Dispersion Relationship

Hexagonal grid means 3:1 ratio of wind to mass dofs (should be
2:1) → spurious branch of Rossby waves with unphysical behaviour

C. Eldred, T. Dubos and E. Kritsikis DCMIP Presentation



Introduction
Dynamico

Mimetic Galerkin Discretization
Hamiltonian Formulation

How do we fix them?

1 Fix spurious branches:
Quadrilateral (cubed-sphere)
grid, correct 2:1 ratio of dofs

2 Fix accuracy: Use Primal
approach (mimetic Galerkin
methods)

3 Keep the same equations
and Hamiltonian structure

4 Keep the same mimetic and
conservation properties
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Mimetic Galerkin Discretization
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Mimetic Galerkin Discretization

δ = ∗d∗

∇2 = dδ + δd

~∇ · ~∇× = 0 = ~∇× ~∇

dd = 0 = δδ

W0 W1 W2 W3
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General Approach to Mimetic Galerkin Spaces

Mimetic Spaces

Select 1D Spaces A and B such that : A
d
dx−→ B (4)

Use tensor products to extend to n-dimensions

Works for ANY set of spaces A and B that satisfy this
property (mimetic finite elements use Pn and PDG ,n−1)

Mimetic spectral element, Mimetic isogeometric methods
(B-splines) all fall under this framework

Our (different) choices of A and B are guided by linear mode
properties and coupling to physics/tracer transport

See Hiemstra et. al 2014 (and references therein)
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P2 − P1,DG Dispersion Relationship

A = H1 Space (1D)

B = L2 Space (1D)

Inertia-Gravity Wave Dispersion
Relationship (1D)

Multiple dofs per element → breaks translational invariance →
spectral gaps
We have developed an alternative: mimetic Galerkin differences
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Mimetic Galerkin Differences: Basis

A = H1 Space (1D) B = L2 Space (1D)

Single degree of freedom per geometric entity (physics coupling)
Higher order by larger stencils (less local)
3rd Order Elements

C. Eldred, T. Dubos and E. Kritsikis DCMIP Presentation



Introduction
Dynamico

Mimetic Galerkin Discretization
Hamiltonian Formulation

Mimetic Galerkin Differences- Dispersion

Inertia-Gravity Wave Dispersion Relationship (1D) for 3rd Order
Elements

Spectral gap is gone
Can show that dispersion relation is O(2n) where n is the order

More details in a forthcoming paper

C. Eldred, T. Dubos and E. Kritsikis DCMIP Presentation



Introduction
Dynamico

Mimetic Galerkin Discretization
Hamiltonian Formulation

Overview of 3D Spaces

W0 W1 W2 W3

W0
~∇−→W1

~∇×−−→W2
~∇·−→W3

W0 = A⊗A⊗A = H1 = Continuous Galerkin
W1 = (B ⊗A⊗A)î + . . . = H(curl) = Nedelec
W2 = (A⊗ B ⊗ B)î + . . . = H(div) = Raviart-Thomas
W3 = B ⊗ B ⊗ B = L2 = Discontinuous Galerkin
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Grid Staggering for HPE

W0

Θ
Differential
Geometry

W1
~ζ

W2

~v ,~u,W ,Θ
CP Grid

W3

µ,Θ,δ
L Grid

Follows from differential geometry and Tonti diagram
Galerkin Version of a C Grid

Question: Where should Θ live?
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Hamiltonian Formulation
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Poisson Brackets (Lagrangian Vertical Coordinate)

Poisson Brackets

From Dubos and Tort 2014, evolution of F [~x ] = F [µ, ~v ,Θ, z ] is

dF
dt

= {δF
δ~x
,
δH
δ~x
}SW + {δF

δ~x
,
δH
δ~x
}Θ + 〈δF

δz

∂z

∂t
〉 (5)

{δF
δ~x
,
δH
δ~x
}SW = 〈δH

δ~v
· ~∇δF

δµ
− δH
δ~v
· ~∇δF

δµ
〉+〈

~∇× ~v
µ
· (δF
δ~v
× δH
δ~v

)〉

(6)

{δF
δ~x
,
δH
δ~x
}Θ = 〈θ(

δH
δ~v
· ~∇δF

δΘ
− δH
δ~v
· ~∇δF

δΘ
)〉 (7)

where µ is the pseudo-density, ~v = ~u − ~R is the absolute
(covariant) velocity, Θ = µθ is the mass-weighted potential
temperature and z is the height.
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Equations of Motion: Lagrangian Vertical Coordinate

Equations of Motion

Choose F =
∫
µ̂ ( or

∫
v̂/
∫

Θ̂/
∫
ẑ) to get:∫

µ̂

(
∂µ

∂t
+ ~∇ · (δH

δ~v
)

)
= 0 (8)

∫
Θ̂

(
∂Θ

∂t
+ ~∇ · (θ δH

δ~v
)

)
= 0 (9)∫

v̂

(
∂~v

∂t
+
ζv
µ
× δH
δ~v

+ θ~∇(
δH
δΘ

) + ~∇(
δH
δµ

)

)
= 0 (10)∫

ẑ
δH
δz

=

∫
ẑ

(
gµ+

∂p

∂η

)
= 0 (11)

Note that these are ALL 2D except for hydrostatic balance (11)
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Hamiltonian (Lagrangian Vertical Coordinate)

Hamiltonian and Functional Derivatives

H = H[µ, ~v ,Θ, z ] =

∫
µ(
~u · ~u

2
+ U(

1

µ

∂z

∂η
,

Θ

µ
) + gz) (12)∫

v̂
δH
δ~v

=

∫
v̂ (µ~u) (13)∫

µ̂
δH
δµ

=

∫
µ̂

(
~u · ~u

2
+ gz

)
(14)∫

Θ̂
δH
δΘ

=

∫
Θ̂
∂U

∂θ
=

∫
Θ̂π (15)∫

ẑ
δH
δz

=

∫
ẑ

(
gµ+

∂p

∂η

)
(16)
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Conservation

Energy

Arises purely from anti-symmetry of the brackets PLUS
δH
δz = 0

Mimetic Galerkin methods automatically ensure an
anti-symmetric bracket

Works for ANY choice of H
Something similar can be done with a mass-based vertical
coordinate, although it is slightly more complicated

Mass, Potential Vorticity and Entropy

These are Casimirs

Can show that this discretization also conserves them
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Remaining Issues and Questions

Hydrostatic Balance

1 Dynamico: Column-wise direct solution

2 Can this also be done with Galerkin approach?

Grid Staggering: Placement of Θ

1 Dynamico: Lorenz staggering (Θ and µ are collocated)

2 Galerkin Equivalent: µ,Θ ∈W3 (Admits a spurious
computational mode in the vertical)

3 Charney-Phillips: Θ ∈W2,vert (Avoids computational mode,
complicates formulation)

4 Differential Geometry: Θ is a 0-form → Θ ∈W0 (Excessive
horizontal averaging → computational mode/poor dispersion
properties?)
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Summary and Conclusions
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Summary and Conclusions

Summary

1 There is a general, effective procedure for devising mimetic,
conservative numerical schemes:

2 Mimetic discretizations + Hamiltonian formulation

Future Work

1 Computational efficiency: preconditioning/solvers, matrix
assembly

2 Mass-based vertical coordinate

3 Nonhydrostatic equations

4 Past Inivscid, Adiabatic Dry Dynamics: Subgrid Turbulence,
Moisture, Tracers, Physics Coupling
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