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Continuous Hamiltonian Formulation

Consider the nonlinear shallow water equations in
vector invariant form with ~x = (h, ~u)

Their evolution is governed by ∂~x
∂t

= JδH
δ~x

with

J =

(
0 ~∇·
~∇ qk̂×

)

H =
1

2
(h~u, ~u) +

1

2
(gh, h)

δH
δ~x

=

(
Φ
h~u

)
1 Energy conservation comes from J being

anti-symmetric

2 Potential enstrophy conservation comes from δZC
δ~x

lying in the nullspace of J
In general, having a discrete analogue of (1) is
”easy”, while a discrete analogue of (2) is ”hard”.
Having both (1) and (2) on a C grid has not been
done, outside of Arakawa and Lamb 1981.

Discrete Hamiltonian Formulation (Arbitrary C
Grid)

Based on work of Thuburn, Cotter, Ringler,
Skamarok, Klemp, Dubos, Weller, Salmon and
others (drawing heavily from Thuburn & Cotter
2013)

Hybrid of Hamiltonian and Discrete Exterior
Calculus approaches

Discrete variables are mi =
∫
hdA (discrete

primal 2-form) and ue =
∫
~u · ~dl (discrete dual

1-form), staggered in a C grid on arbitrary
primal-dual polygonal grids (low-order finite
difference/finite volume)

J =

(
0 D2

D̄1 Q

)
H =

1

2
g(mi,mi)I +

1

2
(Fe, ue)H

δH
δ~x

=

(
Φi

Fe

)
D1, D2 are incidence matrices on primal grid;
D̄1, D̄2 are incidence matrices on dual grid

D2D1 = 0, D̄2D̄1 = 0 (discrete analogues of
~∇ · ~∇T = 0 and ~∇T · ~∇ = 0)

−D̄1
T

= D2, D
T
1 = D̄2 (ensures adjointness

of discrete ~∇· and ~∇ operators)

Q is the discrete transpose nonlinear PV flux
operator

Φi and Fe are the discrete Bernoulli function and
mass flux

(, )I,(, )H are discrete inner products induced by
Hodge stars (see Thuburn & Cotter 2013 for
more details)

There many possible choices for these operators

Careful selection will give steady geostrophic
modes; conservative, consistent and compatible
PV advection; linear energy and potential
enstrophy conservation; mass conservation, a
discrete Hodge decomposition and other desirable
mimetic properties, even on non-orthogonal grids

However, so far it has not been possible
to obtain BOTH total energy and
potential enstrophy conservation

Potential Enstrophy Conservation (Continuous)

Consider the potential enstrophy ZC = 1
2
(hq, q)

Note that

J
δZC
δ~x

=

(
0 ~∇·
~∇ qk̂×

)(
−q

2

2

−~∇Tq

)
= 0

−~∇ · ~∇Tq = 0

~∇
q2

2
+ qk̂ × ~∇Tq = 0

Relies on ~∇ · ~∇T = 0, product rule for ~∇q2

and ”transformation” between k̂ × ~∇T and ~∇

Potential Enstrophy Conservation (Discrete)

Using the DEC approach, the discrete vorticity
dual 2-form is given by ζv = d̄2ue
A mass-weighted potential vorticity can then be
defined as

mvqv = ζv + f = ηv

where mv = Rmi and R is a mapping from
primal 2-forms to dual 2-forms

This motivates the definition of discrete potential
enstrophy as

ZC =
1

2
(mvqv, qv)J

Functional derivatives are then given as

δZC
δ~x

=

(
−RT q

2
v

2

D̄2
T
qv

)
=

(
−RT q

2
v

2
D1qv

)
Combine with discrete J to get

D2D1qv = 0

−D̄1R
Tq

2
v

2
+ QD1qv = 0

The first equation is satisfied INDEPENDENT of
choice of R (due to properties of DEC
primal-dual formulation)

The second equation is more complicated, and
requires careful construction of Q in combination
with R. Note that is must hold for ARBITRARY
values of qv.

The first term of the second equation can be
rewritten as

−D̄1R
Tq

2
v

2
= −D̄1R

Tqvqe

where qe =
∑
V E

qv
2

,

Thus we see that the TRiSK choice of
Q = qeW does in fact, preserve potential
enstrophy

For the AL1981 scheme, the second equation can
also be written out as

−
∑
CE

nei
∑
V C

Riv

q2
v

2
+
∑
ECP

Qe,e′

∑
V E

tevqv = 0

Careful choice of the Qe,e′ coefficients as
weighted sums of qv gives cancellation, and also
that Q = QT (for total energy conservation)

This has been done ONLY for a square grid

However, the form suggests it might be possible
on a general polygonal grid

Important Question: Are there other forms
for Q that might be more amenable to a
potential enstrophy conserving
discretization?

TRiSK (2010) Scheme

Developed for orthogonal, Voronoi grids (Ringler
et. al 2010 is the primary reference)

Both total energy and potential enstrophy
conserving variants

R is defined as Riv = Aiv

Ai
, with

−D̄2W = RD2 where W = WT is the
anti-symmetric discrete vector reconstruction
operator- it maps from primal 1-forms to dual
1-forms

QFe = 1
2
W(qeFe) + qe

2
WFe for the energy

conserving variant, where qe is some arbitrary
potential vorticity value at the edge

QFe = qeWFe for the potential enstrophy
conserving variant, where qe =

∑
V E

qv
2

There are other variants of TRiSK (Weller 2013,
Thuburn et. al 2013) that change H, φ, Q or
other operators in order to allow for better PV
advection, non-Voronoi and/or non-orthogonal
grids or other desirable properties

Arakawa and Lamb 1981 Scheme

Potential enstrophy and total energy conserving
scheme for logically square, orthogonal grids

Uses SAME formulation as TRiSK (2010) when
the latter is applied to a logically square,
orthogonal grid; EXCEPT for the discretization
of the Q term

The stencil of Q is the same as TRiSK (the ECP
stencil)

Q is constructed such that Q = QT (this
ensures energy conservation)

Remaining Challenges

Constructive method for potential enstrophy
conserving Q on arbitrary grids, such that
Q = QT and the other desirable linear mimetic
properties are retained

Extension of this generalized framework to the
vorticity-divergence form of the equations (will
probably require the continuous ζ − δ equations
in exterior calculus and Hamiltonian form, work
underway)

Important question: Are there alternative
definitions of discrete potential enstrophy
that are more amenable to constructive
methods for Q?

Important question: Can the generalized
framework be extended to collocated (A
grid) methods?

Related: Can an A grid method that
preserves total energy and potential
enstrophy; and has all of the other
desirable mimetic properties; be
developed for arbitrary polygonal grids?
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