Discrete Potential Enstrophy Conservation in the Nonlinear Shallow

Water Equations
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Continuous Hamiltonian Formulation

m Consider the nonlinear shallow water equations in

vector invariant form with & = (h, )
xIr

m [ heir evolution is governed by % = J% with
0 V.
I=(g Y
(V qu)
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Energy conservation comes from J being
anti-symmetric

Potential enstrophy conservation comes from %

lying in the nullspace of J

In general, having a discrete analogue of (1) is

"easy”, while a discrete analogue of (2) is "hard".
Having both (1) and (2) on a C grid has not been
done, outside of Arakawa and Lamb 1981.

Discrete Hamiltonian Formulation (Arbitrary C

Grid)

m Based on work of Thuburn, Cotter, Ringler,
Skamarok, Klemp, Dubos, Weller, Salmon and
others (drawing heavily from Thuburn & Cotter

2013)

m Hybrid of Hamiltonian and Discrete Exterior
Calculus approaches

m Discrete variables are m; = [ hd A (discrete

orimal 2-form) and ue = [ 4 - dl (discrete dual
1-form), staggered in a C grid on arbitrary
primal-dual polygonal grids (low-order finite
difference/finite volume)
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Ilzl, 122 are incidence matrices on primal grid;
D+, D5 are incidence matrices on dual grid

mD,;D; = 0, D,D; = 0 (discrete analogues of
V-VT=0and VT .V = 0)

s—D, = D, DI = D, (ensures adjointness
of discrete V- and V operators)

m Q) is the discrete transpose nonlinear PV flux
operator

m®P; and F, are the discrete Bernoulli function and
mass flux

m(, )1,(, )i are discrete inner products induced by
Hodge stars (see Thuburn & Cotter 2013 for
more details)

m [ here many possible choices for these operators

m Careful selection will give steady geostrophic
modes; conservative, consistent and compatible
PV advection; linear energy and potential
enstrophy conservation; mass conservation, a
discrete Hodge decomposition and other desirable
mimetic properties, even on non-orthogonal grids

m However, so far it has not been possible
to obtain BOTH total energy and
potential enstrophy conservation
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Potential Enstrophy Conservation (Continuous)

m Consider the potential enstrophy Z¢; = %(hq, q)
m Note that

V.V =
—»q2 A —
V2 - gk x Vig =0

mRelieson V - VT = 0, product rule for qu
and "transformation” between k X VI and V

Potential Enstrophy Conservation (Discrete)

m Using the DEC approach, the discrete vorticity
dual 2-form is given by ¢, = daue

m A mass-weighted potential vorticity can then be
defined as

Myqy = Co + f = 1
where m, = Rm; and R is a mapping from
primal 2-forms to dual 2-forms

m [ his motivates the definition of discrete potential
enstrophy as

Ze = (Mot @)
m Functional derivatives are then given as
= (o)~ ()
0L ljoqv -\ Dsq,

m Combine with discrete J to get
DZquv =0
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m [ he first equation is satisfied INDEPENDENT of

choice of R (due to properties of DEC
primal-dual formulation)

m [ he second equation is more complicated, and
requires careful construction of (Q in combination

with R. Note that is must hold for ARBITRARY

values of q,.

m [ he first term of the second equation can be
rewritten as
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where ge = > v g,
m [ hus we see that the TRiISK choice of
Q = g.W does in fact, preserve potential

enstrophy

mFor the AL1981 scheme, the second equation can
also be written out as

2
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m Careful choice of the Q¢ ¢ coefficients as

weighted sums of q, gives cancellation, and also
that Q = Q? (for total energy conservation)

m [ his has been done ONLY for a square grid

m However, the form suggests it might be possible
on a general polygonal grid

m Important Question: Are there other forms
for ) that might be more amenable to a
potential enstrophy conserving
discretization?

TRiSK (2010) Scheme

m Developed for orthogonal, Voronoi grids (Ringler
et. al 2010 is the primary reference)

m Both total energy and potential enstrophy
conserving variants

mR is defined as R;, = ATZ':, with
—D>sW = RD5y where W = W7 is the
anti-symmetric discrete vector reconstruction
operator- it maps from primal 1-forms to dual
1-forms

e QF, = %W(que) + LW, for the energy
conserving variant, where g, is some arbitrary
potential vorticity value at the edge

mQF, = q-WUFE, for the potential enstrophy
conserving variant, where ge = » v g%

m There are other variants of TRiISK (Weller 2013,

Thuburn et. al 2013) that change H, ¢, Q or

other operators in order to allow for better PV

advection, non-Voronoi and/or non-orthogonal

grids or other desirable properties

Arakawa and Lamb 1981 Scheme

m Potential enstrophy and total energy conserving
scheme for logically square, orthogonal grids

m Uses SAME formulation as TRiSK (2010) when
the latter is applied to a logically square,
orthogonal grid; EXCEPT for the discretization
of the QQ term

m The stencil of Q is the same as TRiSK (the ECP

stencil)

m Q is constructed such that Q = QT (this
ensures energy conservation)

Remaining Challenges

m Constructive method for potential enstrophy
conserving (Q on arbitrary grids, such that
Q = Q' and the other desirable linear mimetic
properties are retained

m Extension of this generalized framework to the
vorticity-divergence form of the equations (will
probably require the continuous ¢ — 0 equations
In exterior calculus and Hamiltonian form, work
underway)

mImportant question: Are there alternative
definitions of discrete potential enstrophy
that are more amenable to constructive

methods for Q?

mImportant question: Can the generalized
framework be extended to collocated (A
grid) methods?

m Related: Can an A grid method that
preserves total energy and potential
enstrophy; and has all of the other
desirable mimetic properties; be
developed for arbitrary polygonal grids?
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