Finite Element Hydrostatic Primitive Equations in Themis

Chris Eldred¹, Thomas Dubos² and Evaggelos Kritsikis¹

¹LAGA, University of Paris 13 and ²LMD, Ecole Polytechnique

Contact: chris.eldred@gmail.com

Themis: Accelerated Computational Science

Themis is a PETSc-based software framework (written primarily in Python using petsc4py) for parallel, high-performance*, automated* discretization of variational forms (and solution of systems of equations involving them) through mimetic, tensor-product Galerkin methods. It is intended to enable a rapid cycle of prototyping and experimentation, accelerating both the development of new numerical methods and scientific models that incorporate them.

Available online at https://bitbucket.org/chris_eldred/themis *- work in progress*

Design Principles behind Themis

- Leverage existing software packages: PETSc, petsc4py, Numpy, Sympy, Instant, ...
- 2 Restrict to a subset of methods: mimetic, tensor-product Galerkin methods on structured grids
- 3 Similar in spirit and high-level design to FEniCS/Firedrake

Driver- petsc4py		
LinearVariationalProblem- KSP		
Forms- Vec, Mat		Fields- Vec
FunctionSpace- IS, Scatter, DMDA, LocalToGlobal		
Mesh- DMDA	Geometry	FiniteElement

Current Capabilities of Themis

- Support for single-block, structured grids in 1, 2 and 3 dimensions
- Parallelism through MPI
- 3 Automated generation of assembly code (with user supplied kernels)
- 4 Arbitrary mappings between physical and reference space
- Support for mixed, vector and standard tensor-product Galerkin function spaces using mimetic Galerkin difference elements (see [2] and [3]) and arbitrary order $Q_r^-\Lambda^k$ elements
- 6 Support for essential and periodic boundary conditions

Some Results using Themis

H^1 Helmholtz Problem $<ec abla \hat{h}, ec abla h>=<\hat{h}, f>$

Doubly periodic boundaries on $[0,1]^3$ using a uniform hexahedral grid

Mixed H(div) Helmholtz Problem

$$<\hat{h}, \vec{
abla} \cdot \vec{u} + h> = <\hat{h}, f> \ <\hat{u}, \vec{u}> + <\vec{
abla} \cdot \hat{u}, h> = 0$$

Doubly periodic boundaries on $[{f 0,1}]^3$ using a uniform hexahedral grid

Linear Shallow Water Equations (compatible $L_2/H(div)$ spaces) $\uparrow \partial h$

Leads to a system of equations of the form:

$$ext{M} rac{\partial ec{x}}{\partial t} + ext{S} ec{x} = 0$$

Doubly periodic boundaries and a uniform square grid (64x64), initialized with a single vortex in grid center. Using implicit midpoint time stepping, energy is conserved to machine precision (assuming sufficient tolerances on linear solver).

Planned Extensions for Themis

- 11 New discretizations: isogeometric analysis, mimetic spectral element, Bernstein basis for $Q_r^-\Lambda^k$ family
- Facet integrals (will enable natural boundary conditions)
- 3 Duality/BLAS-based assembly (see [1])
- Integration of (a subset of) UFL and a (limited) form compiler (targeting tensor product and duality/BLAS-based assembly)
- Multi-block domains

Hamiltonian HPE in a Lagrangian Vertical Coordinate

Prognose

$$ec{x} = (\mu, S, ec{v})$$

using

$$egin{aligned} rac{d\mathcal{F}}{dt} &= \langle rac{\delta \mathcal{H}}{\delta ec{v}} \cdot ec{
abla} rac{\delta \mathcal{F}}{\delta \mu} - rac{\delta \mathcal{H}}{\delta ec{v}} \cdot ec{
abla} rac{\delta \mathcal{F}}{\delta \mu}
angle + \langle rac{ec{
abla} imes ec{v}}{\mu} \cdot (rac{\delta \mathcal{F}}{\delta ec{v}} imes rac{\delta \mathcal{H}}{\delta ec{v}})
angle - \ & \langle s(rac{\delta \mathcal{H}}{\delta ec{v}} \cdot ec{
abla} rac{\delta \mathcal{F}}{\delta \mu} - rac{\delta \mathcal{H}}{\delta ec{v}} \cdot ec{
abla} rac{\delta \mathcal{F}}{\delta \mu})
angle + \langle rac{\delta \mathcal{F}}{\delta z} rac{\partial z}{\partial t}
angle \end{aligned}$$

with Hamiltonian ${\cal H}$

$$\mathcal{H} = \mathcal{H}[\mu,ec{v},S,z] = \int \mu(rac{ec{u}\cdotec{u}}{2} + U(rac{1}{\mu}rac{\partial z}{\partial \eta},rac{S}{\mu}) + gz)$$

where $\vec{u}=\vec{v}-\vec{R}$ and $S=\mu s$. Note that the brackets are 2D- vertical coupling is induced only through \mathcal{H} . Hydrostatic balance (which is an equation for z) is defined through $\frac{\delta\mathcal{H}}{\delta z}=0$. Energy is conserved solely due to anti-symmetry of brackets (and $\frac{\delta\mathcal{H}}{\delta z}=0$). See [4] for more details.

FE Spaces and Discretization

Discretization is done by restricting brackets and ${\cal H}$ to (appropriate) discrete subspaces, and then letting ${\cal F}=\int\hat{\mu}\mu d\Omega$ (or equivalent for other variables) to recover discrete weak form equations. Differential geometry says spaces and staggering should be chosen as:

 $\psi \in H^1$

 $ec{\zeta} \in H(curl)$

 $(v, \vec{v} \in H(div))$

 $\mu,\delta,\chi\in L_2$

which corresponds to a FE version of C grid staggering.

[2] J.W. Banks, T. Hagstrom. May 2016. On Galerkin difference methods, Journal of Computational Physics

- Where should S be staggered (H^1 = differential geometry, L_2 = Lorenz, $H(div)_{vert}$ =Charney Phillips)? What about auxiliary thermodynamic quantities (such as s,p,α,π)?
- 2 How should hydrostatic balance and $\frac{\delta \mathcal{H}}{\delta S} = \pi$ be solved? Can they be done column-wise or at least horizontal layer-wise?

This approach gives a (quasi-)Hamiltonian semi-discretization that will conserve mass, entropy and total energy.

References

[1] Robert C. Kirby. 2014. High-Performance Evaluation of Finite Element Variational Forms via Commuting Diagrams and Duality. ACM Trans. Math. Softw. 40

[3] E. Kritsikis and T. Dubos. April 2014. Higher-order finite elements for the shallow-water equations on the cubed sphere, PDEs on the Sphere workshop

[4] Thomas Dubos and Marine Tort, 2014: Equations of Atmospheric Motion in Non-Eulerian Vertical Coordinates: Vector-Invariant Form and Quasi-Hamiltonian Formulation. Monthly Weather Review

Eldred, Dubos & Kritsikis
Finite Element HPE