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Themis: Accelerated Computational Science

Themis is a PETSc-based software framework
(written primarily in Python using petsc4py) for
parallel, high-performance*, automated*
discretization of variational forms (and solution of
systems of equations involving them) through
mimetic, tensor-product Galerkin methods. It is
intended to enable a rapid cycle of prototyping and
experimentation, accelerating both the
development of new numerical methods and
scientific models that incorporate them.
Available online at https://bitbucket.org/chris_eldred/themis

*- work in progress

Design Principles behind Themis

1 Leverage existing software packages: PETSc, petsc4py, Numpy, Sympy,
Instant, ...

2 Restrict to a subset of methods: mimetic, tensor-product Galerkin
methods on structured grids

3 Similar in spirit and high-level design to FEniCS/Firedrake

Current Capabilities of Themis

1 Support for single-block, structured grids in 1, 2 and 3 dimensions

2 Parallelism through MPI

3 Automated generation of assembly code (with user supplied kernels)

4 Arbitrary mappings between physical and reference space

5 Support for mixed, vector and standard tensor-product Galerkin
function spaces using mimetic Galerkin difference elements (see [2] and
[3]) and arbitrary order Q−r Λk elements

6 Support for essential and periodic boundary conditions

Some Results using Themis

H1 Helmholtz Problem

< ~∇ĥ, ~∇h >=< ĥ, f >

Doubly periodic boundaries on
[0, 1]3 using a uniform hexahedral
grid

Mixed H(div) Helmholtz
Problem

< ĥ, ~∇ · ~u+ h >=< ĥ, f >

< û, ~u > + < ~∇ · û, h >= 0

Doubly periodic boundaries on
[0, 1]3 using a uniform hexahedral
grid

Linear Shallow Water
Equations (compatible
L2/H(div) spaces)

< ĥ,
∂h

∂t
> +H < ĥ, ~∇·u >= 0

< û,
∂~u

∂t
+ f < û, k̂ × ~u >

−g < ~∇ · û, h >= 0

Leads to a system of equations of the form:

M
∂~x

∂t
+ S~x = 0

Doubly periodic boundaries and a uniform square grid (64x64),
initialized with a single vortex in grid center. Using implicit midpoint
time stepping, energy is conserved to machine precision (assuming
sufficient tolerances on linear solver).

Planned Extensions for Themis

1 New discretizations: isogeometric analysis, mimetic spectral element,
Bernstein basis for Q−r Λk family

2 Facet integrals (will enable natural boundary conditions)

3 Duality/BLAS-based assembly (see [1])

4 Integration of (a subset of) UFL and a (limited) form compiler
(targeting tensor product and duality/BLAS-based assembly)

5 Multi-block domains

Hamiltonian HPE in a Lagrangian Vertical Coordinate

Prognose
~x = (µ, S, ~v)

using
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with Hamiltonian H

H = H[µ,~v, S, z] =

∫
µ(
~u · ~u

2
+ U(

1

µ

∂z

∂η
,
S

µ
) + gz)

where ~u = ~v− ~R and S = µs. Note that the brackets are 2D- vertical coupling is
induced only through H. Hydrostatic balance (which is an equation for z) is defined
through δH

δz
= 0. Energy is conserved solely due to anti-symmetry of brackets (and

δH
δz

= 0). See [4] for more details.

FE Spaces and Discretization

Discretization is done by restricting brackets and H to (appropriate) discrete
subspaces, and then letting F =

∫
µ̂µdΩ (or equivalent for other variables) to

recover discrete weak form equations. Differential geometry says spaces and
staggering should be chosen as:

ψ ∈ H1 ~ζ ∈ H(curl) ~u, ~v ∈ H(div) µ, δ, χ ∈ L2

which corresponds to a FE version of C grid staggering.

1 Where should S be staggered (H1 = differential geometry, L2 = Lorenz,
H(div)vert=Charney Phillips)? What about auxiliary thermodynamic quantities
(such as s,p,α,π)?

2 How should hydrostatic balance and δH
δS

= π be solved? Can they be done
column-wise or at least horizontal layer-wise?

This approach gives a (quasi-)Hamiltonian semi-discretization that will
conserve mass, entropy and total energy.
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